Introduction to Nonlinear Programming¹

Sébastien Gros

OPTEC, KU Leuven

Workshop on Modern Nonparametric Methods for Time Series, Reliability & Optimization

¹A part of the material was provided by B. Chachuat, Imperial College, b.chachuat@imperial.ac.uk S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012

Some definitions

Optimization problem:

 $egin{array}{ccc} \min & f(\mathbf{x}) & & \ \mathbf{x} & \mathbf{g}(\mathbf{x}) \leq 0 & & \ & \mathbf{h}(\mathbf{x}) = 0 & & \end{array}$ where

where: $\mathbf{x} \in \mathbb{R}^{n}, f \in \mathbb{R}, \mathbf{g} \in \mathbb{R}^{m_{i}}, \mathbf{h} \in \mathbb{R}^{m_{e}}$

1 / 77

Basic terminology:

- Function $f \in \mathbb{R}$ is the cost/objective/penalty function
- $\bullet\,$ Functions ${\bf h}$ and ${\bf g}$ yields the equality & inequality constraints, resp.
- The set of indices *i* for which $g_i(\mathbf{x}) = 0$ is named the active set

Some classes of problems:

- Convex NLP: f, g convex, h affine
- Non-smooth: any of f, g, h is not C^1
- \bullet (Mixed)-Integer Programming: some ${\bf x}$ take only discrete values

Defining (Global) Optimality

Feasible Set

The feasible set S (or feasible region) of an optimization model is the collection of choices for decision variables satisfying all model constraints: $S \stackrel{\Delta}{=} \{ \mathbf{x} : \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0} \}$. Any point $\mathbf{\bar{x}} \in S$ is said feasible.

(Global) Optimum

An optimal solution, \mathbf{x}^* , is a feasible point with objective function value lower than any other feasible point, i.e. $\mathbf{x}^* \in S$ and $f(\mathbf{x}^*) \leq f(\mathbf{x}), \quad \forall \mathbf{x} \in S$

- The optimal value f^* in an optimization model is the objective function value of any optimal solutions: $f^* = f(\mathbf{x}^*)$ It is unique!
- But, an optimization model may have:
 - ► a unique optimal solution
 - several alternative optimal solutions
 - no optimal solutions (unbounded or infeasible models)

Defining Local Optimality

Local Optimum

A point \mathbf{x}^* is a local optimum for the function $f : \mathbb{R}^n \to \mathbb{R}$ on the set S if it is feasible ($\mathbf{x}^* \in S$) and if sufficiently small neighborhoods surrounding it contain no points that are both feasible and lower in objective value:

 $\exists \delta > 0: \quad f(\mathbf{x}^*) \leq f(\mathbf{x}), \quad orall \mathbf{x} \in \mathcal{S} \cap \mathcal{B}_{\delta}(\mathbf{x}^*)$

Algebraic Characterization of Unconstrained Local Optima

1st-Order Necessary Condition of Optimality (FONC)

 \mathbf{x}^* local optimum \Rightarrow $\mathbf{
abla} f(\mathbf{x}^*) = \mathbf{0}, \ \mathbf{x}^*$ stationary point

2nd-Order **Sufficient** Conditions of Optimality (SOSC)

 $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) \succeq 0 \implies x^*$ strict local minimum

 $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x}^*) \preceq \mathbf{0} \implies x^*$ strict local maximum

No conclusion can be drawn in case $\nabla^2 f(\mathbf{x}^*)$ is indefinite!

Remarks:

- Stationarity of $f: \nabla f(\mathbf{x}^*) = \mathbf{0} \Leftrightarrow \nexists \mathbf{d}$ such that $\nabla f(\mathbf{x}^*)^T \mathbf{d} < \mathbf{0}$
- Positivity of $\nabla^2 f \Leftrightarrow \forall \mathbf{d} \neq \mathbf{0}, \, \mathbf{d} \nabla^2 f(\mathbf{x}^*) \mathbf{d}^T > \mathbf{0}$

General Equality Constraints

- The intersection of the equality constraints, $h_1(\mathbf{x}), \ldots, h_m(\mathbf{x})$ forms the feasible set: $S \stackrel{\Delta}{=} \{\mathbf{x} \in \mathbb{R}^n : h_1(\mathbf{x}) = \cdots = h_m(\mathbf{x}) = 0\} \subseteq \mathbb{R}^n$
- A feasible point $\bar{\mathbf{x}} \in S \stackrel{\Delta}{=} \{\mathbf{x} : h_i(\mathbf{x}) = 0, i = 1, \dots, m_e\}$ is called regular if rank $(\nabla h_1(\bar{\mathbf{x}}) \dots \nabla h_{m_e}(\bar{\mathbf{x}})) = m_e$

Example. Consider the constraints $h_1(\mathbf{x}) \stackrel{\Delta}{=} x_1^2 - 2x_2^3 - x_3 = 0$ and $h_2(\mathbf{x}) \stackrel{\Delta}{=} x_3 - 10 = 0$

10th of September, 2012 8 / 77

Tangent Set to General Equality Constraints

- Consider the collection of all smooth curves in S passing through a point x̄ ∈ S. The tangent set of S at x̄, denoted by 𝒴Sx̄, is the collection of the vectors tangent to all these curves at x̄
- At a regular point $\bar{\mathbf{x}} \in S$, $\mathscr{T}S\bar{\mathbf{x}} \stackrel{\Delta}{=} \{\mathbf{d} \in \mathbb{R}^n : \nabla h_j(\bar{\mathbf{x}})^{\mathsf{T}}\mathbf{d} = 0, \forall j\}$

Example. Consider the constraints $h_1(\mathbf{x}) \stackrel{\Delta}{=} x_1^2 - 2x_2^3 - x_3 = 0$ and $h_2(\mathbf{x}) \stackrel{\Delta}{=} x_3 = 0$

Geometric Optimality Condition

A point $\mathbf{x}^* \in \mathbb{R}^n$ is a local optimum of a real-value function f in the feasible set $S \subset \mathbb{R}^n$, if sufficiently small neighborhoods surrounding it contain no feasible points that are lower in objective value

FONC for equality constraints

Interpretation of the Lagrange Multipliers

Optimization Problem:

FONC: Find $\mathbf{x}^* \in \mathbb{R}^n$, $\boldsymbol{\lambda}^* \in \mathbb{R}^m$ such that

$$\min_{\mathbf{x}} f(\mathbf{x}) \\ \text{s.t. } \mathbf{h}(\mathbf{x}) = \mathbf{b} \qquad \begin{cases} h_j(\mathbf{x}^*) - b_j = 0, \quad \forall j = 1, \dots, m \\ \nabla f(\mathbf{x}^*) - \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0} \end{cases}$$

- A variation in RHS b_j affects the optimal solution $\longrightarrow \mathbf{x}^*(b_j), \boldsymbol{\lambda}^*(b_j)$
- Rate of change in optimal solution value w.r.t. *b_j*:

$$\frac{\partial f(\mathbf{x}^*(b_j))}{\partial b_j}\Big|_{b_j=0} = \lambda_j^*$$

The optimal Lagrange multiplier, λ_j^* , associated with constraint $h_j(\mathbf{x}) = b_j$ can be interpreted as the rate of change in optimal value for infinitesimal change in RHS b_i

Inequality Constrained Optimization

• Consider the optimization problem with inequality constraints

$$egin{array}{cc} {minimize:} & f(\mathbf{x}) \ {\mathbf{x} \in \mathbb{R}^n} \end{array}$$
 subject to: $g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,n$

• In general, multiple inequality constraints define a (possibly unbounded) *n*-dimensional set,

$$S \stackrel{\Delta}{=} \{\mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, \dots, m\} \subseteq \mathbb{R}^n$$

- At a feasible point x
 i, the *i*th constraints is said to be active if g_i(x
) = 0; it is said to be inactive if g_i(x
) < 0
- $\bullet~$ The set of active constraints at a feasible point $\bar{\mathbf{x}}$ is

$$\mathcal{A}\bar{\mathbf{x}}\stackrel{\Delta}{=}\{i:g_i(\bar{\mathbf{x}})=0\}$$

Arguably more difficult than equality constraints since active set not known a priori...

