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Some definitions

Optimization problem:

min
x

f (x)

s.t. g(x) ≤ 0

h(x) = 0
where: x ∈ IRn, f ∈ IR,g ∈ IRmi ,h ∈ IRme

Basic terminology:

Function f ∈ IR is the cost/objective/penalty function

Functions h and g yields the equality & inequality constraints, resp.

The set of indices i for which gi (x) = 0 is named the active set

Some classes of problems:

Convex NLP: f ,g convex, h affine

Non-smooth: any of f ,g,h is not C1

(Mixed)-Integer Programming: some x take only discrete values
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Defining (Global) Optimality

Feasible Set

The feasible set S (or feasible region) of an optimization model is the
collection of choices for decision variables satisfying all model constraints:

S
∆
= {x : g(x) ≤ 0,h(x) = 0}. Any point x̄ ∈ S is said feasible.

(Global) Optimum

An optimal solution, x∗, is a feasible point with objective function value
lower than any other feasible point, i.e. x∗ ∈ S and
f (x∗) ≤ f (x), ∀x ∈ S

1 The optimal value f ∗ in an optimization model is the objective
function value of any optimal solutions: f ∗ = f (x∗) — It is unique!

2 But, an optimization model may have:
◮ a unique optimal solution
◮ several alternative optimal solutions
◮ no optimal solutions (unbounded or infeasible models)
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Defining Local Optimality

Local Optimum

A point x∗ is a local optimum for the function f : IRn → IR on the set S if
it is feasible (x∗ ∈ S) and if sufficiently small neighborhoods surrounding it
contain no points that are both feasible and lower in objective value:

∃δ > 0 : f (x∗) ≤ f (x), ∀x ∈ S ∩ Bδ(x
∗)

Remarks:

1 Global optima are always local
optima

2 Local optima may not be global
optima

δ

S

xx

Nδ(x
∗)

f (x)

x∗

f (x∗)

f (x∗) ≤ f (x), ∀x ∈ S ∩ Nδ(x
∗)
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Conditions of Optimality

“Everything should be made as simple as possible, but no simpler.”

— Albert Einstein.
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Algebraic Characterization of Unconstrained Local Optima

1st-Order Necessary Condition of Optimality (FONC)

x∗ local optimum ⇒ ∇f (x∗) = 0, x∗ stationary point

2nd-Order Sufficient Conditions of Optimality (SOSC)

∇f (x∗) = 0 and ∇2f (x∗) � 0 ⇒ x∗ strict local minimum

∇f (x∗) = 0 and ∇2f (x∗) � 0 ⇒ x∗ strict local maximum

No conclusion can be drawn in case ∇2f (x∗) is indefinite!

Remarks:

Stationarity of f : ∇f (x∗) = 0 ⇔ ∄d such that ∇f (x∗)Td < 0

Positivity of ∇2f ⇔ ∀d 6= 0, d∇2f (x∗)dT > 0
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General Equality Constraints

The intersection of the equality constraints, h1(x), . . . , hm(x) forms

the feasible set: S
∆
= {x ∈ IRn : h1(x) = · · · = hm(x) = 0} ( IRn

A feasible point x̄ ∈ S
∆
= {x : hi (x) = 0, i = 1, . . . ,me} is called

regular if rank
(
∇h1(x̄) . . . ∇hme (x̄)

)
= me

Example. Consider the constraints h1(x)
∆
= x21 − 2x32 − x3 = 0 and

h2(x)
∆
= x3 − 10 = 0
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Tangent Set to General Equality Constraints

Consider the collection of all smooth curves in S passing through a
point x̄ ∈ S . The tangent set of S at x̄, denoted by T S x̄, is the
collection of the vectors tangent to all these curves at x̄

At a regular point x̄ ∈ S , T S x̄
∆
= {d ∈ IRn : ∇hj(x̄)

T
d = 0,∀j}

Example. Consider the constraints h1(x)
∆
= x21 − 2x32 − x3 = 0 and

h2(x)
∆
= x3 = 0
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Geometric Optimality Condition

A point x∗ ∈ IRn is a local optimum of a real-value function f in the
feasible set S ⊂ IRn, if sufficiently small neighborhoods surrounding
it contain no feasible points that are lower in objective value

Geometric Optimality Condition

Let f in C1, and let

S
∆
= {x : h1(x) = · · · = hm(x) = 0}.

If x∗ is an optimum for f on S , then

D(x∗) ∩ T Sx∗ = ∅,

with:
•D(x∗), set of improving directions
•T Sx∗, tangent set

∇h(x∗)

∇f (x∗)

x∗

S

T Sx∗

D(x∗)

∄d ∈ IRn : ∇f (x∗)Td < 0 and ∇hi (x
∗)Td = 0

... only if x∗ is regular!
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FONC for equality constraints

First-order Necessary Conditions

Let f , h1, . . . , hm in C1. If x∗ is a (local) optimum for f s.t. hi(x) = 0,
i = 1, . . . ,m, and x∗ regular, there is a unique vector λ∗ ∈ IRm such that:

{
h1(x

∗) = · · · = hm(x
∗) = 0

∇f (x∗) =
∑m

i=1 λ
∗
i ∇hi(x

∗)

Square system: (n +m) conditions
in (n +m) variables (x,λ)

Lagrange multipliers: λi ↔ hi

Lagrangian stationarity:

∇L(x∗,λ∗) = 0

where L(x,λ)
∆
= f (x) − λTh(x) is

called the Lagrangian

∇h(x∗)

∇f (x∗)

x∗

S

T Sx∗

D(x∗)
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Interpretation of the Lagrange Multipliers

Optimization Problem:

min
x

f (x)

s.t. h(x) = b

FONC: Find x∗ ∈ IRn, λ∗ ∈ IRm such that






hj(x
∗)− bj = 0, ∀j = 1, . . . ,m

∇f (x∗)−
m∑

i=1

λ∗
i ∇hi(x

∗) = 0

A variation in RHS bj affects the optimal solution −→ x∗(bj ),λ
∗(bj)

Rate of change in optimal solution value w.r.t. bj :

∂f (x∗(bj ))

