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Abstract

The goal of SPID is to provide the user with tools capable to simulate, preprocess,
process (quantification and feature extraction) and classify in vivo and ex vivo
MRS signals. These tools are embedded in a matlab graphical user interface (GUI).
(Pre)processing and classification methods can be automatically run in a row using the
matlab command line. The command line will be preferred when running automatic
procedure on large data sets, while the GUI is more appropriate for checking the results
of the different steps of the procedure.

Files saved in a .mat format from the JAVA version of AQSES-GUI can be loaded
in SPID.

Pluging in new tools in SPID is much simpler than in the JAVA version of AQSES
(AQSES-GUI) [DNLV+07] since it is based on a higher programming language level
(i.e., Matlab instead of JAVA and FORTRAN). Moreover, SPID contains many more
methods than AQSES-GUI and can be used as well for testing new methods as for
comparing existing ones. Most of the parameters are fixed in AQSES-GUI while they
can be tuned in SPID, making SPID much more flexible.

In this document, we describe what are the databases in SPID and how they can be
used. how to use existing construct new databases Explanations about the databases,
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how to create them and how to create simulated data are found in the first section. we
describe separately the GUI (SPID-GUI) and the command line tools (TSPID).

Finally, this package can be used on any station supporting matlab (Linux or Win-
dows, not tested on Mac OS or Sun yet). Matlab v7.0 or higher is required.

To cut a long story short, here is a software that should SPID’up your MRS signal
analysis.

1 Introduction

This software package has been implemented to work with AQSES v1.0. The parameter names
and their units are the same. Thus, signals saved with SPID are readable by AQSES-GUI and vice
versa.

The goal of SPID is not to copy AQSES-GUI (even if most of the tools contained in AQSES-
GUI can be retrieved in SPID) but to provide the user with a highly tunable GUI. For example, one
can choose the maximum magnitude of the ripples when using the maximum phase finite impulse
response (MPFIR) developed by Sundin [SVVH+99]. More tools are also available in SPID than
in AQSES-GUI. Therefore, we expect a much faster development of SPID than of AQSES-GUI.
Note that most of the commands available from the GUI are also available from the command line
(runTSPID, see Section 5).

In this document, we describe the different tools available in SPID. In Section 1.1, the
directory tree is described. Details about the existing databases and how to create new ones can
be found in Section 2. A overview of the graphical user interface SPID-GUI is given in Section 4
and how to use SPID via the command line (TSPID) is explained in Section 5. A simple example
to familiarize the user with SPID-GUI is proposed in section 6. Section 7 describes how to plug in
new methods in TSPID. Finally, future improvements of SPID are given in Section 8. Note that
the list of available methods in TSPID is given in the appendix.

1.1 Directory tree

• DB: baselines, databases, raw classes, Readme, tables, testdata, waterpeaks

– baselines: B1 1024 SE63 Seeger2006.mat, ...

– databases: DB1 invitro1 eqph PRESS23 2048 11peaks.mat, DB1, ...

– raw classes: csf.mat, gbm.mat, ...

– Readme: DBreadme.tex

– tables: GBM1.txt

– testdata: invitro data, ...

– waterpeaks: water1 2048 SE63.mat, ...

• Readme doc: ManualSPID.pdf, ManualSPID.tex, images directory

• Software: matlab files classified in the directories: classification, preprocessing, processing,
main, misc, plotting, simulating.

The simulation package contains three main folders:
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DB This folder contains all the information corresponding to the databases: how they have been
acquired, for which types of signals, for which tumor types, etc.

Readme doc This folder contains general information about the software. It gives a manual of SPID (as
you probably noticed since you are reading this manual).

Software The whole program of SPID is found in this directory.

We describe briefly below the directory DB. The software SPID and its tools are described
in Section 4 and following.

DB

baselines .mat files containing baseline signals: baseline, begin, step, ndp, frequency are mandatory
variables in each .mat file (baseline is a time domain signal).

databases List of the databases. The databases are stored in the directories DB1, DB2, etc (until
now, there is only 1 DB). Each of these directories should contain a set of metabolite signals
located in raw FIDs, a full description of how these signals have been acquired is described in
a doc or pdf file (ex: SPID/DB/databases/DB1/generate dbase manual.pdf). It might also
contain the corrected signals (see the directory corrected components). However, all files
or directories added to DB* directories (* = number) should be fully explained.

raw classes All in vitro data used for constructing new tables for simulations (see directory tables)
should be stored in this directory.

Readme A document gives you the details about the contents of DB. It explains, for example, how
the tables, the water signals or the baseline signals have been created. In this manual (the
one you are currently reading), we explain how to use the databases, the tables, etc, while
the document in the Readme directory describes extensively what are these files (but will not
explain how to use them).

tables txt files containing the means and standard deviations corresponding to a set of metabolites,
they are constructed from the raw classes directory. Details about how to create these
tables can be found in Section 3. Details about the existing tables and how they have been
created can be found in the Readme directory.

testdata This folder contains testing data. These data can be used as reference data to test the
software (not done yet). Only in vitro data are currently available.

waterpeaks .mat files containing water signals: water, begin, step, ndp, frequency are mandatory
variables in each .mat file (water is a time domain signal).

2 Databases in SPID

This section explains the goal of the databases, which types of data we can find in SPID, how to
use them to generate new simulated data and how to create new data or databases.
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The ultimate goal is to generate new simulated signals that will be used in studies where
true values for the amplitudes, frequencies, etc, are needed to assess the accuracy of a method. It
is therefore necessary to answer the question: what do we need to generate new simulated signals
which mimic true signals? A model of the signal is necessary, but how to choose it? In this version,
we opted for a relatively naive method which mainly consists of using the AQSES model [PSS+07].
We will detail this below in Section 2.2.

Another goal is to create random data for testing classification methods. We briefly explain
how classification data can be generated in Section 2.3.

2.1 What are the existing databases in SPID?

The existing databases are fully described in SPID/DB/Readme/DBreadme.pdf.

2.2 How to use existing databases to construct new simulated signals?

This section explains how to construct new simulated in vivo signals. We first introduce the model
used to create new simulated signals. This tells us what we need (values for the metabolite profiles,
amplitudes, frequencies, etc). How to access this information is given in Section 2.2.2. The use of
these databases have to be accompanied by acknowledgments to the group who acquires the data.
For example, the Biomedical Magnetic Resonance Research Group Radboud University Nijmegen
Medical Center should be thanked in any publication where DB1 has been used. For databases
created based on simulations, like DB2, no acknowledgements is needed.

2.2.1 Theoretical aspects

To construct the simulated signals, we use the following equation:

S =
K∑

i=1

(
meti ∆ai exp

[
(−∆di + j2π∆fi)n∆t + j∆φi

])
+ α1B + α2W + N (1)

S = constructed signal, K = number of metabolites, the subscript i indicates the metabo-
lite i, meti=in vitro profile, ∆ai = amplitude correction , ∆di = damping correction, ∆fi =
frequency correction, ∆t = time step (=1/sampling frequency), n = number of data points, ∆φi

= phase correction, B = baseline profile, W = water peak profile, N = noise profile, α1 = constant∗
max(|fft(signalrpf)|)/ max(|fft(baseline)|) and α2 = constant∗max(|fft(signalrpf)|)/ max(|fft(water)|),
where signalrpf is the signal in the frequency region around the reference peak. By default, we
choose an interval of 0.4 ppm around the reference peak, e.g [8.44-0.2,8.44+0.2].