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 13 / 77

Regularity of General Inequality Constraints

 A point x̄ ∈ S is said to be regular if the gradient vectors ∇g_i(x̄) for all the active constraints are linearly independent:

 $\mathsf{rank}\left(\ oldsymbol{
abla} g_i(oldsymbol{ar{x}}), i \in \mathcal{A}oldsymbol{ar{x}} \
ight) = \mathsf{card}\left(\mathcal{A}oldsymbol{ar{x}}
ight)$

- Point x̄ ∈ S is then also said to respect the Linear Independence Constraint Qualification (LICQ).
- When mixing equality constraints with inequality constraints, the active constraints can be seen as equality constraints and the inactive constraints disregarded, i.e. a point respects LICQ iff

$$\mathsf{rank}\left(\ \boldsymbol{\nabla} g_i(\bar{\mathbf{x}}), \, \boldsymbol{\nabla} h_j(\bar{\mathbf{x}}), i \in \mathcal{A}\bar{\mathbf{x}}, \, j=1,...,m_e \ \right) = \mathsf{card}\left(\mathcal{A}\bar{\mathbf{x}}\right)$$

and is said to be regular.

There are more (and less demanding) Constraint Qualifications.

Characterizing Feasible Directions

- Consider the feasible domain $S \stackrel{\Delta}{=} \{\mathbf{x} : g_i(\mathbf{x}) \leq 0, i = 1, \dots, m\}$
- The set of feasible directions at a point $\bar{\mathbf{x}} \in S$ is

$$\mathscr{F}(\bar{\mathbf{x}}) \stackrel{\Delta}{=} \{ \mathbf{d} \neq \mathbf{0} : \exists \varepsilon > \mathbf{0} \text{ such that } \bar{\mathbf{x}} + \alpha \mathbf{d} \in \mathcal{S}, \forall \alpha \in (\mathbf{0}, \epsilon) \}$$

Geometric Optimality Condition

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 16 / 77

KKT Points

• Let f and g_1, \ldots, g_m in \mathcal{C}^1 , and consider the NLP problem

$$egin{array}{ccc} \min & f(\mathbf{x}) \ \mathbf{x} \in \mathbb{R}^n \end{array} \ f(\mathbf{x}) \ {
m subject to:} \quad g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m \end{array}$$

• A point $(\bar{\mathbf{x}}, \bar{\boldsymbol{\nu}}) \in \mathbb{R}^n \times \mathbb{R}^m$ is called a KKT point if it satisfied

Primal Feasibility:	$g_i(ar{\mathbf{x}}) \leq 0, i=1,\ldots,m$
Dual Feasibility:	$\left\{ egin{array}{l} {oldsymbol abla} f(ar{\mathbf{x}}) = \sum_{i=1}^m ar{ u}_i {oldsymbol abla} g_i(ar{\mathbf{x}}) \ ar{ u}_i \leq 0, i=1,\ldots,m \end{array} ight.$
Complementarity Slackness:	$ar{ u}_i g_i(ar{\mathbf{x}}) = 0, i = 1, \dots, m$

(OPTEC, ESAT, KU Leuven) 10th of September, 2012 17 / 77

Solving Nonlinear Inequality Constrained Optimization

A simple problem where \mathbf{x}^* is not a KKT point...

$$\begin{split} \min_{\mathbf{x}} f(\mathbf{x}) &\stackrel{\Delta}{=} -x_1 \\ \text{s.t. } g_1(\mathbf{x}) \stackrel{\Delta}{=} -(1-x_1)^3 + x_2 \leq 0 \\ g_2(\mathbf{x}) \stackrel{\Delta}{=} -x_2 \leq 0 \end{split}$$

What's going on here?

FONC for Inequality Constraints

First-Order Necessary Conditions

Let f, g_1, \ldots, g_m be \mathcal{C}^1 . If \mathbf{x}^* is a (local) optimum for f s.t. $g_i(\mathbf{x}) \leq 0$, $i = 1, \dots, m$, and regular, there is a unique vector $\nu^* \in \mathbb{R}^m$ such that $(\mathbf{x}^*, \boldsymbol{\nu}^*)$ is a KKT point:

$$egin{aligned} oldsymbol{
u}^* &\leq \mathbf{0}, & g(\mathbf{x}^*) &\leq \mathbf{0}, \ oldsymbol{
abla} \mathcal{
abla} \mathcal{L}(\mathbf{x}^*,
u^*) &= \mathbf{0}, &
u_i^* g_i(\mathbf{x}^*) &= \mathbf{0}, & i = 1, \dots, m \end{aligned}$$

where $\mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*) = f(\mathbf{x}^*) - \sum_{i=1}^m \nu_i^* g_i(\mathbf{x}^*)$

KKT Multipliers (Minimize):	Active Set Selection:
• $g_i(\mathbf{x}) \leq 0 \leftrightarrow \nu_i^* \leq 0$	Pick-up active set (a priori)
Interpretation:	Olive Calculate KKT point $(\mathbf{x}^*, oldsymbol{ u}^*)$
• $g_i(\mathbf{x}) < b_i$ active $\Rightarrow \nu_i^* \stackrel{\Delta}{=} \frac{\partial f^*}{\partial L}$	(if any)
$O(V) = V$ OD_i	\rightarrow Repeat for <u>all</u> possible active sets!
	10th CC 1010 10/77

FONC for Equality & Inequality Constraints

- Let $f, g_1, \ldots, g_{m_i}, h_1, \ldots, h_{m_e}$ be \mathcal{C}^1
- Suppose that \mathbf{x}^* is a (local) optimum point for

minimize: $f(\mathbf{x})$ subject to: $g_i(\mathbf{x}) < 0, \quad i = 1, \ldots, m_i$ $h_i(\mathbf{x}) = 0, \quad i = 1, \ldots, m_e$

and a regular point for the equality and active inequality constraints

• Then, there exist (unique) multiplier vectors $\boldsymbol{\nu}^* \in \mathbb{R}^{m_{\mathrm{i}}}, \boldsymbol{\lambda}^* \in \mathbb{R}^{m_{\mathrm{e}}}$ such that $(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*)$ satisfy:

$$\begin{aligned} g(\mathbf{x}^*) &\leq 0, \quad \boldsymbol{\nu}^* \leq 0, \quad \nu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m_i \\ \mathbf{h}(\mathbf{x}^*) &= 0, \quad \nabla \mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) = 0 \end{aligned} \\ \text{where } \mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) &= f(\mathbf{x}^*) - \sum_{i=1}^{m_i} \nu_i^* g_i(\mathbf{x}^*) - \sum_{i=1}^{m_e} \lambda_i^* h_i(\mathbf{x}^*). \end{aligned}$$

Understanding Necessary Conditions for Optimality

Second-Order Sufficient Conditions for a Local Minimum

- Let $f, g_1, \ldots, g_{m_i}, h_1, \ldots, h_{m_e}$ be \mathcal{C}^2
- Suppose that x^* is regular and $\exists \ \lambda^*,\nu^*$ such that x^*,λ^*,ν^* is a KKT point
- For any $\mathbf{y} \neq \mathbf{0}$ such that

$$\begin{aligned} \boldsymbol{\nabla} g_i(\mathbf{x}^*)^T \mathbf{y} &= 0, \quad i \in \mathbb{A} \mathbf{x}^*, \quad \nu_i^* > 0, \\ \boldsymbol{\nabla} g_i(\mathbf{x}^*)^T \mathbf{y} &\leq 0, \quad i \in \mathbb{A} \mathbf{x}^*, \quad \nu_i^* &= 0, \\ \boldsymbol{\nabla} h(\mathbf{x}^*)^T \mathbf{y} &= 0, \end{aligned}$$

the inequality $\mathbf{y}^T \nabla^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\nu}^*) \mathbf{y} \succ \mathbf{0}$ holds.