∂bj

∣
∣
∣
∣
bj=0

= λ∗
j

The optimal Lagrange multiplier, λ∗
j , associated with

constraint hj(x) = bj can be interpreted as the rate of
change in optimal value for infinitesimal change in RHS bj
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Inequality Constrained Optimization

Consider the optimization problem with inequality constraints

minimize:
x∈IRn

f (x)

subject to: gi (x) ≤ 0, i = 1, . . . ,m

In general, multiple inequality constraints define a (possibly
unbounded) n-dimensional set,

S
∆
= {x ∈ IRn : gi (x) ≤ 0, i = 1, . . . ,m} ⊆ IRn

At a feasible point x̄, the ith constraints is said to be active if
gi (x̄) = 0; it is said to be inactive if gi (x̄) < 0

The set of active constraints at a feasible point x̄ is

Ax̄
∆
= {i : gi (x̄) = 0}

Arguably more difficult than equality constraints
since active set not known a priori...
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Characterizing Feasible Directions

Consider the feasible domain S
∆
= {x : gi (x) ≤ 0, i = 1, . . . ,m}

The set of feasible directions at a point x̄ ∈ S is

F (x̄)
∆
= {d 6= 0 : ∃ε > 0 such that x̄+ αd ∈ S ,∀α ∈ (0, ǫ)}

Algebraic Characterization

Let g1, . . . , gm in C1, and let x̄ ∈ S .
Any direction d ∈ IRn such that

∇gi (x̄)
T
d < 0, ∀i ∈ Ax̄

is a feasible direction

This condition is sufficient, yet
not necessary!

What if Ax̄ = ∅?

∇g1(x̄)

∇g2(x̄)x̄

g1(x) ≤ 0

g2(x) ≤ 0

d

F (x̄)

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 14 / 77

Regularity of General Inequality Constraints

A point x̄ ∈ S is said to be regular if the gradient vectors ∇gi (x̄) for
all the active constraints are linearly independent:

rank
(
∇gi (x̄), i ∈ Ax̄

)
= card (Ax̄)

Point x̄ ∈ S is then also said to respect the Linear Independence
Constraint Qualification (LICQ).

When mixing equality constraints with inequality constraints, the
active constraints can be seen as equality constraints and the inactive
constraints disregarded, i.e. a point respects LICQ iff

rank
(
∇gi (x̄), ∇hj(x̄), i ∈ Ax̄, j = 1, ...,me

)
= card (Ax̄)

and is said to be regular.

There are more (and less demanding) Constraint Qualifications.
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Geometric Optimality Condition

A point x∗ ∈ IRn is a local optimum of a real-value function f in the
feasible set S ⊂ IRn, if sufficiently small neighborhoods surrounding
it contain no feasible points that are lower in objective value

Geometric Optimality Condition

Let f in C1, and let

S
∆
= {x : gi (x) ≤ 0, i = 1, . . . ,m}.

If x∗ is an optimum for f on S , then

D(x∗) ∩ F (x∗) = ∅,

with:
•D(x∗), set of improving directions
•F (x∗), set of feasible directions

x∗

g1(x) ≤ 0

g2(x) ≤ 0

F (x∗)

D(x∗)

∇g1(x
∗)

∇g2(x
∗)

∇f (x∗)

∄d ∈ IRn : ∇f (x∗)Td < 0 and ∇gi (x
∗)Td < 0,∀i ∈ Ax∗

... only if x∗ is regular!
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KKT Points

Let f and g1, . . . , gm in C1, and consider the NLP problem

minimize:
x∈IRn

f (x)

subject to: gi (x) ≤ 0, i = 1, . . . ,m

A point (x̄, ν̄) ∈ IRn × IRm is called a KKT point if it satisfied

Primal Feasibility: gi (x̄) ≤ 0, i = 1, . . . ,m

Dual Feasibility:







∇f (x̄) =

m∑

i=1

ν̄i∇gi (x̄)

ν̄i ≤ 0, i = 1, . . . ,m

Complementarity Slackness: ν̄igi (x̄) = 0, i = 1, . . . ,m
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FONC for Inequality Constraints

First-Order Necessary Conditions

Let f , g1, . . . , gm be C1. If x∗ is a (local) optimum for f s.t. gi (x) ≤ 0,
i = 1, . . . ,m, and regular, there is a unique vector ν∗ ∈ IRm such that
(x∗,ν∗) is a KKT point:

ν∗ ≤ 0, g(x∗) ≤ 0,

∇L(x∗, ν∗) = 0, ν∗i gi (x
∗) = 0, i = 1, . . . ,m

where L(x∗,ν∗) = f (x∗)−
∑m

i=1 ν
∗
i gi (x

∗).

KKT Multipliers (Minimize):

gi (x) ≤ 0 ↔ ν∗i ≤ 0

Interpretation:

gi (x) ≤ bi active ⇒ ν∗i
∆
= ∂f ∗

∂bi

Active Set Selection:

1 Pick-up active set (a priori)

2 Calculate KKT point (x∗,ν∗)
(if any)

→ Repeat for all possible active sets!
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Solving Nonlinear Inequality Constrained Optimization
A simple problem where x∗ is not a KKT point...

min
x

f (x)
∆
= −x1

s.t. g1(x)
∆
= −(1− x1)

3 + x2 ≤ 0

g2(x)
∆
= −x2 ≤ 0
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g1(x) ≤ 0

g2(x) ≤ 0

x1

x
2

∇f (x⋆) = (−1, 0)

∇g1(x
⋆) = (0, 1)

∇g2(x
⋆) = (0,−1)

x⋆ = (1, 0)

What’s going on here?
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FONC for Equality & Inequality Constraints

Let f , g1, . . . , gmi
, h1, . . . , hme

be C1

Suppose that x∗ is a (local) optimum point for

minimize:
x∈IRn

f (x)

subject to: gi (x) ≤ 0, i = 1, . . . ,mi

hi(x) = 0, i = 1, . . . ,me

and a regular point for the equality and active inequality constraints

Then, there exist (unique) multiplier vectors ν∗ ∈ IRmi , λ∗ ∈ IRme

such that (x∗,ν∗,λ∗) satisfy:

g(x∗) ≤ 0, ν∗ ≤ 0, ν∗i gi (x
∗) = 0, i = 1, . . . ,mi

h(x∗) = 0, ∇L(x∗,ν∗,λ∗) = 0

where L(x∗,ν∗,λ∗) = f (x∗)−
∑mi

i=1 ν
∗
i gi (x

∗)−
∑me

i=1 λ
∗
i hi (x

∗).
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Understanding Necessary Conditions for Optimality

min
x

f (x)

s.t. g(x) ≤ 0

Analogy

“Ball rolling down valley pinned by fence”