The baseline profile B can be defined by a set of splines or gaussian curves. See [SVH06,
SVH04] for more details.

Saturated or unsaturated water signals will typically be obtained by filtering real signals
with HLSVD-PRO [LMV+02]. The shape of saturated water signal is unpredictable and might be
fairly far from lorentzian shapes. Consequently, it is recommended to use sufficiently high number
for the model order in HLSVD-PRO. Typical model orders are 25 for in vivo MRS and 30-35 for
ex vivo MRS signals.
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The noise profile is obtained by the following equation

N = σ randn1(n) + jσ randn2(n) (2)

where σ = max(<(fft(noise-free signal)))/SNR is the standard deviation of the noise, randn1 and
randn2 are random vectors of length n following a standard normal distribution. Note that SNR
is defined by the user. We assume the noise to be a circular1 gaussian white noise.

2.2.2 Using SPID-GUI to construct simulated MRS data

This section describes step by step how to create simulated MRS signals from the GUI interface
(SPID-GUI). An illustration of the menu is showed in Fig. 1

Figure 1: The GUI ”menu db” for simulating signals.

The different steps that should be followed are:

Step 1: Open matlab and run SPID from the directory SPID/Software
Step 2: Launch the menu menu db from the menu tab “Simulating/Create simulated signals”
Step 3: Choose the parameters (see Section 2.2.3) of your signals and where you want to save
them
Step 4: Push on the Create button (the signals are automatically saved in a mat file)
Step 5: Visualize the just created signals by pushing on the ”plot” button and play with the
slider if you have several signals to visualize

2.2.3 The parameters

Class: It refers to the class type (’Normal’,’GBM’, ’MNG’, etc). That means that you create
simulated signals for a special class. If you want to create signals for different classes, you have

1equal variances for real and imaginary part
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to repeat the whole procedure from step 3 to the end (see above). When you modify the current
class (by clicking on it!), the set of available tables (see ”the tables” below) are instantly changed.

Mean-variance table: It refers to the mean-variance tables. These tables are text files
which contains the mean and the variance for each parameter of each metabolite. The means are
the mean corrections to be applied to the in vitro signals as defined in Equ. 1. For example a
ten-metabolite table will be of size 10x8. Each row corresponds to one metabolite. The first(resp.
last) four columns corresponds to the mean (resp. standard deviation) values for amplitude, phase,
damping and frequency corrections, respectively. Note that the first line contains the names of the
metabolites. The third name will corresponds to the third line of the matrix (or the fourth line in
the file).

In vitro database: It refers to the in vitro metabolite profile. You can find them in the
directory SPID/DB/databases under a .mat format.

Number of points: It refers to the number of data points for your simulated signals. If this
number is above the number of points of the in vitro data, the software will fill in the constructed
signals by zeros in the time domain.

Number of signals: It refers to the number of signals that are created in one unique file
(see ”save to” below).

Reference peak: It refers to a reference peak which will be used for normalizing the noise,
water and the baseline profiles. The water peak can be used if no other reference peak was defined
during the acquisition. The reference peak is often characterized by a high peak in a frequency
region far away from the usual region of interest, i.e [0.8,4.4] ppm.

SNR: It refers to the signal-to-noise ratio as described in Equ. 2. To construct a noise-free
signal, the user will type ’inf’ (infinity) in the edit box.

Baseline profile: It refers to the baseline profile which can be gaussians, splines or other.
If the user choose “other”, he has to choose between the available baseline signals which are stored
in SPID/DB/baselines.

Baseline scaling factor: It refers to the constant α1 in Equ. 1.

Water profile: It refers to the water profile. The water profiles or signals are contained in
SPID/DB/waterpeaks as described above.

Water scaling factor: It refers to the constant α2 in Equ. 1.

Number of copies: The goal of this field is to generate monte-carlo simulations (signals
which differ only by their noise components) from a unique signal. If the field Number of signals
indicates a number larger than 1, the error message pops up: “The signal contains more than
1 spectrum. This function is aimed to produce monte-carlo simulations from a unique signal.”
Number of copies will indicate the number of signals that are created from the unique signal. To
make sense it is necessary to choose SNRs different from infinity, otherwise all the signals will be
similar.

Save to: It refers to the filename where you want to save the created signals. The complete
path must be written (e.g, on Windows machines,
c:\mydata\NMRsignals\shortecho\PRESS\simulated signals1.mat) This file will contain a list of
variables: ndp, step, begin, B0, nucleus, frequency, refpeak, signal, amplsimul, phassimul, damp-
simul, freqsimul, classt, table, invitrof, SNR, baselinet, baseline simul, scaleB, watert, water simul,
scaleW. This variables corresponds to the number of points, the time step, the begin time, the ex-
ternal field, the nucleus (e.g., -1 for Hydrogen), spectrometer frequency, the value in ppm where
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the reference peak is located, the list of signals, the corrected amplitude, phase, damping and
frequency, the protocol used, the class type, the mean-variance table, the in vitro database, the
signal-to-noise ratio, the baseline type (Gaussian, Splines, etc.) the baseline profile , the scaling
factor for the baseline, the water type (.mat file), the water profile and the scaling factor for the
water, respectively. Note that signal will be of size (number of signals x number of points). These
variables allow the user to retrieve where his simulations come from.

Load spectra from: The user can load already simulated spectra. In that respect, he will
fill in this text field by the name of the set of spectra he wants to load, and will then push on the
button ”Load file”.

HLSVDPRO filtering: The user can apply a HLSVDPRO filtering [LMV+02] on the the
following region [-499,-280] and [-32,499] Hz.

FIR filtering: The user can apply a FIR filtering on the the following region [-499,-280]
and [-32,499] Hz. This will be done with Tomas’ method [SVVH+99].

Add nuisance components: The user can add nuisance components to the current signals.
The same nuisance components will be added to each signal except for the noise which is by nature
random. The components that will be added depends on whether the baseline profile and water
profile fields are activated or not and whether the noise text field is different from inf. Fields in
the GUI related to this button are highlighted in blue (so is this button).

2.2.4 Example

If you want to create simulated signals with this package, you first have to answer to these ques-
tions: which protocols am I interested in?, for which classes do I want simulated signals?, which
type of simulation do I want (i.e, which procedure do you choose to create the tables, or equiva-
lently which mean-variance tables do I need)?

Different steps to follow (important to respect the order):
Step 1: Choosing the class. Suppose you want to generate signals from the classes GII and GIII
to study the accuracy of your method on signals from each class. You have to first create a set
of data for gII and then repeat all the steps for GIII afterwards. Note that the ”mean-variance
tables” list is updated.
Step 2: Choosing the mean-variance table. The mean-variance tables are described in SPID/DB/Readme.
Suppose your goal is to mimic real signals from GII. You will likely choose a mean-variance table
which is generated by a maximum number of signals. However, say that the available mean-variance
tables seem to overestimate the variance for NAA, you might want to change the table manually
and create a new table (see Section 3 to learn how to create a new table). On the contrary, you
also might be glad with the current tables (you think that the procedure used to estimate the
means and the variances is good enough) and in that case you will directly select the tables from
the available tables. Step 4: Choosing the number of points, number of signals you want to create,
the baseline, the water, the noise profiles that you want to add.
Step 5: Choosing where you want to save your signals and create them. Plot the just created
signals by pushing on the plot button or by using the slider.
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2.3 How to create classification data?