Then, \mathbf{x}^* is a local minimum.

Understanding Necessary Conditions for Optimality

More About Constraint Qualifications

Point \mathbf{x}^* is regular if it satisfies some assumptions – Among the most used ones:

• Linear Independence Constraint Qualification (LICQ) The gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at x*,

 $\mathsf{rank}\left\{ \mathbf{
abla}h_{i}(ar{\mathbf{x}}),i=1,\ldots,m_{\mathrm{e}},\mathbf{
abla}g_{j}(ar{\mathbf{x}}),j\in\mathcal{A}\mathbf{x}^{*}
ight\} =m_{\mathrm{e}}+\left|\mathcal{A}\mathbf{x}^{*}
ight|$

• Mangasarian-Fromovitz Constraint Qualification (MFCQ) The gradients of the active inequality constraints and the gradients of the equality constraints are positive-linearly independent at x*,

 $\exists \mathbf{d} \in \mathbb{R}^{n_x}$ such that $\mathbf{\nabla} \mathbf{h}(\mathbf{x}^*)^\mathsf{T} \mathbf{d} = \mathbf{0}$ and $\mathbf{\nabla} g_j(\mathbf{x}^*)^\mathsf{T} \mathbf{d} < 0, \forall j \in \mathcal{A} \mathbf{x}^*$

- Linearity Constraint Qualification If g_i and h_i are affine functions, then no other CQ is needed
- Slater Constraint Qualification For a convex NLP only,
 ∃ x̄ such that h(x̄) = 0 and g_j(x̄) < 0, ∀j ∈ Ax* ≡ "strict" feasibility !!

Convexity & First-Order Conditions for Optimality

• Consider the NLP problem

$$\begin{array}{ll} \underset{\mathbf{x}\in\mathbb{R}^n}{\text{minimize:}} & f(\mathbf{x})\\ \text{subject to:} & g_i(\mathbf{x}) \leq 0, \quad i=1,\ldots,m_{\mathrm{i}}\\ & h_i(\mathbf{x})=0, \quad i=1,\ldots,m_{\mathrm{e}} \end{array}$$

where:

- $f, g_1, \ldots, g_{m_{\mathrm{i}}}, h_1, \ldots, h_{m_{\mathrm{e}}}$ are \mathcal{C}^1
- f, g_1, \ldots, g_{m_i} are convex and h_1, \ldots, h_{m_e} are affine on \mathbb{R}^n
- Suppose that $(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*)$ satisfy:

 $\begin{array}{ccc} g(\mathbf{x}^*) \leq 0, \quad \boldsymbol{\nu}^* \leq 0, \quad \nu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m_i \\ \mathbf{h}(\mathbf{x}^*) = 0, \quad \boldsymbol{\nabla} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) = 0 \end{array} \\ \text{where } \mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) = f(\mathbf{x}^*) - \sum_{i=1}^{m_i} \nu_i^* g_i(\mathbf{x}^*) - \sum_{i=1}^{m_e} \lambda_i^* h_i(\mathbf{x}^*). \end{array}$

Then, \mathbf{x}^* is a global optimum point

25 / 77

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012

Summary of Optimality Conditions

Optimality conditions for NLP with equality and/or inequality constraints:

- 1st-Order Necessary Conditions: A local optimum of a (differentiable) NLP must be a KKT point <u>if</u>:
 - that point is regular; or
 - all the (active) constraints are affine
- 1st-Order Sufficient Conditions: A KKT point of a convex (differentiable) NLP is a global optimum
- **2nd-Order Necessary and Sufficient Conditions** requires positivity of the Hessian in the feasible directions

Non-convex problem \Rightarrow minimum is not necessarily global. But some non-convex problems have a unique minimum !! Constraint qualification for convex problems ?!?

Sufficient condition for optimality

If $(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*)$ is a KKT point $\Rightarrow \mathbf{x}^*$ is a global minimum

Why should we care about constraint qualification (CQ) ?!?

Necessary condition for optimality

If
$$\mathbf{x}^*$$
 is a minimum and satisfy (any) CQ
 \Rightarrow
 $\exists \lambda^*, \nu^* \text{ s.t. } (\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) \text{ is a KKT point}$

I.e. <u>no CQ</u> \Rightarrow KKT may not have a solution even if \mathbf{x}^* exists

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programmin

 10^{th} of September, 2012 26 / 77

 $10^{\rm th}$ of September, 2012 \qquad 28 / 77

How to Detect Convexity?

Reminder:

$$\begin{array}{ll} \min\limits_{\mathbf{x}} & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{g}(\mathbf{x}) \leq 0 \\ & \mathbf{h}(\mathbf{x}) = 0 \end{array}$$

is convex iff f, g_i are convex, h_i are affine.

Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming

Gradient and Hessian Tests A function $f: S \subset \mathbb{R}^n \to \mathbb{R}$ in \mathcal{C}^2 is convex on S if. at each $\mathbf{x}^\circ \in S$. • Gradient Test: $f(\mathbf{x}) > f(\mathbf{x}^\circ) + \nabla f(\mathbf{x}^\circ)^{\mathsf{T}} (\mathbf{x} - \mathbf{x}^\circ)$, $\forall \mathbf{x} \in S$ • Hessian Test: $\nabla^2 f(\mathbf{x}^\circ) \succeq 0$ (positive semi-definite) Strict convexity is detected by making the inequality signs strict Gradient and Hessian tests are often very difficult !!

Consider the NLP:

Dual function

$f^* = \min f(\mathbf{x})$ s.t. $\mathbf{g}(\mathbf{x}) \leq 0$ $h(\mathbf{x}) = 0$

10th of September, 2012

with associated Lagrangian²: $\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\nu}^T \mathbf{g}(\mathbf{x}) + \boldsymbol{\lambda}^T \mathbf{h}(\mathbf{x})$ The Lagrange dual function $g(\nu, \lambda) \in \mathbb{R}$ is define as:

 $g(\nu, \lambda) = \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \nu, \lambda)$

- dual function $g(\nu, \lambda)$ is concave (even if the NLP is non-convex !)
- can take values $-\infty$ (when Lagrangian unbounded below)
- lower bound $f^* \geq g(\nu, \lambda), \forall \nu \geq 0$ and λ

How to Detect Convexity?

Operations on sets preserving convexity

- Intersection $S_1 \cap S_2$ is convex is S_1, S_2 are convex
- $f(S) = \{f(x) | x \in S\}$ is convex if f is affine and S convex

Operations on functions preserving convexity

- Sum of functions: $f = \sum_i w_i f_i$ is convex if f_i are convex and $w_i \ge 0$ (extends to infinite sums & integrals)
- Affine composition: $g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$ is convex if f is convex
- Point-wise maximum: $f(x) = \max_i \{f_i(x)\}$ is convex if f_i are convex
- Infimum: $g(x) = \inf_{y \in C} f(x, y)$ is convex if f(x, y) is convex in x, y
- Perspective function: g(x, t) = tf(x/t) is convex on t > 0 if f is convex
- Composition: g(f(x)) is convex if f is convex and g is convex and monotonically increasing

Introduction to Nonlinear Programm

Gros (OPTEC, ESAT, KU Leuven)

10th of September, 2012

Dual problem

Primal problem:

 $f^* = \min_{\mathbf{x}} f(\mathbf{x})$ s.t. $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ $h(\mathbf{x}) = 0$

with Lagrange dual function $g(\nu, \lambda) \leq f^*$. What is the *best* lower bound ?

