

Data-mining: new paradigm on the trading-floor

Jan De Spiegeleer KU Leuven

Dept. of Mathematics January 12, 2017

Each time BIS responds ...

Bank of International Settlements Basel, Switzerland

- 1973 Black Scholes model
- 1983 computers enter trading room
- Entry of the Quant / Rock-Scientist
- Focus on derivatives pricing and hedging ("modelling")

Modelling

Numerical techniques

QUANT ENTERS TRADING ROOM

- LTCM (1998) was the first warning signal things could go wrong
- When everybody is using the same model, bubbles get created and burst

Quant becomes a risk manager

• 2004:

Basel II allows capital ratios to be calculated using internal models

- Capital Ratio
 - Capital Ratio = Capital / RWA
 - Minimum Level 8%
 - RWA = Risk Weighted Assets
- Consequence:
 - Value at Risk entered the trading floor
 - Technology was lagging, hence corners being cut
 - CDO structuring becomes popular

Quant becomes a risk manager

- Basel III (2010)
 - limits the risk-taking of banks
 - new products are developed
 - CoCo Bonds
 - Bail-In capital
- Other regulations
 - AIFMD
 - UCITS
 - MIFID
 - EMIR
 - FRTB

Banks' IT department are 100% engaged implementing this new environment

Opportunity for FINTECH startups

Our research in models & risk

- Modelling
 - CoCo Bonds
 - Convertible Bonds
- Stochastic Processes
 - Levy
 - Variance Gamma

- Risk
 - Bail-In Capital
- Liquidity
 - Conic Finance

Quant becomes data-scientist

	1983-2004	2004-2010	2010
Quant	trading & models	risk management	data-scientist
Data	time-series : share prices, interest r	ates,	 cross sectional data: time series news feed (twitter, websites)
Infrastructure	client - server		cloud (storage and calculations)
Software	dedicated portfolio ma (expensive)	nagement systems	data-analytics tools widely available (cheap)
Algorithms	Black-Scholes	Gaussian copula	
Who	Phd's , Engineers, Mat Scientists,	thematicians, Computer	Low barriers to entry

Quant becomes data-scientist

	1983-2004	2004-2010	2010
Quant	trading & models	risk management	data-scientist
Data	time-series : share prices, interest r	ates,	cross sectional data:time seriesnews feed (twitter, websites)
Infrastructure	client - server		cloud (storage and calculations)
Software	dedicated portfolio ma	nagement systems	data-analytics tools widely available
Algorithms	Black-Scholes	Gaussian copula	
Who	Phd's , Engineers, Mat Scientists	thematicians, Computer	Low barriers to entry

Low barriers to entry

Low barriers to entry

- Every model has assumptions and its limitations
- Lessons from the past : perfect calibration does guarantee an adequate price of the financial product.

Dept.Mathematics

Some case studies

Portfolio as a Network

- Using network metrics in portfolio analysis
- Brings more insight to the trading desk
- Example:
 - $_{\circ}$ DAX 30 index
 - 4 stocks drive the market

Liquidity of Convertible Bonds

- Post Basel III: Liquidity in the markets has dropped
 - Dodd-Frank (US)
 - CRDIV (Europe)
- For most (convertible) bonds there is no trading venue

- Using data on US convertible bond quantify what is driving liquidity ?
 - seniority
 - credit quality
 - underlying share
 - age of the bond
 - ...

Capital Structure Arbitrage

- Financial institutions will hedge bonds with shares
- Rely on Equity / credit
 relationship
- Clustering has to be used

Capital Structure Arbitrage

Bond EI488506	3 Stock OCR	US Equity		
11) Pricing Analysis	12) Cash Tender	13) Historical Ana	alysis 🛛 14) Scenar	io Analysis 15) Nuke/Hedge
Market Price	Spread (Credit)	Volatility	Stock Price	Borrow Cost
345.630 💌	110.110 💌	63.15 🔺	91.240 😪	0.3 (%)
FBR & Co, Inc. NY	Flat 5 Year Spr	Flat 1Y Implied		
Trade Date	Settle Date	Model	E2C	Greeks based on
05/14/2015 🔳	05/19/2015 🔳	Jump Diffusion	_{مالہ} 0.0	Mkt Price & Vol 💽

source: screenshot from Bloomberg's CB valuation model

Capital Structure Arbitrage

Fraud Analytics

- Using data analytics and robust statistical techniques in early stage detection of
 - payment fraud
 - o insurance fraud
- Chair holders
 - Prof. Verdonck (Factulty of Sciency)
 - Prof. Baessens (Faculty of Economy)

Dislocation in a rolling 30D-window

- Using robust statistics (Minimum determinant covariance method), one can measure the dislocation of a financial instruments
- Trading & risk
 management purposes

Contact Details

jan.despiegeleer@kuleuven.be wim.schoutens@kuleuven.be tim.verdonck@kuleuven.be

LRisk

Leuven center for research, training and advice in the field of insurance and financial risk analysis combining all relevant KU Leuven expertise:

- offers multidisciplinary approach to the study of insurance and financial risks, with experts from actuarial and financial mathematics, statistics, economics, finance and law, ...
- collaborates closely with other leading universities and research centers in the field, see our international ties;
- maintains close connections with the actuarial and financial industry, built on a broad community of alumni.

https://feb.kuleuven.be/drc/LRisk