Two possibilities are available: either you want to create random classification data or you want
to use existing datasets.

Creating random classification data
To create random classification data, go to Simuating/Create data for classification. Choose
the type of data you want to create, it is only possible for the moment to create random data from
normal distributions. Push on “Create”. The window illustrated in Fig. 2 pops up and let you
choose several parameters: the number of classes, the number of features, the number of data per
class, the highest mean value, the level of ressemblance between classes. You can choose balanced
data and then you can just type one number in the text field “number of data...”. If you want
different sample sizes between the classes, a vector is needed.

Figure 2: Pop up window when creating random classification data based (variables follow normal distri-
butions).

The data are constructed as follows:
Step 1: Means are chosen randomly for class 1 (assuming a uniform distribution [1,highest mean
value])
Step 2: Standard deviations are chosen randomly for class 1 (assuming a uniform distribution
[1,just calculated Means/2])
Step 3: Means are chosen randomly for class 2 such that they differs from means of class 1 by
1+randn(1,nvar)/r, where nvar is the number of features and r is the ressemblance level between
classes.
Step 4: Standard deviations are chosen randomly for class 2 such that they differs from the stan-
dard deviations of class 1 by 1+randn(1,nvar)/r, where nvar is the number of features and r is
the ressemblance level.
Step 5: Steps 3 and 4 are repeated for all classes (if “number of classes” is larger than 2)
Step 6: Values are generated for the computed means and standard deviations for the different
classes
Step 7: The data are stored in a matrix procres.scores, means and standard deviations are
stored in procres.misc.means and procres.misc.std (matrices of size [number of data in total,
number of features]). The class labels are stored in classopt.classtype (vector of size [number
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of data in total]).

Convert existing data to a SPID format
It is also possible to convert existing data to a SPID format. For the moment, 2 datasets
are available: “Wine Recognition Database” and “Wisconsin Breast Cancer Databases”. Both
datasets come from the the UCI Machine Learning Repository. More information can be found on
the website http://mlearn.ics.uci.edu/MLSummary.html. These datasets are located in SPID
in SPID/Software/simulating/datasets. In this directory, we find two file types, .data and
.names, the first for the data themselves and the second for the description of the data. This
conversion tool converts the data in the text file (.data) into a SPID type format: the dependent
variable is stored in classopt.classtype and the independent variables or features are stored in
procres.scores.

3 How to create new data in the databases

As already described above, there are several types of data which can be added to the databases.
We will go through the different types of data that can be created and detail how to create them.

baselines The baseline signals are contained in mat files. To create a new baseline signal, the user must
respect the following steps:
Step 1: Create a mat file which contains the variables baseline (baseline signal in the time
domain), ndp (number of data points), frequency (spectrometer frequency in kHz), begin
(begin time in ms), step (time step in ms). This mat file must be stored in SPID/DB/baselines
and the name of the file must begin with “B*” (* is a number). The name should be choosen
adequately.
Step 2: Update the DBreadme.tex file in SPID/DB/Readme. The description should allow to
reconstruct the signal.

databases Here are described the metabolite profiles. Here are the steps to add new metabolite profiles:
Step 1: Create a new directory DB* (* = next number)
Step 2: Copy the acquired files (if they are in vitro signals) in raw FIDs
Step 3: add a pdf or doc file which fully describes how the signals were acquired
Step 4: Create a basis set of metabolites and store it in a mat file, copy this file in
SPID/DB/databases. The name of the file must start with DB* and will chosen adequately.

raw classes To create new sets of signals from a class:
Step 1: Create a mat file which contains the classical signal, begin, step, ndp and frequency
and store it in this directory (raw classes)
Step 2: Update the DBreadme.tex file in SPID/DB/Readme accordingly.

tables The tables can be generated either automatically via the menu tab Simulating/Create
mean-variance tables or manually. To create a mean-variance table manually:
Row 1 = component names
From row 2 to the end: matrix with mean and standard deviation values for the metabolites
in the first row. The first(resp. last) four columns corresponds to the mean (resp. standard
deviation) values for amplitude, phase, damping and frequency corrections, respectively.

testdata There is no strict rules for this directory provided that all files are fully described in DBreadme.pdf
in the folder DB/Readme.
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water The water signals are contained in mat files. To create a new water signal, the user must
respect the following steps:
Step 1: Create a mat file which contains the variables water (water signal in the time
domain), ndp (number of data points), frequency (spectrometer frequency in kHz), begin
(begin time in ms), step (time step in ms). This mat file must be stored in SPID/DB/water
and the name of the file must begin with “W*” (* is a number). The name should be choosen
adequately.
Step 2: Update the DBreadme.tex file in SPID/DB/Readme. The description should allow to
reconstruct the signal.

4 SPID-GUI: SPID Graphical User Interface

The GUI (SPID-GUI) is launched by typing spid in the Matlab command prompt. A window
similar to the one in Fig. 3 shows up. Using SPID requires a matlab version higher than v7.0.
Note that all methods available in SPID are not available in SPID-GUI. In order to be able to use
all methods, one will have to use runTSPID (see Section 5 for more details).

Figure 3: The GUI of SPID (SPID window).

Before entering the menu details, one should know that this program is based on a few global
variables which are signal, begin, step, frequency, ndp, classopt, procres and classres:

signal M ×N matrix signals (M signals, N points) in the time domain.

begin Begin time in ms (scalar), often set to 0.
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step Step in ms between two time samples (scalar)

frequency Spectrometer frequency in kHz (scalar)

ndp Number of points in each signal (scalar), it must be identical to N

classopt Classification options (structure variable, see ’structure’ in matlab for more details). It
essentially contains the variable classtype (classopt.classtype) which is a vector of class
labels (this vector must be a cell aray or a double array). Example: classopt.classtype
= {’MEN’,’GII’,’MEN’,’GIII’,’GII’,’MEN’} or = [1 2 1 3 2 1].

procres Processing results. It contains the variable scores (matrix M × F , where F is the
number of selected features) and misc. procres.misc is a structure variable containing
itself different features or variables. These features are not standardized and since they differ
from one method to the other and they are not used for classification, they will not be
detailed here. The variables procres.scores and classopt.classtype are the inputs of
the classifier.

classres Classification results. It contains different statistics: misclassification
(classres.res.misclassification), accuracy (classres.res.percent_correct), area un-
der the curve (AUC) (classres.res.auc), etc (an extensive list is not given here yet since
this part is under development).

Note that all these variables are not mandatory for loading signals; classopt, procres, classres,
frequency can be missing. However, classopt and procres will be needed by all the classification
methods.

4.1 Menus

Several menus are available, each devoted to a certain type of action.