➤ Balance of forces (∇f ,∇g1)
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Understanding Necessary Conditions for Optimality

min
x

f (x)

s.t. g(x) ≤ 0

h(x) = 0

Analogy

“Ball rolling down valley on rail pinned by fence”

➤ Balance of forces (∇f ,∇g1,∇h)
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Second-Order Sufficient Conditions for a Local Minimum

Let f , g1, . . . , gmi
, h1, . . . , hme

be C2

Suppose that x∗ is regular and ∃ λ∗,ν∗ such that x∗,λ∗,ν∗ is a
KKT point

For any y 6= 0 such that

∇gi (x
∗)Ty = 0, i ∈ Ax∗, ν∗i > 0,

∇gi (x
∗)Ty ≤ 0, i ∈ Ax∗, ν∗i = 0,

∇h(x∗)Ty = 0,

the inequality yT∇2L(x∗,λ∗,ν∗)y≻ 0 holds.

Then, x∗ is a local minimum.
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More About Constraint Qualifications

Point x∗ is regular if it satisfies some assumptions – Among the most used
ones:

Linear Independence Constraint Qualification (LICQ) The
gradients of the active inequality constraints and the gradients of the
equality constraints are linearly independent at x∗,

rank {∇hi (x̄), i = 1, . . . ,me,∇gj (x̄), j ∈ Ax∗} = me + |Ax∗|

Mangasarian-Fromovitz Constraint Qualification (MFCQ) The
gradients of the active inequality constraints and the gradients of the
equality constraints are positive-linearly independent at x∗,

∃d ∈ IRnx such that ∇h(x∗)Td = 0 and ∇gj(x
∗)Td < 0,∀j ∈ Ax∗

Linearity Constraint Qualification If gi and hi are affine functions,
then no other CQ is needed

Slater Constraint Qualification For a convex NLP only,

∃x̄ such that h(x̄) = 0 and gj(x̄) < 0,∀j ∈ Ax∗ ≡ ”strict” feasibility !!
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Convexity & First-Order Conditions for Optimality

Consider the NLP problem

minimize:
x∈IRn

f (x)

subject to: gi (x) ≤ 0, i = 1, . . . ,mi

hi(x) = 0, i = 1, . . . ,me
where:

◮ f , g1, . . . , gmi
, h1, . . . , hme

are C1

◮ f , g1, . . . , gmi
are convex and h1, . . . , hme

are affine on IRn

Suppose that (x∗,ν∗,λ∗) satisfy:

g(x∗) ≤ 0, ν∗ ≤ 0, ν∗i gi (x
∗) = 0, i = 1, . . . ,mi

h(x∗) = 0, ∇L(x∗,ν∗,λ∗) = 0

where L(x∗,ν∗,λ∗) = f (x∗)−
∑mi

i=1 ν
∗
i gi (x

∗)−
∑me

i=1 λ
∗
i hi (x

∗).

Then, x∗ is a global optimum point
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Constraint qualification for convex problems ?!?

Sufficient condition for optimality

If (x∗,ν∗,λ∗) is a KKT point ⇒ x∗ is a global minimum

Why should we care about constraint qualification (CQ) ?!?

Necessary condition for optimality

If x∗ is a minimum and satisfy (any) CQ

⇒

∃ λ∗, ν∗ s.t. (x∗,ν∗,λ∗) is a KKT point

I.e. no CQ ⇒ KKT may not have a solution even if x∗ exists
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Summary of Optimality Conditions

Optimality conditions for NLP with equality and/or inequality constraints:

1st-Order Necessary Conditions: A local optimum of a
(differentiable) NLP must be a KKT point if:

◮ that point is regular; or
◮ all the (active) constraints are affine

1st-Order Sufficient Conditions: A KKT point of a convex
(differentiable) NLP is a global optimum

2nd-Order Necessary and Sufficient Conditions requires positivity
of the Hessian in the feasible directions

Non-convex problem ⇒ minimum is not necessarily global.
But some non-convex problems have a unique minimum !!
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Convex Optimization

“Between the idea and the reality falls the shadow...”

— T.S. Eliot
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How to Detect Convexity?
Reminder:

min
x

f (x)

s.t. g(x) ≤ 0

h(x) = 0

is convex iff f , gi are convex, hi are affine.

Gradient and Hessian Tests

A function f : S ⊂ IRn → IR in C2 is convex on S if, at each x◦ ∈ S ,

Gradient Test: f (x) ≥ f (x◦) +∇f (x◦)T (x− x◦) , ∀x ∈ S

Hessian Test: ∇2f (x◦) � 0 (positive semi-definite)

Strict convexity is detected by making the inequality signs strict

Gradient and Hessian tests are often very difficult !!

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 29 / 77

How to Detect Convexity?

Operations on sets preserving convexity

Intersection S1 ∩ S2 is convex is S1,S2 are convex

f (S) = {f (x)|x ∈ S} is convex if f is affine and S convex

Operations on functions preserving convexity

Sum of functions: f =
∑

i wi fi is convex if fi are convex and wi ≥ 0
(extends to infinite sums & integrals)

Affine composition: g(x) = f (Ax+ b) is convex if f is convex

Point-wise maximum: f (x) = maxi {fi (x)} is convex if fi are convex

Infimum: g(x) = infy∈C f (x , y) is convex if f (x , y) is convex in x , y

Perspective function: g(x , t) = tf (x/t) is convex on t > 0 if f is
convex

Composition: g(f (x)) is convex if f is convex and g is convex and
monotonically increasing
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Dual function

Consider the NLP: f ∗ = min
x

f (x)

s.t. g(x) ≤ 0

h(x) = 0

with associated Lagrangian2: L(x,ν,λ) = f (x) + νTg(x) + λTh(x)

The Lagrange dual function g(ν,λ) ∈ IR is define as:

g(ν,λ) = inf
x
L(x,ν,λ)

dual function g(ν,λ) is concave (even if the NLP is non-convex !)

can take values −∞ (when Lagrangian unbounded below)

lower bound f ∗ ≥ g(ν,λ), ∀ν ≥ 0 and λ

2signs in the Lagrange function are positive to abide by the literature
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Dual problem

Primal problem: f ∗ = min
x

f (x)

s.t. g(x) ≤ 0

h(x) = 0

with Lagrange dual function g(ν,λ) ≤ f ∗. What is the best lower bound ?