Lagrange dual problem: $g^* = \max_{\nu,\lambda} g(\nu,\lambda)$ s.t. $\nu \ge 0$

- Dual problem is convex (even if primal problem is not !!)
- Weak duality $g^* \leq f^*$ always hold (even if primal problem is non-convex !!)
- Strong duality $g^* = f^*$ holds if primal is convex and some CQ holds
- Difference $f^* g^* \ge 0$ is named *duality gap*

Saddle-point interpretation

Observe that:

$$\sup_{\boldsymbol{\nu} \ge 0} \mathcal{L}(\mathbf{x}, \boldsymbol{\nu}) = \sup_{\boldsymbol{\nu} \ge 0} \left(f(\mathbf{x}) + \boldsymbol{\nu}^{\mathsf{T}} \mathbf{g}(\mathbf{x}) \right) = \begin{cases} f(\mathbf{x}) & \mathbf{g}(\mathbf{x}) \le 0\\ \infty & \text{otherwise} \end{cases}$$
$$f^* = \inf_{\mathbf{x}} \sup_{\boldsymbol{\nu} \ge 0} \mathcal{L}(\mathbf{x}, \boldsymbol{\nu}) \underbrace{=}_{\text{strong duality}} g^* = \sup_{\boldsymbol{\nu} \ge 0} g(\boldsymbol{\nu}, \boldsymbol{\lambda}) = \sup_{\boldsymbol{\nu} \ge 0} \inf_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\lambda})$$

As a result $\mathcal{L}(\mathbf{x}, \boldsymbol{\nu})$ has the saddle-point property

Some more Convex Problems

Linear-fractional programming (e.g. Von Neumann growth problem)

$$\min_{\mathbf{x}} \quad \frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f} \\ \text{s.t.} \quad G\mathbf{x} \le \mathbf{0}$$

Geometric programming (convex after reformulation for $c_k > 0$)

$$\min_{\mathbf{x}} \quad \sum_{k=1}^{K} c_k \prod_{i=1}^{n} x_i^{\alpha_{ik}}$$
s.t.
$$\sum_{k=1}^{K} c_k^j \prod_{i=1}^{n} x_i^{\alpha_{ik}^j} \le 1, \quad j = 1, ..., p$$

Frobenius norm diagonal scaling: find D diagonal to minimize $\|DMD^{-1}\|_F^2$

$$\|DMD^{-1}\|_F^2 = \sum_{i,j} M_{ij}^2 d_i^2 d_j^-$$

35 / 77

Some typical Convex Problems

Generalized Inequalities

A cone $K \subseteq \mathbb{R}^n$ is proper if

- $\bullet~{\it K}$ is convex, closed and solid (i.e. nonempty interior) and
- K is pointed (i.e. if $x \in K$ and $-x \in K$ then x = 0)

A proper cone defines a partial ordering on \mathbb{R}^n or generalized inequality:

$$x \leq_{K} y \Leftrightarrow y - x \in K$$

Examples:

- $K = \mathbb{R}^+$ yields the standard ordering, i.e. $x \leq_{\mathbb{R}^+} y \Leftrightarrow x \leq y$
- $K = \mathbb{S}^n_+$ yields the matrix inequality, i.e. $X \leq_{\mathbb{S}^n_+} Y \Leftrightarrow X \preceq Y$

Linear Matrix Inequalities & Semi-Definite Programming

A inequality of the form :

$$B_0 + \sum_{i=1}^N B_i x_i \succeq 0$$

with $B_i \in \mathbb{S}^n$, i = 0, ..., N is called an LMI

An optimization problem of the form:

$$\min_{\mathbf{x}} \quad \mathbf{c}^{T}\mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} - \mathbf{b} = \mathbf{0} \\ B_{0} + \sum_{i=1}^{N} B_{u}x_{i} \succeq \mathbf{0}$$

is called an SDP.

	can be shown that LPs, QPs, QCQPs are SDPs	; !
--	--	-----

10th of September, 2012

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programmin

Problem with L_1 norm

Example of SDPs - Eigenvalue problems

Consider the problem:

$$\min_{\mathbf{x}\in\mathcal{D}} \quad \lambda_{\max}\left\{\mathcal{G}(\mathbf{x})\right\}$$

where $G(x) = B_0 + \sum_{i=1}^N B_i x_i$ and $B_i \in \mathbb{S}^n$.

The problem can be reformulated as the SDP:

$\min_{s \in \mathbb{R}, \mathbf{x} \in \mathcal{D}}$	5
s.t.	$sI - B_0 - \sum_{i=1}^N B_i x_i \succeq 0$

Some more eigenvalue problems that have an SDP formulation

- \bullet Minimizing the spread of eigenvalues, i.e. $\lambda_{\text{max}}-\lambda_{\text{min}}$
- $\bullet\,$ Minimizing the condition number of G, i.e. $\lambda_{\rm max}/\lambda_{\rm min}$
- Minimizing $\| \boldsymbol{\lambda} \|_1$

Gros (OPTEC, ESAT, KU Leuven)

10th of September, 2012 38 / 77

Problem with Huber Penalty function

Estimation in the presence of outliers ("fat-tail" distribution)

Smooth Reformulation (Hessian not Lipschitz)

Non-smooth problem

$$\min_{\mathbf{x}} \sum_{i=1}^{N} \mathcal{H}_{\rho}(x_{i}) \xrightarrow{\rightarrow} \operatorname{s.t.} \eta_{i} \geq 0$$

s.t. $A\mathbf{x} + \mathbf{b} = 0$
$$\sum_{i=1}^{N} \mathcal{H}_{\rho}(x_{i}) \xrightarrow{\rightarrow} \operatorname{s.t.} \eta_{i} \geq 0$$

 $A\mathbf{x} + \mathbf{b} = 0$

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming

 10^{th} of September, 2012 40 / 77

min $\sum_{k=1}^{N} \frac{1}{2} s_{k}^{2} + cm$

Nuclear Norm

Min rank problem:	$min_{X\in\mathcal{D}}$	rank(X)	with 2	$X \in \mathbb{R}^{m \times n}$	is NP-ł	hard.
Idea: approximate t	he rank by	a Nuclear I	Norm:	$\min_{X \in \mathcal{D}}$	$\ X\ _*$	where
	$\ X\ $	$ _* = \sum_{i=1}^{\min m, n}$	$\sigma_i(X)$			

Properties of the Nuclear Norm

- Convex !!
- if $X \in \mathbb{S}_+$, then $\|X\|_* = \operatorname{Tr}(X)$
- For $X \in \mathbb{R}^{m \times n}$, $\|X\|_* \le t$ iff $\exists Y \in \mathbb{R}^{m \times m}$ and $Z \in \mathbb{R}^{n \times n}$ such that:

 $\begin{bmatrix} Y & X \\ X^T & Z \end{bmatrix} \succeq 0, \quad \operatorname{Tr}(Y) + \operatorname{Tr}(Z) \le 2t$

i.e. nuclear norm minimization equivalent to LMI problems.