File Classical tools for opening and saving files (the MRS signals are stored in these files).

Simulating Menu for creating new simulated signals.

Preprocessing Tools for preprocessing the signals.

Processing Tools for processing the signals or viewing the processing results.

Classifying Under development. This will include tools for classifying the data.

Plotting Menu for plotting the signals under investigation.

Analyzing Menu for analyzing the data. Under development.

4.1.1 Menu “File”

This menu contains the following items:

Save signal Save the signals under investigation. The parameters appearing in the main window
(spid.fig) are saved.
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Load signal Load a signal of a set of signals. Only text files from jMRUI3.0 [jMR] and mat files
are readable. The mat files must contain the variables ndp, begin, step and signal. If
frequency (spectrometer frequency) is not defined, it will be set at 63130 kHz.

Select spectra This allows to reduce the set of spectra under investigation. For example, to
select the spectra 5 to 10 and 15, one should type “5:10 15” (matlab’s vector format).

Add signals Add signals to the existing ones and put them at the end of the existing signal
matrix.

Save figure Save the figure that is located in the menu plot window.

Load/Create/Run template It allows to load, create or run a template. A template is a text
file which contains the list of methods that should be applied to the signals or to some data
matrix (more details can be found in Section 5).

4.1.2 Menu “Simulating”

See Section 2.2 for more details.

4.1.3 Menu “Preprocessing”

A set of spectra must be loaded (see above) before using the following tools. This menu contains
the following items:

ECC (Klose’s) Perform eddy current correction using Klose’s method. The user is asked to load
the water signal.

Filtering The main goal is to filter out the water resonances, but any part of spectra can also be
removed.

Phase correction Manual or automatic (ACME method [CWGG02]) phase correction.

Normalization The signal is divided by the L2-norm of the spectrum in the frequency interval
[0.25 4.2].

Eretic normalization Each spectrum is divided by the corresponding amplitude estimates of
the reference peak when taking the reference peak of the first spectrum as basis signal in
AQSES. More details can be found in the appendix.

Baseline correction The product of the signal and an Apodization function is subtracted from
the signal (in the time domain).

Zero filling Add zeroes at the end of the signals.

Aligning Aligning spectra with respect to a reference singlet or doublet from which the user
known the exact location.

Auto aligning Automatic procedure to align the signals. However, the user must anyway give a
starting value for the singlet or doublet. This starting value does not need to be as accurate
as the one used in Aligning.

Truncation Suppress either the first (begin) or last (end) points of the spectra.
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Check redundant signals Check whether all the signals are different (the norm of the absolute
values of the signals is taken as criterion to avoid considering a signal and its shifted version
as different).

Resampling Resample the data (the parameters given by the user are the current and desired
steps). This method is the matlab resample function.

4.1.4 Menu “Processing”

The menu contains the following items:

Quantifying (AQSES) Quantification with AQSES. Most of the parameters are tunable. The
results can be saved in one file. Several signals can be processed. The basis set has to be
chosen contrarily to the rest of the parameters which can remain by default. Evolution of
the fitting procedure can be obtained by checking ’Plot at each iteration’.

Quantifying (HLSVD-PRO) Quantification with HLSVD-PRO. Passband and model order are
the only parameters that the user has to choose.

View results The results of the quantification can be visualized in this window. The estimates
of the parameters are displayed in the left panel and the several plots are shown in the right
tables (from top to bottom: residuals, baseline, corrected metabolite profiles and filtered
estimated vs filtered original signals).

Database normalization This tools allows to normalize several basis sets. One basis set (set
of metabolite profiles) is chosen as reference basis set. The other will be normalized with
respect to the amplitude estimates obtained when fitting each metabolite profile of the basis
sets with the corresponding metabolite profile of the reference basis set. Necessarily the
number of metabolite profiles must be the same in all the basis sets.

Peak Integration The peak integration menu allows the user to choose several frequency intervals
in which the integrals of the spectra will be calculated. The results are saved in a mat file.

4.1.5 Menu “Classifying”

The menu file contains the following submenus:

Supervised Supervised Methods: only LS-SVM is available at the moment.

Unsupervised Unsupervised (under construction)

5 Command line tools (TSPID)

This section describes how to run (pre)processing or classification methods from the command line.
The main idea is to have a text file which lists the different methods we want to apply on some
data. This file is called the template. TSPID tools are the tools available from the command line
using runTSPID.m. TSPID stands for template-SPID.
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5.1 Why such a tool?

Why using the command line (TSPID) when a nice GUI is available? There are several reasons
that we detail below.

Advantage of TSPID with respect to SPID-GUI

• TSPID does not need the matlab java virtual machine or to use matlab in java mode. You
save thereby memory (RAM or cache), resulting in a likely faster process.

• TSPID runs a stack of methods in a row, while only one method at a time can be run with
SPID-GUI. With the latter, the user will have to wait until the process ends before starting
a new process.

• More methods are available from TSPID (see appendix).

• Adding a new method in TSPID is much easier and faster than adding a new method in
SPID-GUI.

• Some methods are only available from TSPID. A list of the available methods in TSPID
is given in Section 8. This list of methods can be retrieved in SPID-GUI by selecting
Load/Create/Run template in the File tab.

Disadvantage of TSPID with respect to SPID-GUI

• By definition, there is no plotting tools in TSPID, and so no simple way to check the
(pre)processed signals. In SPID-GUI, you can plot the signals, the preprocessed signals,
but you can also view the quantitation results.

• Some tools are only available from SPID-GUI: for example, viewing the filter properties (see
preprocessing tools or Section 6).

In summary, both tools should be used alternatively, SPID-GUI for checking the original
signals, the results of the different steps (preprocessing, processing, classification), while TSPID
should be used as a black box. SPID-GUI can also be used to explain some results. For example:
bad classification results are obtained with AQSES, while good ones are obtained with peak inte-
gration, the ’View Results (Quantification)’ may show that the fit was not good in AQSES and
another database of metabolite profiles is maybe needed.

5.2 How to use TSPID?

Using TSPID is very easy. You only need one command line which uses the function runTSPID.m
(see the basic examples below). The most simple example is

%my program 1
template = ’mytemplate.txt’;
loadsignals = ’/users/sista/username/mydata.mat’;
runTSPID(template,loadsignals)

where the selected preprocessing, processing and classification methods are by default applied
and the corresponding results are saved in preproc.mat, proc.mat and class.mat, respectively.
Another example is given below.
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%my program 2
template = ’mytemplate.txt’;
loadsignals = ’/users/sista/username/mydata.mat’;
savepar.preprocFlag = 0;
savepar.procFlag = 1;
savepar.classFlag = 1;
savepar.preproc = fullfile(pwd,’preproc.mat’);
savepar.proc = fullfile(pwd,’proc.mat’);
savepar.class = fullfile(pwd,’class.mat’);
runTSPID(template,loadsignals,savepar)

where only the selected processing and classification methods are applied even if preprocessing
techniques were selected in the template file.

runTSPID.m takes up to 3 parameters as input:

template: mytemplate.txt is the template file which can be written or edited manually, but
will be more likely created automatically using the template menu menu template.m from
SPID-GUI.

data: mydata.mat contains the data that will be used in the preprocessing, processing or classifi-
cation steps.

parameters: savepar variable is a structure variable

Before explaining how to create a template file it is important to distinguish hyperparameters
from input parameters. We call hyperparameter a parameter specific to a method. For example,
a method which keeps the first x time domain points of a signal (see truncateend in the appendix)
will have x as hyperparameter and the signal as input parameter. The truncated signal will be the
output parameter.