Lagrange dual problem: g∗ = max
ν,λ

g(ν ,λ)

s.t. ν ≥ 0

Dual problem is convex (even if primal problem is not !!)

Weak duality g∗ ≤ f ∗ always hold (even if primal problem is
non-convex !!)

Strong duality g∗ = f ∗ holds if primal is convex and some CQ holds

Difference f ∗ − g∗ ≥ 0 is named duality gap
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Saddle-point interpretation
Observe that:

sup
ν≥0

L(x,ν) = sup
ν≥0

(

f (x) + νTg(x)
)

=

{
f (x) g(x) ≤ 0
∞ otherwise

f ∗ = inf
x

sup
ν≥0

L(x,ν) =
︸︷︷︸

strong duality

g∗ = sup
ν≥0

g(ν ,λ) = sup
ν≥0

inf
x
L(x,ν,λ)

As a result L(x,ν) has the saddle-point property

Example:

min
x

x2

s.t. x ≤ −2

Lagrange function:

L(x , ν) = x2 + ν (x + 2)

Optimum: x∗ = −2, ν∗ = 4 0 1 2 3 4 5 6 7 8
−3

−2.5

−2

−1.5

−1

−0.5

0
L(x , ν)

x

ν ≥ 0

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 33 / 77

Some typical Convex Problems

LP:
min
x

cTx

s.t. Ax+ b = 0

Cx+ d ≤ 0

QP:

min
x

1
2x

TBx+ fTx

s.t. Ax+ b = 0

Cx+ d ≤ 0

QCQP:

min
x

1
2x

TBx+ fTx

s.t. Ax+ b = 0
1
2x

TBix+ fTi x+ di ≤ 0

SOCP:

min
x

fTx

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di

Cx+ d ≤ 0

Inclusion: LP ⊂ QP ⊂ QCQP ⊂ SOCP
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Some more Convex Problems

Linear-fractional programming (e.g. Von Neumann growth problem)

min
x

cTx+ d

eTx+ f

s.t. Gx ≤ 0

Geometric programming (convex after reformulation for ck > 0)

min
x

K∑

k=1

ck

n∏

i=1

x
αik

i

s.t.
K∑

k=1

c
j
k

n∏

i=1

x
αj
ik

i ≤ 1, j = 1, ..., p

Frobenius norm diagonal scaling: find D diagonal to minimize ‖DMD−1‖2F

‖DMD−1‖2F =
∑

i ,j

M2
ijd

2
i d

−2
j
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Generalized Inequalities

A cone K ⊆ IRn is proper if

K is convex, closed and solid (i.e. nonempty interior) and

K is pointed (i.e. if x ∈ K and −x ∈ K then x = 0)

A proper cone defines a partial ordering on IRn or generalized inequality:

x ≤K y ⇔ y − x ∈ K

Examples:

K = IR+ yields the standard ordering, i.e. x ≤IR+ y ⇔ x ≤ y

K = Sn+ yields the matrix inequality, i.e. X ≤Sn+ Y ⇔ X � Y
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Linear Matrix Inequalities & Semi-Definite Programming

A inequality of the form :

B0 +

N∑

i=1

Bixi � 0

with Bi ∈ Sn, i = 0, ..,N is called an LMI

An optimization problem of the form:

min
x

cTx

s.t. Ax− b = 0

B0 +
∑N

i=1 Buxi � 0

is called an SDP.

It can be shown that LPs, QPs, QCQPs are SDPs !!
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Example of SDPs - Eigenvalue problems
Consider the problem:

min
x∈D

λmax {G (x)}

where G (x) = B0 +
∑N

i=1 Bixi and Bi ∈ Sn.

The problem can be reformulated as the SDP:

min
s∈IR,x∈D

s

s.t. sI − B0 −
∑N

i=1 Bixi � 0

Some more eigenvalue problems that have an SDP formulation

Minimizing the spread of eigenvalues, i.e. λmax − λmin

Minimizing the condition number of G , i.e. λmax/λmin

Minimizing ‖λ‖1
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Problem with L1 norm

”Best tractable approximation of L0 norm”, provides sparse residual x

Smooth Reformulation

Non-smooth L1 problem:

min
x

N∑

i=1

‖xi‖1

s.t. Ax+ b = 0

→

Smooth reformulation

min
x,s

N∑

i=1

si

s.t. − si ≤ xi ≤ si

Ax+ b = 0

Example: L1 fitting
Find the best linear model ax + b − y = 0 for a set of data xi ,yi

min
a,b

‖e‖1

s.t. ax+ b − y = e
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Problem with Huber Penalty function

Huber penalty function with ρ > 0:

Hρ(x) =

{
1
2x

2, |x | ≤ ρ

ρ(|z | − 1
2ρ), |x | > ρ

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

 

 

L2 norm
Huber norm penalty f

H
ρ

x

−ρ ρ

Estimation in the presence of outliers (”fat-tail” distribution)

Smooth Reformulation (Hessian not Lipschitz)

Non-smooth problem

min
x

N∑

i=1

Hρ(xi )

s.t. Ax+ b = 0

→

min
x,s,η

N∑

i=1

1

2
s2i + ρηi

s.t. ηi ≥ 0

− si − ηi ≤ xi ≤ si + ηi

Ax+ b = 0
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Nuclear Norm
Min rank problem: minX∈D rank (X ) with X ∈ IRm×n is NP-hard.