• rank $(X) \ge \gamma^{-1} ||X||_*$ on $\mathcal{D} = \{X \in \mathbb{R}^{m \times n} ||X|| \le \gamma\}$, i.e. the Nuclear Norm problem provides a lower bound for the rank problem

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012

Recommended softwares

CVX (Stanford)

- Disciplined convex programming
- LP, QP, QCQP, QP, SDP, GP
- Exploits sparsity (to some extents)
- Exists in CodeGen version (http://cvxgen.com/)
- Matlab interface

Sedumi (Matlab add-on)

- Optimization over symmetric cones
- Allows complex numbers
- Exploits sparsity for large-scale problems

Yalmip (Matlab add-on)

- Modeling interface for optimization
- Calls appropriate solvers

S. Gros (OPTEC, ESAT, KU Leuven) Introductio

10th of September, 2012

43 / 77

Nuclear Norm - a basic example Low-order identification of the FIR system:

$$y(t) = \sum_{\tau=t-r}^{t} h(t-\tau)u(\tau) + v(t)$$

Hankel matrix of the system $(n_H = r/2 \in \mathbb{N})$ yields $Y = H_h U$, with

$$H_{h} = \begin{bmatrix} h(0) & h(1) & \dots & h(r - n_{H}) \\ h(1) & h(2) & \dots & h(r - n_{H} + 1) \\ \dots & \dots & \dots & \dots \\ h(n_{H}) & h(n_{H} + 1) & \dots & h(r) \end{bmatrix}$$

Nuclear Norm formulation of the rank minimization:

min	t
s.t.	$\ H_h\ _* \leq t$
	$\ \boldsymbol{Y}^{meas}-\boldsymbol{Y}\ _{F}^{2}\leq\gamma$

S. Gros (OPTEC, ESAT, KU Leuven)

41 / 77

 $10^{\rm th}$ of September, 2012 \qquad 42 / 77

Local optimization

A vast majority of solvers try to find an approximate KKT point... Find the "primal-dual" variables $\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*$ such that:

$$\begin{split} \mathbf{g}(\mathbf{x}^*) &\leq 0, \quad \boldsymbol{\nu}^* \leq 0, \quad \nu_i^* g_i(\mathbf{x}^*) = 0, \ i = 1, \dots, m_i \\ \mathbf{h}(\mathbf{x}^*) &= 0, \quad \boldsymbol{\nabla} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) = 0 \end{split}$$

Lets get started with the equality constrained problem Find the "primal-dual" variables $\mathbf{x}^*, \boldsymbol{\lambda}^*$ such that:

 $\begin{aligned} \boldsymbol{\nabla} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) &= \mathbf{0}, \\ \mathbf{h}(\mathbf{x}^*) &= \mathbf{0}. \end{aligned} \tag{1}$

Idea: apply a Newton search on the (non)linear system (1)

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming

 10^{th} of September, 2012 45 / 77

Newton method for equality constrained problems (cont') Update of the dual variables

Define $\lambda_{k+1} = \lambda_k + \Delta \lambda_k$, and $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}_k$, observe that:

$$abla \mathcal{L}(\mathbf{x}_k, \boldsymbol{\lambda}_k) = \boldsymbol{\nabla} f(\mathbf{x}_k) - \boldsymbol{\nabla} h(\mathbf{x}_k) \boldsymbol{\lambda}_k,$$

and use it in the KKT system

$$\begin{bmatrix} \nabla^2 \mathcal{L}(\mathbf{x}_k, \boldsymbol{\lambda}_k) & \boldsymbol{\nabla} \mathbf{h}(\mathbf{x}_k) \\ \boldsymbol{\nabla} \mathbf{h}(\mathbf{x}_k)^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{k+1} - \mathbf{x}_k \\ -(\boldsymbol{\lambda}_{k+1} - \boldsymbol{\lambda}_k) \end{bmatrix} + \begin{bmatrix} \boldsymbol{\nabla} \mathcal{L}(\mathbf{x}_k, \boldsymbol{\lambda}_k) \\ \mathbf{h}(\mathbf{x}_k) \end{bmatrix} = \mathbf{0}$$

KKT system in a "full dual update" form

$$\begin{bmatrix} \nabla^2 \mathcal{L}(\mathbf{x}_k, \boldsymbol{\lambda}_k) & \boldsymbol{\nabla} \mathbf{h}(\mathbf{x}_k) \\ \boldsymbol{\nabla} \mathbf{h}(\mathbf{x}_k)^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}_k \\ -\boldsymbol{\lambda}_{k+1} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\nabla} f(\mathbf{x}_k) \\ \mathbf{h}(\mathbf{x}_k) \end{bmatrix} = \mathbf{0}$$

The primal-dual iterate depends on λ_k only via the Hessian !!

Newton method for equality constrained problems

The Newton recursion for solving the KKT conditions

$$\underbrace{\begin{bmatrix} \nabla^{2} \mathcal{L}(\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}) & \boldsymbol{\nabla} \mathbf{h}(\mathbf{x}_{k}) \\ \boldsymbol{\nabla} \mathbf{h}(\mathbf{x}_{k})^{T} & \mathbf{0} \end{bmatrix}}_{\mathsf{KKT matrix}} \begin{bmatrix} \mathbf{x}_{k+1} - \mathbf{x}_{k} \\ -(\boldsymbol{\lambda}_{k+1} - \boldsymbol{\lambda}_{k}) \end{bmatrix} + \begin{bmatrix} \boldsymbol{\nabla} \mathcal{L}(\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}) \\ \mathbf{h}(\mathbf{x}_{k}) \end{bmatrix} = \mathbf{0}$$

Invertibility of the KKT matrix

Quadratic model interpretation

KKT system is a Qua	adratic Program (QP)
The iterate $\mathbf{x}_{k+1} = \mathbf{x}_k$	$\mathbf{x} + \mathbf{d}$ is given by:
$\min_{\mathbf{p}\in \mathbf{R}^n}$	$rac{1}{2}\mathbf{d}^{\mathcal{T}} abla^{2}\mathcal{L}(\mathbf{x}_{k},oldsymbol{\lambda}_{k})\mathbf{d}+oldsymbol{ abla}f\left(\mathbf{x}_{k} ight)^{\mathcal{T}}\mathbf{d}$
s.t.	$\mathbf{h}(\mathbf{x}_{k}) + \nabla \mathbf{h}(\mathbf{x}_{k})^{T} \mathbf{d} = 0$

Proof: KKT of the QP are equivalent to the KKT system.

Dual variables

Variables $oldsymbol{\lambda}_{k+1}$ given by the dual variables of the QP, i.e. $oldsymbol{\lambda}_{k+1} = oldsymbol{\lambda}_{\mathsf{QP}}$

Will be very usefull to tackle problems with inequality constraints !!

Failure of the full Newton step

Newton step $\Delta \mathbf{x}_k$ minimizes the quadratic model.

$$Q(\mathbf{x}_k, \Delta \mathbf{x}_k) = f(\mathbf{x}_k) + \mathbf{\nabla} f(\mathbf{x}_k)^T \Delta \mathbf{x}_k + \frac{1}{2} \Delta \mathbf{x}_k^T \nabla^2 f(\mathbf{x}_k) \Delta \mathbf{x}_k$$

What if that model is not good enough ?

Globalization - Line search strategies

"Armijo's" backtracking line search (for unconstrained optimization) Given a primal direction $\Delta \mathbf{x}_k$, using $0 < \alpha \le \frac{1}{2}$ and $0 < \beta < 1$, do t = 1: While: $f(\mathbf{x}_k + t\Delta \mathbf{x}_k) < f(\mathbf{x}_k) + \alpha t \nabla f(\mathbf{x}_k)^T \Delta \mathbf{x}_k$, do: $t = \beta t$

- If α too small we may accept steps yielding only mediocre improvement.
- If f quadratic, we want full step, i.e. $\alpha \leq \frac{1}{2}$

51 / 77

Globalization - Line search strategies

Exact line search (for unconstrained optimization)

Find the best step length:

Convergence of the Newton with Line-search (I)

Theorem Assume that for $x, y \in S$: • Hessian satisfies $m\mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq M\mathbf{I}$, • and is Lipschitz, i.e. $\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\|_2 \leq L \|x - y\|_2$ then $\exists \eta, \gamma > 0$ with $\eta < \frac{m^2}{L}$ such that $\forall \mathbf{x}_k \in S$: Damped phase: $f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \leq -\gamma$ if $\|\nabla f(\mathbf{x}_k)\|_2 \geq \eta$ Quadratic phase: $\frac{L}{2m^2} \|\nabla f(\mathbf{x}_{k+1})\|_2 \leq (\frac{L}{2m^2} \|\nabla f(\mathbf{x}_{k+1})\|_2)^2$ if $\|\nabla f(\mathbf{x}_k)\|_2 < \eta$

Two-phase convergence

- If $\mathbf{x}_k \in S$ is *far* from $\mathbf{x}^* \Rightarrow \mathsf{Damped}$ convergence (reduced steps)
- If $\mathbf{x}_k \in S$ is *close* to $\mathbf{x}^* \Rightarrow \mathsf{Quadratic}$ convergence (full steps)
- Once Newton has entered the quadratic phase, it stays quadratic !!