5.2.1 Creating a template file

To create a template file, there are two ways, either you edit a txt file with your favorite text
editor, or you use SPID-GUI. Usually, the user will use SPID-GUI but he might also be interested
in changing the value of one or more parameters in an automatic way (for example to test several
hyperparameters in a preprocessing method) and will then edit directly the txt file. How to create
a template file with SPID-GUI is illustrated in Section 6.

Editing a template file
An example of template file is given below.

1 ; alignsignal ; "Signal alignment" ; "..."
33 ; centerfreq ; 1.15 ; "Current center frequency in ppm of the reference peak" ;
33 ; targetfreq ; 1.47 ; "Target frequency in ppm of the reference peak" ;
33 ; doublet ; 1 ; "Doublet if 1, singlet if 0" ;
1 ; ECCKlose ; "Eddy Current Correction with Klose’s method" ;
33 ; watersigfile ; {’watersignal1.mat’ watersignal2.mat’} ; ".mat files..." ;
2 ; peakintegtempl ; "Peak integration" ; "..."
33 ; ir ; 1 ; "Data type (1=SE in vivo,2=LE in vivo;3=ex vivo...)" ;
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33 ; freqmatrix ; ’’ ; "Intervals (ex: [2.00 2.04 3.00 3.04 3.18 3.24])" ;
33 ; compNames ; {} ; "Names of intervals (metabolites)" ;
3 ; LDAtempl ; "LDA" ; "..."
33 ; validtype ; 1 ; "Validation method (LOO=1;L-fold CV=2;Random Split=3)" ;
33 ; L ; 10 ; "Number of folds in L-fold cross validation" ;
33 ; dispplot ; 0 ; "Display plot (1: predicted, 2:true)" ;

The template must strictly follow the protocol explained below. There are two types of lines,
the method lines and the parameter lines. The numbers 1, 2 and 3 at the begin of the method
lines identify the type of method: 1=preprocessing method, 2=processing method, 3=classifica-
tion method. The name of the method is given as the third element of the line (e.g., “Signal
alignment”) while the corresponding .m file (the method interface file) is given in second position
(e.g., alignsignal). The 4th element (denoted here “...” for sake of space) is a more complete
description of the method. The number 33 at the begin of the parameter lines indicates that this
line defines a hyperparameter (parameter specific to the method itself, see Section 5.2). The sec-
ond and third items (items are separated by ’;’) denote the parameter name (e.g., centerfreq) and
its value (e.g., 1.15), respectively. The fourth items identifies the parameter. Let’s consider the
example given above. Two preprocessing methods (signal alignment and Eddy current correction
with Klose’s method), 1 processing method (Peak Integration) and 1 classification (LDA) method
have been selected. To align the signals, alignsignal.m will be called with, as hyperparameters, the
current center frequency (in ppm), the target frequency (in ppm), the algorithm option (based on
finding a doublet = 1 or a singlet = 0). Note that alignsignal.m also needs input parameters like
the signal, but this is given in the data file (mydata.mat) and not in the template file (for more
details, see Section 5.2.2). runTSPID.m apply sequentially the methods in the same order as they
appear in the template file (ECCKlose.m will be called only when alignsignal.m has ended).

5.2.2 Creating a data (.mat) file for TSPID

As one might expect, classification methods will not take the same inputs (i.e., the same mat
file) as processing methods. In this section, we describe the structure of the data for each type of
methods. Note that if some input parameters are mandatory for some methods, they are never
forbidden. In other words, it is never problematic to have more parameters than necessary in the
mat file except that more memory will be used by matlab. The name of the input parameters
should be strictly respected except for signal (time domain signal, input parameter) which will
be recognized by ndp (the number of data points): signal will be the matrix with ndp columns.
The format of the input parameters should also be kept. A description of the input parameters,
with their corresponding formats and for which types of methods they are mandatory, is given in
Table 1. Most of the variables have been already defined in Section 4.

Any other variable is optional. For example, procres.misc will not be used by any types of
methods (as explained above), but will give some information to the user. A detailed description
of the method inputs/outputs is given in the appendix (see Section 8).

6 A small walk in SPID-GUI

As already explained, SPID-GUI is meant to be used to check the results or the original signals
for instance. In this section, we describe how to use SPID-GUI through a simple example.
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Input parameters Methods format
signal PP,P,C matrix (1 signal per row)
begin PP,P,C scalar
step PP,P,C scalar
frequency PP,P,C scalar
ndp PP,P,C scalar
classopt.classtype (P),C vector
procres.scores (P),C matrix (1 data per row)
classres - structure (see Section 4)

Table 1: Description of the input parameters. The methods for which they are mandatory are
reported in column 2 and their format in column 3. There are 3 types of methods (preprocessing,
processing and classification methods denoted by PP,P and C, respectively. “-” means that this
variable is never mandatory whatever the method. (P) means that the parameter is used by some
processing methods but not all. More details about the methods that require these variables is
given in the appendix.

Type spid in the matlab command prompt to launch SPID-GUI. As detailed in Section 4.1,
several menus are at user’s disposal. We are going through the most common tools with a simple
example.

6.1 An example

Suppose one wants to classify in vivo MRS data.

Reading data
The data are Siemens data. Siemens data are not readable in SPID and preliminary conversion to
a txt file is required (only text files with jMRUI3.0 format and mat files are readable from SPID).
The first thing to do is so to open the Siemens data with jMRUI and export them to a txt file,
which will be then readable in SPID-GUI using Load signals in the File menu tab. At this point,
the user should see some information in the main frame (SPID frame) about the signals to be pro-
cessed (an example is given in Fig. 4). In this frame, the second half of the parameters (from SNR
to Table filename) are parameters for home-made simulated signals (see Section 2.2 for more de-
tails). The displayed values of the parameters should be checked before proceeding to the next step.

Checking signals
It is recommended to check the loaded signals to identify whether signals should be discarded (ac-
quisition issues) or should be reloaded (problem when loading the signals in SPID or in jMRUI3.0).
The common way to check the signals is by plotting them. In order to plot the signals, we need to
open the plotting window menu plot(Plotting/plot2D), and push on the “Plot” button. Several
functionalities are available in the plotting window. Let’s have a quick overview of the main func-
tionalities. Signals can be plotted in the time (in ms) and frequency domain (in Hz or in ppm);
in real, imaginary or absolute values; within some bounds (in both X and Y axis); with an offset.
It is also possible to plot several signal simultaneously, to plot the filtered version (one needs first
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Figure 4: The GUI of SPID after loading data (SPID window).
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to filter (see preprocessing tools) the signals), to plot the difference between the original and the
filtered version of the signals and to plot the truncated version of the signals when removing a
certain number of time domain begin points. It is also possible to save a figure using Save Figure
in the File tab of the SPID window. An example of in vitro database is given in Fig. 5 using the
multispectra option and an offset to make the spectra visible.