Idea: approximate the rank by a Nuclear Norm: minX∈D ‖X‖∗ where

‖X‖∗ =

minm,n
∑

i=1

σi(X )

Properties of the Nuclear Norm

Convex !!

if X ∈ S+, then ‖X‖∗ = Tr (X )

For X ∈ IRm×n, ‖X‖∗ ≤ t iff ∃Y ∈ IRm×m and Z ∈ IRn×n such that:

[
Y X

XT Z

]

� 0, Tr (Y ) + Tr (Z ) ≤ 2t

i.e. nuclear norm minimization equivalent to LMI problems.

rank (X ) ≥ γ−1‖X‖∗ on D =
{
X ∈ IRm×n|‖X‖ ≤ γ

}
, i.e. the Nuclear

Norm problem provides a lower bound for the rank problem
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Nuclear Norm - a basic example
Low-order identification of the FIR system:

y(t) =

t∑

τ=t−r

h(t − τ)u(τ) + v(t)

Hankel matrix of the system (nH = r/2 ∈ N) yields Y = HhU, with

Hh =







h(0) h(1) ... h(r − nH)
h(1) h(2) ... h(r − nH + 1)
... ... ... ...

h(nH) h(nH + 1) ... h(r)







Nuclear Norm formulation of the rank minimization:

min
h

t

s.t. ‖Hh‖∗ ≤ t

‖Ymeas − Y ‖2F ≤ γ
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Recommended softwares

CVX (Stanford)

Disciplined convex programming

LP, QP, QCQP, QP, SDP, GP

Exploits sparsity (to some extents)

Exists in CodeGen version (http://cvxgen.com/)

Matlab interface

Sedumi (Matlab add-on)

Optimization over symmetric cones

Allows complex numbers

Exploits sparsity for large-scale problems

Yalmip (Matlab add-on)

Modeling interface for optimization

Calls appropriate solvers

WORHP

Very large scale convex-quadratic solver, SQP-based
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Numerical Methods for Optimization

“If you are going through hell, keep going.”

— Winston Churchill.
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Local optimization

A vast majority of solvers try to find an approximate KKT point...

Find the ”primal-dual” variables x∗,ν∗,λ∗ such that:

g(x∗) ≤ 0, ν∗ ≤ 0, ν∗i gi (x
∗) = 0, i = 1, . . . ,mi

h(x∗) = 0, ∇L(x∗,ν∗,λ∗) = 0

Lets get started with the equality constrained problem

Find the ”primal-dual” variables x∗,λ∗ such that:

∇L(x∗,λ∗) = 0,

h(x∗) = 0. (1)

Idea: apply a Newton search on the (non)linear system (1)
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Newton method for equality constrained problems

The Newton recursion for solving the KKT conditions

[
∇2L(xk ,λk) ∇h(xk)
∇h(xk)

T 0

]

︸ ︷︷ ︸

KKT matrix

[
xk+1 − xk

− (λk+1 − λk)

]

+

[
∇L(xk ,λk)

h(xk)

]

= 0

Invertibility of the KKT matrix

The KKT matrix is invertible if (sufficient, not necessary)

rank
(
∇h(xk)

T
)
= m, with ∇h(xk)

T ∈ IRm×n (LICQ)

∀d 6= 0, such that ∇h(xk)
Td = 0

dT∇2L(xk ,λk)d ≻ 0, (SOSC)

If (x∗,λ∗) is LICQ & SOSC, then the KKT matrix

is invertible in a neighborhood of (x∗,λ∗)
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Newton method for equality constrained problems (cont’)

Update of the dual variables

Define λk+1 = λk +∆λk , and xk+1 = xk +∆xk , observe that:

∇L(xk ,λk) = ∇f (xk)−∇h(xk)λk ,

and use it in the KKT system

[
∇2L(xk ,λk) ∇h(xk)
∇h(xk)

T 0

] [
xk+1 − xk

− (λk+1 − λk)

]

+

[
∇L(xk ,λk)

h(xk)

]

= 0

KKT system in a ”full dual update” form

[
∇2L(xk ,λk) ∇h(xk)
∇h(xk)

T 0

] [
∆xk

−λk+1

]

+

[
∇f (xk)
h(xk)

]

= 0

The primal-dual iterate depends on λk only via the Hessian !!

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 47 / 77

Quadratic model interpretation

KKT system is a Quadratic Program (QP)

The iterate xk+1 = xk + d is given by:

min
p∈IRn

1

2
dT∇2L(xk ,λk)d+∇f (xk)

T
d

s.t. h (xk) +∇h (xk)
T
d = 0

Proof: KKT of the QP are equivalent to the KKT system.

Dual variables

Variables λk+1 given by the dual variables of the QP, i.e. λk+1 = λQP

Will be very usefull to tackle problems with inequality constraints !!
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Failure of the full Newton step
Newton step ∆xk minimizes the quadratic model.

Q(xk ,∆xk) = f (xk) +∇f (xk)
T∆xk +

1

2
∆xT

k ∇
2f (xk)∆xk

What if that model is not good enough ?

If Hessian ∇2L(xk ,λk) ≻ 0 then

∇f (xk)
T∆xk =

−∇f (xk)
T∇2L(xk ,λk)∇f (xk) < 0

i.e. the Newton step is a descent
direction, but the full Newton step
can increase the cost !!

0 0.2 0.4 0.6 0.8 1 1.2

2.35

2.4

2.45

2.5

2.55

2.6

Q (x
k , t∆x)

t
f
(x

k
+

t∆
x
k
)

f (xk)
f (xk +∆xk)

t = 0 t = 1

A situation with f (xk +∆xk) > f (xk) can easily occur...

Strong variation of ∇2f (x)

Nonlinear constraints
S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 49 / 77

Globalization - Line search strategies

Exact line search (for unconstrained optimization)

Find the best step length:

t = arg min
s∈]0,1]

f (xk + s∆xk)

0 0.2 0.4 0.6 0.8 1 1.2

2.35

2.4

2.45

2.5

2.55

2.6

Q (f (x
k ), t∆x)

f (xk)
f (xk +∆xk)

t

f
(x

k
+
t∆

x
k
)

t = 0 t = 1
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Globalization - Line search strategies

”Armijo’s” backtracking line search (for unconstrained optimization)

Given a primal direction ∆xk , using 0 < α ≤ 1
2 and 0 < β < 1, do t = 1:

While: f (xk + t∆xk) < f (xk) + αt∇f (xk)
T∆xk , do: t = βt

0 0.2 0.4 0.6 0.8 1 1.2

2.35

2.4

2.45

2.5

2.55

2.6

f (x
k ) +

t∇
f T

∆
x

k

f (x
k ) + αt∇f T

∆x
k

t

f
(x

k
+

t∆
x
k
)

t = 0 t = 1

α = 1
2

If α too small we may accept
steps yielding only mediocre
improvement.