Affine invariance of the exact Newton method

Affine change of coordinates

Consider: $\mathbf{x} = T\mathbf{y} + \mathbf{t}$ with $T \in \mathbb{R}^{n \times n}$ non-singular and $\mathbf{t} \in \mathbb{R}^{n}$. Define $\tilde{f}(\mathbf{y}) = f(T\mathbf{y} + \mathbf{t})$ and $\tilde{\mathbf{h}}(\mathbf{y}) = \mathbf{h}(T\mathbf{y} + \mathbf{t})$, then:

$$\boldsymbol{\nabla}_{\mathbf{y}} \tilde{\mathcal{L}}(\mathbf{y}, \boldsymbol{\lambda}) = \mathcal{T}^{T} \boldsymbol{\nabla}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) \quad \text{and} \quad \nabla^{2}_{\mathbf{y}\mathbf{y}} \tilde{\mathcal{L}}(\mathbf{y}, \boldsymbol{\lambda}) = \mathcal{T}^{T} \nabla^{2} \mathcal{L}_{\mathbf{x}\mathbf{x}}(\mathbf{x}, \boldsymbol{\lambda}) \mathcal{T}$$

It can be verified that:

$$\begin{bmatrix} \nabla_{\mathbf{y}\mathbf{y}}^{2} \tilde{\mathcal{L}}(\mathbf{y}_{k}, \boldsymbol{\lambda}_{k}) & \boldsymbol{\nabla} \tilde{\mathbf{h}}(\mathbf{y}_{k}) \\ \boldsymbol{\nabla} \tilde{\mathbf{h}}(\mathbf{y}_{k})^{T} & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{y}_{k} \\ -\Delta \boldsymbol{\lambda}_{k} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\nabla} \tilde{\mathcal{L}}(\mathbf{y}_{k}, \boldsymbol{\lambda}_{k}) \\ \tilde{\mathbf{h}}(\mathbf{y}_{k}) \end{bmatrix} = 0$$

holds for $\Delta \mathbf{x}_k = T \Delta \mathbf{y}_k$.

The Newton step is invariant w.r.t. an affine change of coordinate.

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012

Globalization - Trust-region methods

Idea: adjust the direction with the step length

Illustrative example with $\mathbf{x} \in \mathbb{R}$

Trust-region	n solves:
$\Delta \mathbf{x}_k = \arg\min_p$	$Q(\mathbf{x}_k,p)$
s.t.	$\ p\ \leq \Delta_k$
• Line-search: get decide the lengt	t the direction, th
• Trust-region: de	ecide the length,

find the direction

10th of September, 2012

55 / 77

Convergence of the exact Newton method (II)

Self-concordant functions

- Function $f \in \mathbb{R}$ convex is self-concordant iff $|f^{(3)}(\mathbf{x})| \leq 2f^{(2)}(\mathbf{x})^{3/2}$.
- Function $\mathbf{f} \in \mathbb{R}^n$ convex is self-concordant iff $\tilde{f}(t) = \mathbf{f}(\mathbf{x} + t\mathbf{v})$ is self-concordant for all $\mathbf{x} \in \mathsf{Dom}(\mathbf{f})$ and $\mathbf{v} \in \mathbb{R}^n$.

Self-concordance theory

Define
$$\xi = (\nabla f(\mathbf{x})^T \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}))^{\frac{1}{2}}$$
.

Starting from \mathbf{x}_0 , assume that:

• f is strictly convex, sublevel set $S = {\mathbf{x} | f(\mathbf{x}) \le f(\mathbf{x}_0)}$ is closed. Then $\exists \eta, \gamma > 0$ with $0 < \eta \le \frac{1}{4}$ s.t.^a

Introduction to Nonlinear Program

• If $\xi(\mathbf{x}_k) > \eta$, then $f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \le -\gamma$ (damped phase)

• If
$$\xi(\mathbf{x}_k) > \eta$$
, then $2\xi(\mathbf{x}_{k+1}) \le (2\xi(\mathbf{x}_k))^2$ (quadratic phase)

 ${}^{a}\eta,\gamma$ depend only on the line search parameters)

```
S. Gros (OPTEC, ESAT, KU Leuven)
```

 $10^{
m th}$ of September, 2012 5

Globalization - Trust-region methods

$\Delta \mathbf{x}_k = \arg\min_p$	$Q(\mathbf{x}_k,p)$		$\int_{\Delta t_{k}} f(\mathbf{x}_{k}) - f(\mathbf{x}_{k} + \Delta \mathbf{x}_{k})$
s.t.	$\ p\ \leq \Delta_k$	(2)	$\frac{p_k}{Q(\mathbf{x}_k) - Q(\mathbf{x}_k + \Delta \mathbf{x}_k)}$

Trust-region Algorithm - Heuristic to choose Δ_k from observed ρ_k Inputs: Δ_{\max} , $\eta \in [0, 0.25]$, Δ_0, \mathbf{x}_0 , TOL > 0 while $\|\nabla f(\mathbf{x}_k)\| > \text{TOL}$, do: Get $\Delta \mathbf{x}_k$ from (2) Evaluate $f(\mathbf{x}_k + \Delta \mathbf{x}_k)$, compute ρ_k Length adaptation: $\Delta_{k+1} = \begin{cases} 0.25\Delta_k & \text{if } \rho_k < 0.25 \\ \min(2\Delta_k, \Delta_{\max}) & \text{if } \rho_k > 0.75 \\ \Delta_k & \text{if } otherwise \end{cases}$ Decide acceptance: $\mathbf{x}_{k+1} = \begin{cases} \mathbf{x}_{k+1} + \Delta \mathbf{x}_k & \text{if } \rho_k > \eta \\ \mathbf{x}_{k+1} & \text{if } \rho_k \leq \eta \end{cases}$ k = k + 1end while

Newton-type Methods

Gauss-Newton Method

Cost function of the type $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{F}(\mathbf{x})\|_2^2$, with $\mathbf{F}(\mathbf{x}) \in \mathbb{R}^m$

Gauss-Newton Hessian approximation

Observe that

$$\nabla^2 f(\mathbf{x}) = \frac{\partial}{\partial x} \left(\nabla F(\mathbf{x}) F(\mathbf{x}) \right) = \nabla F(\mathbf{x}) \nabla F(\mathbf{x})^{\mathsf{T}} + \sum_{i=1}^m \nabla^2 F_i(\mathbf{x}) F_i(\mathbf{x})$$

Gauss-Newton method proposes to use: $B_k = \nabla F(\mathbf{x}_k) \nabla F(\mathbf{x}_k)^T + \alpha_k I$ B_k is a good approximation if:

- Σ_k is a good approximation in:
- all $\nabla^2 F_i(\mathbf{x})$ are small (F close to linear), or
- all $F_i(\mathbf{x})$ are small

Typical application to fitting problems: $F(\mathbf{x}) = \sum_{i=1}^{N} \|\mathbf{y}_i(\mathbf{x}) - \bar{\mathbf{y}}_i\|_2^2$

Convergence

• If
$$\sum_{i=1}^m
abla^2 F_i(\mathbf{x}) F_i(\mathbf{x}) o 0$$
 then $\kappa_k o 0$

• Quadratic convergence when \mathbf{x}_k is close to \mathbf{x}^*

Steepest descent

Constant Hessian approximation

Use $B_k = \alpha_k^{-1} I$, then:

$$\Delta \mathbf{x}_k = -B_k^{-1} \nabla f(\mathbf{x}_k) = -\alpha_k \nabla f(\mathbf{x}_k)$$

Step size α_k is chosen sufficiently small by the line-search.