Figure 5: The plot window of SPID.

Preprocessing signals
Once the signals have been checked, they can be preprocessed. Suppose we want to align the signals
and filter them using the maximum-phase FIR filter proposed by Sundin et al. [SVVH+99]. To
align the signals, one should define a reference doublet (Ala or Lac are usually taken as reference
peaks for HR-MAS data) and enter the current and desired frequencies for the doublet frequency
center. After pushing OK, the user can monitor the progress of the method: “Aligning...” is
displayed at the prompt until the method ends, normally by displaying “...done” at the prompt.
However, the method may not find any doublet and will then give a warning message at the
prompt. It is highly recommended to check after each (pre)processing steps that the signals have
been correctly processed. alignsignal.m can yield wrongly aligned signals, especially if there is
no doublet or if the current frequency entered by the user do not match the actual current fre-
quency. Aligning signals from different machines of acquisition protocols might be difficult to do at
once. It is often preferable to align the signals of each machine or acquisition protocol separately
and eventually merge them. Recall that it is only possible to merge signals (File/Add signals)
from different mat files if the number of points per signal (ndp), the begin points (begin) and
the time step (step) are identical. Once the aligned signals have been checked it is time to filter
them. To filter the signals we open the menu filter window (Preprocessing/Filtering/Filters).
The filter coefficients can be saved and the magnitude response can be plotted; one can also use
the matlab fvtool to analize the filter. Once the signals have been filtered, they can be visualized
in the plotting window (using the “Plot” button). One can also plot the signal before filtering as
explained above.
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Processing
We decide to use AQSES [PSS+07] to quantify the preprocessed signals and get some estimated
concentrations (in arbitrary values) of some metabolites. To quantify the signals with AQSES we
can use the processing tool in SPID-GUI (Processing/Quantifying (AQSES)). An illustration
of the AQSES quantitation window is shown in Fig. 6. Most of the hyperparameters in AQSES
are tunable but the only mandatory parameter is the filename of the database. More information
about the tunable parameters can be found in [SVH04, SVH05a]. The results are saved by default
in .mat if the “Save results to” text field is left empty. The results can then be visualized in a
separate window (Processing/View results (Quantification)) similar to the one in the java
version of AQSES (see Fig. 7). On the left hand side, the amplitude, frequency, phase and damping
estimates of the metabolites. On the right hand side from top to bottom, the residual plot, the
baseline plot, the individual corrected metabolite profile plot and the plot of the modeled filtered
signal vs the original filtered signal plot. The plots in this figure can also be saved via the last tab
(File/Save Figure) of the same figure. Note that File/Save Figure in the SPID window will
only save the figure currently displayed in the plotting window.

Figure 6: The AQSES quantitation window.

Classifying
Suppose we want to classify the data (in our case, the data are the estimates of the metabolite
amplitudes) using LS-SVM with a Leave-One-Out (LOO) validation scheme. In order to classify
the results, we decide to use the template tool (File/Load Create Run template). Note that
using the Classifying menu is also possible. Preprocessing and processing methods could also
have been used via the template tool. In the template window the methods are ordered by method
types (preprocessing, processing or classification methods). We select LS-SVM and LOO as vali-
dation tool in the hyperparameters. The hyperparameter window pops up when pushing on the
corresponding “Parameters” button. An illustration of what the user should have is shown in
Fig. 6.1. The next steps are to save the template under a txt file and run the saved template. The
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Figure 7: The quantitation result window.

template tool will use the global variables as input (in this case classopt and procres) and need
therefore that these variables exist. The user will take care not to modify these variables before
classifying the data. Adding new signals to the current ones will automatically change some of
the global variables and should be avoided. If necessary, it is always possible to save the global
variables via the SPID window (File/Save signals). This not only saves the signals but also the
global variables detailed in Section 4.

6.2 A few more tools

Visualizing FIR filter features
To analyze FIR filter characteristics, one can open the menu viewfilter window from the menu
tab Preprocessing/Filtering/View FIR Filter. The window is illustrated in Fig. 6.2. One can
plot the signal under investigation, the filter frequency magnitude response, open the matlab tool
fvtool (zero-pole plots, magnitude response, phase response plots, etc), or the magnitude response
when filtering lorentzians instead of pure cosinusoids as it is the case when plotting the common
frequency magnitude response.

Database normalization
It is also possible to normalize metabolite basis sets. Suppose you want to use compare metabolite
concentration estimates from basis sets coming from different spectrometers. A comparison is only
possible if the metabolite profiles are normalized. If the databases (or basis sets) are sufficiently
similar, it is possible to normalize one with respect to the other by using AQSES. The idea is to
fit with AQSES each metabolite profile from one basis set to its correspondent in the other basis
set, and then to divide each metabolite profile from the first basis set (basis set to normalize) by
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Figure 8: The template window in SPID-GUI.

Figure 9: The window to visualize FIR filters.
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the computed amplitude estimates. The window for normalizing basis sets is given in Fig. 6.2. We
notice that the user can choose for each metabolite whether it is needed or not to filter the water
components. In case of artifically made components (where the water components are absent),
it is recommended not to use filtering methods since the noise level in the water region may
be considered as zero, resulting in numerical problems. Interesting to note is that the results
of database normalization can be visualized in the “View results (Quantification)” window (via
Processing menu tab).

Figure 10: Database normalization window.

7 How can I create my own methods and plug them in
TSPID?

One of the most important characteristic of SPID, and in particular TSPID, is that it is really easy
to add new methods. Adding new methods for SPID-GUI has not been optimized yet and will
not be discussed here. To add a new method in TSPID (this method will automatically be added
in the template tool of SPID-GUI), only three things are needed: writing (a) m file(s) with the
methods, edit listmethods.txt (in simulate signals/main), update interprate template.m
(same directory) if necessary.

How to edit these files ?

Whatever the method there must be one m file which should have certain inputs and outputs.
This .m file can call other .m files but will play as interface between these .m files and TSPID.
Depending on the method type, the inputs and output will be different, as described in Table 2.

Note that this table can be easily modified by editing interprate template.m.

Editing listmethods.txt is also mandatory for introducing the new method in TSPID.
A part of listmethods.txt is given as illustration below. One can notice that the syntax is
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Method type Inputs Outputs
Preprocessing signal,step,frequency,ndp,begin,(opt) signal,(ndp),(step)
Processing signal*,step,frequency,ndp,begin, (procres),(classopt),(opt) scores,misc
Classifying procres,classopt,(opt) classres

Table 2: Inputs and outputs required by interprate template.m. The parameters in parentheses
are only mandatory for some methods (see appendix for details). opt can be one or several
hyperparameters (the concept of hyperparameters is defined in Section 5.2). The ’*’ symbol
means that some methods requires the fourier transform of the signals instead of the time domain
signal (see appendix for details).

similar to the syntax used to edit template files. For example, opt in Table 2 will be centerfreq,
targetfreq, doublet for the “Spectrum alignment” method defined in alignsignal.m. Note that
the comments are given on top of the file and are preceded by ’#’.