If f quadratic, we want full step,
i.e.

α ≤
1

2
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Convergence of the Newton with Line-search (I)

Theorem

Assume that for x , y ∈ S :

Hessian satisfies mI � ∇2f (x) � MI,

and is Lipschitz, i.e. ‖∇2f (x)−∇2f (y)‖2 ≤ L‖x − y‖2

then ∃ η, γ > 0 with η < m2

L
such that ∀ xk ∈ S :

Damped phase:
f (xk+1)− f (xk) ≤ −γ if ‖∇f (xk)‖2 ≥ η
Quadratic phase:
L

2m2 ‖∇f (xk+1)‖2 ≤
(

L
2m2 ‖∇f (xk+1)‖2

)2
if ‖∇f (xk)‖2 < η

Two-phase convergence

If xk ∈ S is far from x∗ ⇒ Damped convergence (reduced steps)

If xk ∈ S is close to x∗ ⇒ Quadratic convergence (full steps)

Once Newton has entered the quadratic phase, it stays quadratic !!
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Affine invariance of the exact Newton method

Affine change of coordinates

Consider: x = Ty + t with T ∈ IRn×n non-singular and t ∈ IRn.
Define f̃ (y) = f (Ty + t) and h̃(y) = h(Ty + t), then:

∇yL̃(y,λ) = TT
∇xL(x,λ) and ∇2

yyL̃(y,λ) = TT∇2Lxx(x,λ)T

It can be verified that:
[
∇2

yyL̃(yk ,λk) ∇h̃(yk)

∇h̃(yk)
T 0

] [
∆yk

−∆λk

]

+

[
∇L̃(yk ,λk)

h̃(yk)

]

= 0

holds for ∆xk = T∆yk .

The Newton step is invariant w.r.t. an affine change of coordinate.
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Convergence of the exact Newton method (II)

Self-concordant functions

Function f ∈ IR convex is self-concordant iff
∣
∣f (3)(x)

∣
∣ ≤ 2f (2)(x)3/2.

Function f ∈ IRn convex is self-concordant iff f̃ (t) = f(x+ tv) is
self-concordant for all x ∈ Dom(f) and v ∈ IRn.

Self-concordance theory

Define ξ =
(
∇f (x)T∇2f (x)−1

∇f (x)
) 1

2 .

Starting from x0, assume that:

f is strictly convex, sublevel set S = {x|f (x) ≤ f (x0)} is closed.

Then ∃ η, γ > 0 with 0 < η ≤ 1
4 s.t.a

If ξ(xk) > η, then f (xk+1)− f (xk) ≤ −γ (damped phase)

If ξ(xk) > η, then 2ξ(xk+1) ≤ (2ξ(xk))
2 (quadratic phase)

a
η, γ depend only on the line search parameters)
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Globalization - Trust-region methods

”Trustworthiness” of the quadratic model

ρk =
f (xk)− f (xk +∆xk)

Q(xk)− Q(xk +∆xk)
,

ρk = 1, perfect model

ρk < 0, f (xk +∆xk) > f (xk)

Idea: adjust the direction with the step length

Illustrative example with x ∈ IR

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

2.4

2.45

2.5

2.55

2.6

2.65

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

Q (f (xk ),∆x)

f (xk) f (xk +∆xk)

f
(x

k
+

∆
x
k
)

ρ
k

xk

Trust-region solves:

∆xk = argmin
p

Q(xk , p)

s.t. ‖p‖ ≤ ∆k

Line-search: get the direction,
decide the length

Trust-region: decide the length,
find the direction
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Globalization - Trust-region methods

∆xk = argmin
p

Q(xk , p)

s.t. ‖p‖ ≤ ∆k (2)
ρk =

f (xk)− f (xk +∆xk)

Q(xk)− Q(xk +∆xk)

Trust-region Algorithm - Heuristic to choose ∆k from observed ρk

Inputs: ∆max, η ∈ [0, 0.25], ∆0,x0, TOL > 0

while ‖∇f (xk)‖ > TOL, do:
Get ∆xk from (2)
Evaluate f (xk +∆xk), compute ρk

Length adaptation: ∆k+1 =







0.25∆k if ρk < 0.25
min(2∆k ,∆max) if ρk > 0.75

∆k if otherwise

Decide acceptance: xk+1 =

{
xk+1+∆xk if ρk > η

xk+1 if ρk ≤ η
k = k + 1

end while
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Newton-type Methods

Computing ∇2L is expensive, use an approximation Bk instead !!

Descent direction

If Bk ≻ 0 then ∆xk = −B−1
k ∇f (xk) is a descent direction.

Local convergence for Newton-type Methods

Assume

x∗ is SOSC for f

Lipschitz condition: ‖B−1
k

(
∇2f (xk)−∇2f (y)

)
‖ ≤ ω‖xk − y‖ holds

on the sequence k = 0, 1, ..., y ∈ IRn.

Compatibility: ‖B−1
k

(
∇2f (xk)− Bk

)
‖ ≤ κk with κk ≤ κ < 1

Then if xk is close to x∗, xk → x∗ and convergence is

Quadratic for κ = 0: ‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2 with C = ω/2

Superlinear for κk → 0: ‖xk+1 − x∗‖ ≤ Ck‖xk − x∗‖ with Ck → 0

Linear for κk > ρ: ‖xk+1 − x∗‖ ≤ C‖xk − x∗‖ with C < 1
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Steepest descent

Constant Hessian approximation

Use Bk = α−1
k I , then:

∆xk = −B−1
k ∇f (xk) = −αk∇f (xk)

Step size αk is chosen sufficiently small by the line-search.