Convergence

- Compatibility: $\|\alpha_k \left(\nabla^2 f(\mathbf{x}_k) I \right) \| \leq \kappa_k$ with $\kappa_k \leq \kappa < 1$
- Constant does not converge to 0, i.e. $\kappa_k > \rho, \ \forall k$
- Linear convergence when \mathbf{x}_k is close to \mathbf{x}^*

S. Gros (OPTEC, ESAT, KU Leuv

 $10^{\rm th}$ of September, 2012 \qquad 58 / 77

Quasi-Newton Methods

Compute numerical derivative of $ abla^2 f(\mathbf{x})$ in an efficient (iterative) way		
BFGS		
Define $\mathbf{s}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$		
$\mathbf{y}_k \;\;=\;\; oldsymbol{ abla} f(\mathbf{x}_{k+1}) - oldsymbol{ abla} f(\mathbf{x}_k)$		
Idea: Update $B_k \to B_{k+1}$ such that $B_{k+1}\mathbf{s}_k = \mathbf{y}_k$ (secant condition)		
BFGS formula ^a : $B_{k+1} = B_k - \frac{B_k \mathbf{ss}^T B_k}{\mathbf{s}^T B_k \mathbf{s}} + \frac{\mathbf{yy}^T}{\mathbf{s}^T \mathbf{y}}, B_0 = I$		
^a See "Powell's trick" to make sure that $B_{k+1} > 0$		
Convergence		
$ullet$ It can be shown that $B_k o abla^2 f(\mathbf{x})$, then $\kappa_k o 0$		

• Quadratic convergence when \mathbf{x}_k is close to \mathbf{x}^*

What about inequality constraints ?

Find the "primal-dual" variables $\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*$ such that:

$g(\mathbf{x}^*) \leq 0,$	$oldsymbol{ u}^* \leq 0,$	$\nu_i^* g_i(\mathbf{x}^*) = 0,$
$\mathbf{h}(\mathbf{x}^*) = 0,$	$\mathbf{ abla}\mathcal{L}(\mathbf{x}^*$	$,oldsymbol{ u}^*,oldsymbol{\lambda}^*)=0$

Conditions $\nu_i^* g_i(\mathbf{x}^*) = 0$ are not smooth !!

Active set methods - Outline of the idea

Guess the active set $A \mathbf{x}^*$ a priori,

Solve :

 $g_i(\mathbf{x}^*) = 0, i \in \mathbb{A}$ $\mathbf{h}(\mathbf{x}^*) = 0, \quad \boldsymbol{
abla} \mathcal{L}(\mathbf{x}^*, \boldsymbol{
u}^*, \boldsymbol{\lambda}^*) = 0$

Check : $\boldsymbol{\nu}^* \leq 0$, and $g_i(\mathbf{x}^*) \leq 0, i \in \mathbb{A}^c$ If fails : adapt \mathbb{A} , back to solve.

Efficient only for Quadratic Programs !!

Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 61 / 77

QP via the Primal Active Set Method

Quadratic Programming via Active Set Method

min	$\frac{1}{2}\mathbf{x}^{T}B\mathbf{x} + \mathbf{f}^{T}\mathbf{x}$
s.t. :	$A\mathbf{x} + \mathbf{b} \le 0$
	$C\mathbf{x} + \mathbf{d} = 0$

Active set methods for QP

Guess the active set Ax^* a priori,

$B\mathbf{x} + \mathbf{f} - A^T \boldsymbol{\nu} - C^T \boldsymbol{\lambda}$	=	0
$A\mathbf{x} + \mathbf{b}$	=	0
$C\mathbf{x} + \mathbf{d}$	=	0

Check : $\nu < 0$, and $g_i(\mathbf{x}) < 0, i \in \mathbb{A}^c$ If fails : $adapt^a \mathbb{A}$, back to solve.

^amany different techniques

Each iteration requires only to perform some linear algebra...

Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming

Solve :

10th of September, 2012 62 / 77

Sequential Quadratic Programming

Consider the NLP...

			1 0 1
min x	$f(\mathbf{x})$	min d	$\frac{1}{2}\mathbf{d}^{T}B_k\mathbf{d} + \mathbf{\nabla}f(\mathbf{x}_k)^{T}\mathbf{d}$
s.t	$\mathbf{g}(\mathbf{x}) \leq 0$	s.t	$\mathbf{g}(\mathbf{x}_k) + \mathbf{ abla} \mathbf{g}(\mathbf{x}_k)^{\mathcal{T}} \mathbf{d} \leq 0$
	$\mathbf{h}(\mathbf{x}) = 0$		$\mathbf{h}(\mathbf{x}_k) + \mathbf{\nabla} \mathbf{h}(\mathbf{x}_k)^T \mathbf{d} = 0$

and the corresponding QP

Theorem

Suppose

- The solution of the NLP \mathbf{x}^* with active set \mathbb{A}^* is LICQ.
- ν^* , g have strict complementarity,
- \mathbf{x}_k is close enough to \mathbf{x}^* ,
- $B_k \succeq 0$, and $B_k \succ 0$ on the nullspace of $\nabla g_{\mathbb{A}^*}$

then the QP has the active set \mathbb{A}^* and strict complementarity.

Sequential Quadratic Programming

Monitoring progress with the L_1 merit function: $T_1(\mathbf{x}_k) = f(\mathbf{x}_k) + \mu \|\mathbf{h}(\mathbf{x}_k)\|_1 + \mu \sum_{i=1}^m |\min(0, g_i(\mathbf{x}_k)|)|$

Line-search SQP algorithm

while $T_1(\mathbf{x}_k) > \text{TOL do}$ get $\nabla f(\mathbf{x}_k)$, $\nabla g(\mathbf{x}_k)$, $B_k \approx \nabla^2 \mathcal{L}(\mathbf{x}_k, \boldsymbol{\nu}_k, \boldsymbol{\lambda}_k)$ solve the QP, get d, $\boldsymbol{\lambda}_{\text{QP}}$, $\boldsymbol{\nu}_{\text{QP}}$ perform line-search on $T_1(\mathbf{x}_k + \mathbf{d})$, get step length α take primal step: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{d}$ take dual step: $\boldsymbol{\lambda}_{k+1} = (1 - \alpha)\boldsymbol{\lambda}_k + \alpha \boldsymbol{\lambda}_{QP}$, $\boldsymbol{\nu}_{k+1} = (1 - \alpha)\boldsymbol{\nu}_k + \alpha \boldsymbol{\nu}_{QP}$ end while

Theorem

If $\nabla^2 \mathcal{L}(\mathbf{x}_k, \boldsymbol{\nu}_k, \boldsymbol{\lambda}_k) \succ 0$ and $\mu > \max \{ \| \boldsymbol{\nu}_{k+1} \|_{\infty}, \| \boldsymbol{\lambda}_{k+1} \|_{\infty} \}$ then d is a descent direction for $\mathcal{T}_1(\mathbf{x}_k)$

Primal-dual Interior Point Methods

Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming

KKT interpretation

KKT of the original problem

$$egin{aligned} oldsymbol{
aligned} oldsymbol{
aligned} \mathbf{
aligned} f(\mathbf{x}^*) &- oldsymbol{
aligned} g(\mathbf{x}^*) &\leq 0, \quad oldsymbol{
u}^*_i \leq 0, \quad oldsymbol{
u}^*_i g_i(\mathbf{x}^*) &= 0 \end{aligned}$$

KKT of the barrier problem $\rightarrow \tilde{\nu}_i^* = \tau g_i(\mathbf{x}_{\tau}^*)^{-1} \rightarrow \text{IP-KKT}$ (primal-dual)