# List of methods usable in templates with default parameters
# A template can be run from the command prompt of matlab: runTSPID...
# The template is a text file which can be automatically generated via menu_template.fig
# This file must be read line per line
# The first character of each line indicates the type of variables that follows in ...
# ex: ’1 ; align ; Alignment’ => 1: preprocessing method, align: callback function;...
# ex: 33 ; centerfreq ; 1.15 ; "Current center frequency in ppm of the reference peak"
# 33 => it is a variable (not a method)
# centerfreq = name of the variable
# "Current center frequency in ppm of the reference peak" = description of the variable
1 ; alignsignal ; "Signal alignment" ; # Spectrum alignment
33 ; centerfreq ; 1.15 ; "Current center frequency in ppm of the reference peak"
33 ; targetfreq ; 1.47 ; "Target frequency in ppm of the reference peak"
33 ; doublet ; 1 ; "Doublet if 1, singlet if 0"
1 ; resamptempl ; "Resampling" ;
33 ; P ; 0.2 ; "Original step (1/fs)"
33 ; Q ; 0.1664 ; "Final step(1/fs)"
1 ; truncbegin ; "Truncation (begin points)" ; # Truncation of the begin points
33 ; truncbegpts ; 1024 ; "Number of points to keep (? to end)"
1 ; truncend ; "Truncation (end points)" ; # Truncation of the end points
33 ; truncendpts ; 1024 ; "Number of points to keep (1 to ?)"
1 ; ECCKlose ; "Eddy Current Correction with Klose’s method";
33 ; watersigfile; "{’watersignal1.mat’ watersignal2.mat’}" ; ".mat files with the ..."
1 ; MPFIR ; "Filtering with MP-FIR (by Sundin)";
33 ; boundL ; 0.25 ; "Low bound of the passband (in ppm)"
33 ; boundH ; 4.2 ; "High bound of the passband (in ppm)"
33 ; rippass ; 0.01 ; "Passband ripples"
33 ; M ; 50 ; "Filter order"

8 Further improvements

Numerous improvements can be added to SPID (i.e., TSPID and SPID-GUI). Here are some of
them.
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1. New methods

• New tools for constructing simulated data: Heteregenoity between voxels is not taken
into account yet (specially important for MRSI data), new tools for creating simulated
HRMAS data and MRSI data, add tools in the GUI for making easier the creation of
new databases.

• Automatic tool for discarding data based on the papers by Kreis et al. [Kre04] or Van
der Graaf et al. [vdGJSH+08].

• New preprocessing tools: Aligning method based on a singlet or several singlets (for in
vivo MR, Cho, Cr and NAA can be used as reference singlets), Eddy current correction
methods (QUALITY [dG90], QUECC [BDMW00]), baseline correction methods for
short echo time in vivo data ([YSM98],[ESL+05],[SYM01]).

• Processing tools: AMARES (windows and linux version), QUEST [RCC+04], QUEST-
AQSES fusion?

• New classification tools: LS-SVM with Bayesian framework, add multiclass classification
methods, C4.5, random forest

• Implementing bootstrapping: this might be useful when only a few samples are available
(difficult to learn a reliable model) or too many samples are available (high computation
time). The combination of models is supposed to be more reliable than the correspond-
ing separated models.

• Implement Bagging (bootstrap aggregating). Especially useful if the learning algorithms
are unstable as it is the case for SVM-based methods (like LS-SVM), decision tree
methods or neural network methods (note that clustering methods like the K-nearest
neighbors are known to be stable).

• Implement boosting methods like Adaboost to boost weak learning algorithms (hardly
better than a random prediction).

• Tools for MRSI data ((pre)processing and classification + plotting tools)

• Unsupervised methods: Kernel clustering

• Data comparison: Kernel CCA (to compare in vivo and ex vivo HR-MAS for instance)

2. Programming

• Re-program in a more object-oriented way: for example, fids could be a class with
the attributes signal, ndp, begin, step and frequency and with features or methods
the preprocessing methods and some processing methods. Another class would be the
processing results with the features scores and misc.

• Add some GUI tools to visualize the classification results

• Generate the preprocessing, processing and classification menus automatically (except
for the plotting tools like View results (Quantitation)).

• Improve the code documentation (set up a code syntax)

3. Miscellaneous

• General debugging, especially for the classification methods
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A Preprocessing methods

A.1 Aligning spectra

%***************************************************************************
% ALIGNSIGNAL.M
%***************************************************************************
% PURPOSE: Align signal with respect to a given reference peak (singlet or
% doublet)
%***************************************************************************
% CALL: [signal] = alignsignal(signal, step,frequency,ndp,begin,fref1,fref2,doublet)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% fref1 -- current frequency scalar
% of the reference peak
% fref2 -- frequency where the reference scalar
% peak should be
% doublet -- 1 if ref. peak is a doublet binary
% OUTPUT: signal -- aligned signal row vector
%**************************************************************************

Description
The algorithm detects a doublet (the singlet version is not yet implemented) within a small ppm
range around fref1. The spectrum is shifted such that the center of the doublet is at fref2 ppm.
A warning message is displayed if no doublet has been found.

A.2 Resampling

%***************************************************************************
% RESAMPLTEMPL.M
%***************************************************************************
% PURPOSE: Resample signals (based on the ’resample’ matlab function)
%***************************************************************************
% CALL: [sig,ndp,step] = resamptempl(signal, step, frequency,ndp,begin,P,Q)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% P -- original step (ms) scalar
% Q -- final step (ms) scalar
% OUTPUT: sig -- resampled signal row vector
% ndp -- number of points scalar
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% step -- final step scalar
%**************************************************************************

Description
Resample time domain signals of step P. Remind that if the sample frequency (or the step) changes,
the spectrometer frequency (frequency) remains unmodified.

A.3 Truncation of the begin or end points

%***************************************************************************
% TRUNCBEGIN.M
%***************************************************************************
% PURPOSE: Truncate the begin points of the signals
%***************************************************************************
% CALL: [signal,ndp] = truncbegin(signal, step, frequency,ndp,begin,tr)
%***************************************************************************
% INPUT: signal -- signal matrix
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% tr -- number of points to keep scalar
% OUTPUT: signal -- truncated signal matrix
% ndp -- number of data points scalar
%**************************************************************************

Description
truncbegin (respectively truncend) truncates the begin (respectively end) points of the time
domain signals to keep only tr points.

A.4 Eddy current correction with ECC by Klose

%***************************************************************************
% ECCKLOSE.M
%***************************************************************************
% PURPOSE: Correct for eddy currents using Klose’s method
%***************************************************************************
% CALL: [signal,ndp] = ECCKlose(signal,step,frequency,ndp,begin,watersigfile)
%***************************************************************************
% INPUT: signal -- signal matrix
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% watersigfile-- mat files of water signals cell of strings
% OUTPUT: signal -- ECC corrected signal matrix
% ndp -- number of data points scalar
%**************************************************************************
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Description
Correct for eddy currents using Klose’s method [Klo90]. The water signals can be in one or several
mat file(s) but only one variable per mat file can represent the signals.
Example: Suppose signal is a matrix 20x1024 (20 signals of 1024 points each), watersigfile
can be one mat file with a variable which contains all the water signals (matrix 20x1024), or can
be 20 files and each file contains 1 water signal (vector 1x1024). In the latter case, the name of
the variable which represents the water signal can differ from one file to the other. This variable
is recognized thanks to the variable ndp which is present in all water mat files. In brief, any water
mat file must contain the variables watersignal (or any other name), ndp and begin (the number
of columns in watersignal must be ndp).