Convergence

Compatibility: ‖αk

(
∇2f (xk)− I

)
‖ ≤ κk with κk ≤ κ < 1

Constant does not converge to 0, i.e. κk > ρ, ∀k

Linear convergence when xk is close to x∗
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Gauss-Newton Method

Cost function of the type f (x) = 1
2‖F(x)‖

2
2, with F(x) ∈ IRm

Gauss-Newton Hessian approximation

Observe that

∇2f (x) =
∂

∂x
(∇F (x)F (x)) = ∇F (x)∇F (x)T +

m∑

i=1

∇2Fi(x)Fi (x)

Gauss-Newton method proposes to use: Bk = ∇F (xk)∇F (xk)
T + αk I

Bk is a good approximation if:

all ∇2Fi (x) are small (F close to linear), or

all Fi(x) are small

Typical application to fitting problems: F (x) =
∑N

i=1 ‖yi (x)− ȳi‖
2
2

Convergence

If
∑m

i=1∇
2Fi(x)Fi (x) → 0 then κk → 0

Quadratic convergence when xk is close to x∗
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Quasi-Newton Methods

Compute numerical derivative of ∇2f (x) in an efficient (iterative) way

BFGS

Define sk = xk+1 − xk

yk = ∇f (xk+1)−∇f (xk)

Idea: Update Bk → Bk+1 such that Bk+1sk = yk (secant condition)

BFGS formulaa: Bk+1 = Bk −
Bkss

TBk

sTBks
+

yyT

sTy
, B0 = I

aSee ”Powell’s trick” to make sure that Bk+1 > 0

Convergence

It can be shown that Bk → ∇2f (x), then κk → 0

Quadratic convergence when xk is close to x∗
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What about inequality constraints ?
Find the ”primal-dual” variables x∗,ν∗,λ∗ such that:

g(x∗) ≤ 0, ν∗ ≤ 0, ν∗i gi (x
∗) = 0,

h(x∗) = 0, ∇L(x∗,ν∗,λ∗) = 0

Conditions ν∗i gi (x
∗) = 0 are not smooth !!

Active set methods - Outline of the idea

Guess the active set Ax∗ a priori,
Solve :

gi (x
∗) = 0, i ∈ A

h(x∗) = 0, ∇L(x∗,ν∗,λ∗) = 0

Check : ν∗ ≤ 0, and gi (x
∗) ≤ 0, i ∈ Ac

If fails : adapt A, back to solve.

Efficient only for Quadratic Programs !!
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Quadratic Programming via Active Set Method

min
x

1
2x

TBx+ fTx

s.t. : Ax+ b ≤ 0

Cx+ d = 0

Active set methods for QP

Guess the active set Ax∗ a priori,
Solve :

Bx+ f − ATν − CTλ = 0

Ax+ b = 0

Cx+ d = 0

Check : ν ≤ 0, and gi (x) ≤ 0, i ∈ Ac

If fails : adapta A, back to solve.

amany different techniques

Each iteration requires only to perform some linear algebra...
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QP via the Primal Active Set Method

Primal Active Set Algorithm (e.g. qpOASES)

Starting from x0, active set A0, k = 0:
while xk is not a solution, do:

Solve: B x̃+ d− AT
Ak
ν̃ = 0, Ax̃+ bAk

= 0

Find the max t ∈ [0, 1] such that xk+1 = xk + t (x̃− xk) is feasible
If t < 1 ⇒ Ak+1 = Ak ∪ iblock (add blocking constraint)
If t = 1 (x̃ primal feasible)

If ν̃ ≤ 0 ⇒ solution found, exit algorithm
If ν̃ i > 0 ⇒ Ak+1 = Ak − {i} (remove blocking constraints)

k = k+1
end while
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Sequential Quadratic Programming

Consider the NLP...

min
x

f (x)

s.t g(x) ≤ 0

h(x) = 0

...and the corresponding QP

min
d

1
2d

TBkd+∇f (xk)
Td

s.t g(xk) +∇g(xk)
Td ≤ 0

h(xk) +∇h(xk)
Td = 0

Theorem

Suppose

The solution of the NLP x∗ with active set A∗ is LICQ,

ν∗, g have strict complementarity,

xk is close enough to x∗,

Bk � 0, and Bk ≻ 0 on the nullspace of ∇gA∗

then the QP has the active set A∗ and strict complementarity.
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Sequential Quadratic Programming

Monitoring progress with the L1 merit function:

T1(xk) = f (xk) + µ‖h(xk)‖1 + µ
∑m

i=1 |min(0, gi (xk)|

Line-search SQP algorithm

while T1(xk) > TOL do
get ∇f (xk), ∇g(xk), Bk ≈ ∇2L(xk ,νk ,λk)
solve the QP, get d, λQP, νQP

perform line-search on T1(xk + d), get step length α
take primal step: xk+1 = xk + αd
take dual step: λk+1 = (1− α)λk + αλQP , νk+1 = (1− α)νk + ανQP

end while

Theorem

If ∇2L(xk ,νk ,λk) ≻ 0 and µ > max {‖νk+1‖∞, ‖λk+1‖∞} then d is a
descent direction for T1(xk)
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Primal-dual Interior Point Methods

Barrier method: introduce the inequality constraints in the cost function

Primal Interior point method

min
x

f (x)

s.t. g(x) ≤ 0
→ min

xτ

f (xτ )− τ
∑mi

i=1 log(−gi (xτ ))

Example: box constraint

−1 ≤ x ≤ 1

−1 ≤ y ≤ 1

limτ→0 x
∗
τ = x∗

Contour plot of f (x)−
∑mi

i=1 log(−gi (x))

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y
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Primal-dual Interior Point Methods

KKT interpretation

KKT of the original problem

∇f (x∗)−∇g(x∗)ν∗ = 0

g(x∗) ≤ 0, ν∗ ≤ 0, ν∗i gi (x
∗) = 0

KKT of the barrier problem → ν̃∗i = τgi (x
∗
τ )

−1 → IP-KKT (primal-dual)

∇f (x∗
τ )− τ

mi∑

i=1

∇g(x∗
τ )gi (x

∗
τ )

−1 = 0
∇f (x∗

τ )−∇g(x∗
τ )ν̃

∗ = 0

ν̃∗i gi (x
∗
τ ) = τ

A basic primal-dual IP algorithm

From x0, τ > 0 sufficiently large
while ”stopping test for the original problem fails” do:

solve IP-KKT to TOL, xk+1 = x∗
τ

τ = στ , σ ∈]0, 1[
end while
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Primal-dual Interior Point Methods

Slack formulation - ensuring feasibility

Slack formulation of the IP-KKT:

∇f (x∗
τ )−∇g(x∗

τ )ν̃
∗ = 0

ν̃∗i s
∗
i = τ

g(x∗)− s∗ = 0

Newton system (symmetrized):




∇2L 0 ∇g

0 Σ −I

∇g −I 0









∆x

∆s

−∆ν̃



 = −





∇L
ν̃ − S−1τ
g(x)− s





where Σ = diag
(
ν̃is

−1
i

)
and S = diag (s).