$egin{aligned} oldsymbol{ aligned} oldsymbol{ aligned} oldsymbol{ aligned} oldsymbol{ aligned} f(\mathbf{x}^*_{ au}) - au \sum_{i=1}^{m_i} oldsymbol{ aligned} \mathbf{ aligned} \mathbf{g}_i(\mathbf{x}^*_{ au}) = 0 \end{aligned}$	$\mathbf{\nabla} f(\mathbf{x}_{ au}^{*}) - \mathbf{\nabla} \mathbf{g}(\mathbf{x}_{ au}^{*}) ilde{oldsymbol{ u}}^{*} = 0$
	$ ilde{ u}_i^* g_i(\mathbf{x}_{ au}^*) = au$

A basic primal-dual IP algorithm

From \mathbf{x}_0 , $\tau > 0$ sufficiently large while "stopping test for the original problem fails" do: solve IP-KKT to TOL, $\mathbf{x}_{k+1} = \mathbf{x}_{\tau}^*$ $\tau = \sigma \tau$, $\sigma \in]0, 1[$ end while

Primal-dual Interior Point Methods

Barrier method: introduce the inequality constraints in the cost function

Primal Interior point method

$$\begin{array}{ccc} \min_{\mathbf{x}} & f(\mathbf{x}) \\ \mathrm{s.t.} & \mathbf{g}(\mathbf{x}) \leq \mathbf{0} \end{array} \rightarrow & \begin{array}{ccc} \min_{\mathbf{x}_{\tau}} & f(\mathbf{x}_{\tau}) - \tau \sum_{i=1}^{m_i} \log(-g_i(\mathbf{x}_{\tau})) \end{array}$$

Primal-dual Interior Point Methods

Slack formulation - ensuring feasibility				
Slack formulation of the IP-KKT:				
	${oldsymbol abla} f({f x}_ au^*) - {oldsymbol abla} {f g}({f x}_ au^*) ilde{m u}^* = 0$			
	${ ilde u}_i^* {f s}_i^* = au$			
	$\mathbf{g}(\mathbf{x}^*) - \mathbf{s}^* ~= 0$			
Newton system (symmetrized):				
$\begin{bmatrix} \nabla^2 \mathcal{L} & 0 \\ 0 & \Sigma \\ \nabla g & -I \end{bmatrix}$	$egin{array}{c} \nabla g \ -I \ 0 \end{array} \end{bmatrix} \left[egin{array}{c} \Delta {f x} \ \Delta {f s} \ -\Delta ilde u \end{array} ight] = - \left[egin{array}{c} abla \mathcal{L} \ ilde u - S^{-1} au \ {f g}({f x}) - {f s} \end{array} ight]$			
where $\Sigma = \operatorname{diag}\left(ilde{ u}_i s_i^{-1} ight)$ and $S = \operatorname{diag}\left(\mathbf{s} ight)$.				

Sketch of the primal-dual IP algorithm

- $\bullet\,$ Start with feasible guess s> 0, $\tilde{\boldsymbol{\nu}}>$ 0
- Line-search, enforce: $\mathbf{s}_{k+1} \geq (1- au)\mathbf{s}_k$ and $ilde{m{
 u}}_{k+1} \geq (1- au) ilde{m{
 u}}_k$

 $10^{
m th}$ of September, 2012

67 / 77

10th of September, 2012

Summary of numerical optimization

Failure of the methods - Infeasible points

Introduction to Nonlinear Program

S. Gros (OPTEC, ESAT, KU Leuven)

 10^{th} of September, 2012 70 / 77

Failure of the methods - Infeasible points

Homotopy strategies

Parametric NLP

Consider the parametric NLP $P(\theta)$, $\theta \in \mathbb{R}$:

$$f(\theta) = \min_{\mathbf{x}} f(\mathbf{x}, \theta)$$

s.t. $\mathbf{g}(\mathbf{x}, \theta) \le 0$
 $\mathbf{h}(\mathbf{x}, \theta) = 0$

If ∇f , ∇g , ∇h are differentiable w.r.t. θ and the (parametric) solution $(\mathbf{x}^*(\theta), \boldsymbol{\nu}^*(\theta), \boldsymbol{\lambda}^*(\theta))$ is SOSC and LICQ, then it is differentiable w.r.t. θ .

Homotopy - Outline of the idea

Suppose that P(1) is the NLP to be solved, P(0) is an NLP that *can* be solved. Then starting from $\theta = 0$, solve $P(\theta)$ while gradually decreasing $\theta \to 1$. If LICQ & SOSC are maintained on the way, then a solution can be obtained.

Gros (OPTEC, ESAT, KU Leuven)

10th of September, 2012

69 / 77

Homotopy strategies

Parameter embedding for homotopies

Consider running a homotopy on the parametric NLP, with $\theta \in \mathbb{R}^{p}$:

$$\begin{aligned} P(\boldsymbol{\theta}) &= \min_{\mathbf{x}} \quad f(\mathbf{x}, \boldsymbol{\theta}) \\ \text{s.t.} \quad \mathbf{g}(\mathbf{x}, \boldsymbol{\theta}) \leq \mathbf{0} \\ \mathbf{h}(\mathbf{x}, \boldsymbol{\theta}) &= \mathbf{0} \end{aligned}$$

Then the parameters should be embedded in the NLP, i.e. solve

$P^{E}(\theta) = \min_{\mathbf{x}, \boldsymbol{\zeta}}$	$f(\mathbf{x}, \boldsymbol{\zeta})$
s.t.	$\mathbf{g}(\mathbf{x}, oldsymbol{\zeta}) \leq 0$
	$\mathbf{h}(\mathbf{x}, oldsymbol{\zeta}) = 0$
	$oldsymbol{\zeta} - oldsymbol{ heta} = 0$

Because ζ is part of the decision variables, the sensitivity of the cost and constraints w.r.t. ζ is computed. That information is intrinsically used by the solver to update the solution $\mathbf{x}^*(\theta)$ when θ is changed.

```
S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming
```

 10^{th} of September, 2012 74 / 77

Recommended softwares

Gros (OPTEC, ESAT, KU Leuven)

ipopt

• Large-scale primal-dual IP solver, filter techniques, sparse linear algebra, extremely robust

KNITRO

- Large-scale solver
- Primal IP solver (direct factorization/CG) and Active-set solver
- Interface to many environments (AMPL, MATLAB, Mathematica,...)

SNOPT

• Large-scale SQP solver, augmented Lagrangian merit function

CasADi

- Symbolic framework for Automatic Differentiation (AD) tool
- Python interface, CAS syntax
- $\bullet\,$ Interface to most state-of-the-art NLP solvers & intergators

10th of September, 2012

73 / 77

75 / 77

Summary & additional remarks

- Beware of your constraints qualification !! Even a simple convex problem can fail state-of-the-art optimizers if badly formulated...
- Newton-type techniques converge really fast*... (*if started close to the solution).
- (Primal-dual) Interior-point methods: extensively used for both convex and non-convex problems, SDP, generalized constraints, well suited for large-scale problems
- Sequential-quadratic Programming: very powerful for parametric optimization problems, homotopies, optimal control
- Coming-back of (Parallel) First-order techniques for (very) large-scale problems
- Check-out existing (open-source) softwares before developing your own algorithm
- Strong non-convexity can often be overcome (homotopy strategies). Requires some insights in the problem though. Solution is local.

Some good readings

Convex Optimization, S. Boyd, L. Vandenberghe, Cambride University Press Nonlinear Programming, L.T. Biegler, MOS-SIAM Numerical Optimization, T.V. Mikosch, S.I. Resnick, S.M. Robinson, Springer Series Primal-Dual Interior-Point Methods, S.J. Wright, SIAM Optimization Theory & Methods, W. Sun, Y. Yuan, Springer

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 77 / 77