Sketch of the primal-dual IP algorithm

Start with feasible guess s > 0, ν̃ > 0

Line-search, enforce: sk+1 ≥ (1− τ)sk and ν̃k+1 ≥ (1− τ)ν̃k
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Summary of numerical optimization

NLP

SQP IP

QP

IP AS

Globalization

LS TR

LS TR

Globalization

IP = Primal-dual Interior-point
method
SQP = Sequential Quadratic
Programming
QP = Quadratic Programming
AS = Primal Active Set Method
LS = Line-search Method
TR = Trust-region Method
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Failure of the methods - Infeasible points

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

x

xk

y

g(x) = x3 − 5x = 0

∇g(xk )Td = 0

h(x) = y − x + 5 ≤ 0

Vectors ∇g(xk) and ∇h(xk) are
not Lin. Independent, i.e.

∄d ∈ IRn such that:
[

∇g(xk)
T

∇h(xk)
T

]

d+

[
g(xk)
h(xk)

]

= 0

There is no feasible direction d ∈ IRn
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Failure of the methods - Infeasible points

Interior-point method applied to the proposed example3

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

x

y

g(x) = x3 − 5x = 0

h(x) = y − x + 5 ≤ 0

x∗

Problem:

min
x ,y

x2 + y2

s.t. x3 − 5x = 0

y − x + 5 ≤ 0

Red dots: failed starting
points → black dots
Blue dots: succesfull starting
points → (−2.46,−2.54)

3Similar results with SQP
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Homotopy strategies

Parametric NLP

Consider the parametric NLP P(θ), θ ∈ IR:

P(θ) = min
x

f (x, θ)

s.t. g(x, θ) ≤ 0

h(x, θ) = 0

If ∇f ,∇g,∇h are differentiable w.r.t. θ and the (parametric) solution
(x∗(θ),ν∗(θ),λ∗(θ)) is SOSC and LICQ, then it is differentiable w.r.t. θ.

Homotopy - Outline of the idea

Suppose that P(1) is the NLP to be solved, P(0) is an NLP that can be
solved. Then starting from θ = 0, solve P(θ) while gradually decreasing
θ → 1. If LICQ & SOSC are maintained on the way, then a solution can
be obtained.
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Homotopy strategies

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

x

y

g(x) = x3 − 5x = 0

h(x) = y − x + 5 ≤ 0
g(x) = x3 + x = 0

x∗

Note: SQP very efficient
for homotopy strategies !!

Start with initial guess x0, y0
Set θ = 0, k = 0
while θ < 1 do:

Using xk , yk as initial guess solve:

P(θ) = min
x

x2 + y2

s.t. x3 − 5tx = 0

t = 1.2θ − 0.2

y − x + 5 ≤ 0

set xk+1 = x∗(θk), yk+1 = y∗(θk)
θk+1 = θk + 0.1
k = k + 1

end while
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Parameter embedding for homotopies
Consider running a homotopy on the parametric NLP, with θ ∈ IRp:

P(θ) = min
x

f (x,θ)

s.t. g(x,θ) ≤ 0

h(x,θ) = 0

Then the parameters should be embedded in the NLP, i.e. solve

PE (θ) = min
x,ζ

f (x, ζ)

s.t. g(x, ζ) ≤ 0

h(x, ζ) = 0

ζ − θ = 0

Because ζ is part of the decision variables, the sensitivity of the cost and
constraints w.r.t. ζ is computed. That information is intrinsically used by
the solver to update the solution x∗(θ) when θ is changed.
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Recommended softwares
ipopt

Large-scale primal-dual IP solver, filter techniques, sparse linear
algebra, extremely robust

KNITRO

Large-scale solver

Primal IP solver (direct factorization/CG) and Active-set solver

Interface to many environments (AMPL, MATLAB, Mathematica,...)

SNOPT

Large-scale SQP solver, augmented Lagrangian merit function

CasADi

Symbolic framework for Automatic Differentiation (AD) tool

Python interface, CAS syntax

Interface to most state-of-the-art NLP solvers & intergators

S. Gros (OPTEC, ESAT, KU Leuven) Introduction to Nonlinear Programming 10th of September, 2012 75 / 77

Summary & additional remarks

Beware of your constraints qualification !! Even a simple convex
problem can fail state-of-the-art optimizers if badly formulated...

Newton-type techniques converge really fast∗... (∗ if started close to the solution).

(Primal-dual) Interior-point methods: extensively used for both
convex and non-convex problems, SDP, generalized constraints, well
suited for large-scale problems

Sequential-quadratic Programming: very powerful for parametric
optimization problems, homotopies, optimal control

Coming-back of (Parallel) First-order techniques for (very) large-scale
problems

Check-out existing (open-source) softwares before developing your
own algorithm

Strong non-convexity can often be overcome (homotopy strategies).
Requires some insights in the problem though. Solution is local.
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Some good readings

Convex Optimization, S. Boyd, L. Vandenberghe, Cambrige University
Press
Nonlinear Programming, L.T. Biegler, MOS-SIAM
Numerical Optimization, T.V. Mikosch, S.I. Resnick, S.M. Robinson,
Springer Series
Primal-Dual Interior-Point Methods, S.J. Wright, SIAM
Optimization Theory & Methods, W. Sun, Y. Yuan, Springer
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