A.5 Lineshape correction with QUALITY method

%***************************************************************************
% QUALITY.M
%***************************************************************************
% PURPOSE: QUALITY method based on de Graaf et al.’s paper
%***************************************************************************
% CALL: [signal,ndp] = QUALITY(signal,step,frequency,ndp,begin,watersigfile,dispplot)
%***************************************************************************
% INPUT: signal -- signal matrix
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% watersigfile-- mat files of water signals cell of strings
% OUTPUT: signal -- ECC corrected signal matrix
% ndp -- number of data points scalar
%**************************************************************************

Description
Lineshape correction with the QUALITY method. This method has been implemented from Bartha
et al.’s paper (Magnetic Resonance in Medicine 44:641-645,2000) and could be different from the
original QUALITY method invented by de Graaf et al. in (Magnetic Resonance in Medicine
13:343-357,1990)

A.6 Water filtering with MPFIR

%***************************************************************************
% MPFIR.M
%***************************************************************************
% PURPOSE: Filter out a specific region of the spectrum using the
% maximum-phase FIR filter by T. Sundin
%***************************************************************************
% CALL: [signal] = MPFIR(signal,step,frequency,ndp,begin,boundL,boundH,rippass,M)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar

28



% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% rippass -- passband ripples scalar
% M -- filter order (pair) scalar
% OUTPUT: signal -- filtered signal row vector
%**************************************************************************

Description
Pass band filter in [boundL,boundH] based on the maximum-phase FIR filter by Sundin et al.
[SVVH+99]. The current implementation only allows to filter one region (not a multi-passband).
Experience shows that if the constraints on the ripples (rippass) are too strict, the algorithm
might fail to find good filter coefficients. The number of coefficients (filter order+1) should be kept
under 91 to avoid numerical problems.

A.7 Water filtering with MPFIR0

%***************************************************************************
% MPFIR0.M
%***************************************************************************
% PURPOSE: Filter out a specific region of the spectrum using the
% maximum-phase FIR filter by JB Poullet
%***************************************************************************
% CALL: [signal] = MPFIR(signal,step,frequency,ndp,begin,boundL,boundH,M,TBW,Dfact,dis))
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% M -- filter order (pair) scalar
% TBW -- transition band width scalar
% Dfact -- delay factor scalar
% dis -- displaying figures binary
% OUTPUT: signal -- filtered signal row vector
%**************************************************************************

Description
Filter out a specific region of the spectrum using the maximum-phase FIR filter by Poullet et
al. [PPH08]. The default values for TBW, Dfact should be kept unchanged if the user has no
knowledge. We refer to [PPH08] for more information.
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A.8 Water filtering with HLSVD-PRO

%***************************************************************************
% HLSVDPROtempl.M
%***************************************************************************
% PURPOSE: Filter out a specific region of the spectrum using the
% HLSVD-PRO by T. Laudadio
%***************************************************************************
% CALL: signal = HLSVDPROtempl(signal,step,frequency,ndp,begin,boundL,boundH,M)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% M -- model order scalar
% OUTPUT: signal -- filtered signal row vector
%***************************************************************************

Description
State-space based method proposed by Laudadio et al. [LMV+02] to filter out components in a
specific frequency region. The signal is modeled as a sum of lorentzians. The lorentzians located
outside [boundL,Boundh] suppressed are. Common values for M for in vivo MRS signals are between
25 and 30. Highest values can be used for high resolution magic angle spinning data (HR-MAS),
although it seems that values around 30 provide already good suppression of the water peak (at
least for 1D PRESAT).

A.9 Manual phase correction

%***************************************************************************
% PHASEMANUAL.M
%***************************************************************************
% PURPOSE: Phase manually (zero and first order correction are given by
% the user)
%***************************************************************************
% CALL: signal = phasemanual(signal,step,frequency,ndp,begin,phc0,phc1)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% phc0 -- zero order phase correction scalar
% phc1 -- first order phase correction scalar
% OUTPUT: signal -- phased signal row vector
%**************************************************************************
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Description
Manual phasing in the sense that the zero and first order phase correction values are given by the
user.

A.10 Automatic phase correction using ACME

%***************************************************************************
% autophasACME.M
%***************************************************************************
% PURPOSE: Automatic phase correction using ACME method
%***************************************************************************
% CALL: signal = autophasACME(signal,step,frequency,ndp,begin,phc0,phc1)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% phc0 -- zero order initialization(deg)scalar
% phc1 -- first order initialization(deg)scalar
% OUTPUT: signal -- autophased signal row vector
%**************************************************************************

Description
Automatic phase correction using ACME method [CWGG02] (based on entropy minimization).
This method has not been fully studied and could yield bad phasing.

A.11 L2-normalization

%***************************************************************************
% L2norm.M
%***************************************************************************
% PURPOSE: L2-Normalization
%***************************************************************************
% CALL: signal = L2norm(signal,step,frequency,ndp,begin,boundL,boundH)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: signal -- normalized signal row vector
%**************************************************************************

Description
Divide the signal by its L2-norm in the frequency region [boundL, boundH].
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A.12 Eretic normalization

%***************************************************************************
% normEretic.M
%***************************************************************************
% PURPOSE: Eretic-Normalization
%***************************************************************************
% CALL: signal = normEretic(signal,step,frequency,ndp,begin,boundL,boundH,nbr)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% nbr -- reference signal number scalar
% OUTPUT: signal -- normalized signal row vector
%**************************************************************************

Description
Normalize all the time domain signals (rows of signal) with respect to the the amplitude of a
reference peak lying in the frequency interval [boundL, boundH]. One signal is chosen as reference
(nbr is the signal number in the signal matrix) and the reference peak of this signal is reconstructed
by HLSVD-PRO [LMV+02]. This reference peak is then used for normalizing the other signals.
STEPS:
1. HLSVD-PRO applied to the reference signal (model order = 30) → the reference peak is
reconstructed
2. the reference peak is used as database for quantifying the other
signals in the frequency region [boundL, boundH]
3. the signals are normalized with respect to the results of quantitation with AQSES [PSS+07]

A.13 Baseline correction by apodization

%***************************************************************************
% bascorrApod.M
%***************************************************************************
% PURPOSE: Baseline correction with an apodization function
%***************************************************************************
% CALL: signal = bascorrApod(signal,step,frequency,ndp,begin,factor)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% factor -- apodization coefficient scalar
% OUTPUT: signal -- baseline corrected signal row vector
%**************************************************************************
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Description
The baseline is modeled by the signal multiplied by an apodization function. This baseline is then
substracted from time domain signal:

signaltemp = signal.*exp(-factor*t);
signal = signal-signaltemp;

A.14 Baseline offset correction

%***************************************************************************
% basOffCor.M
%***************************************************************************
% PURPOSE: Suppress the baseline offset (but do not suppress the baseline
% due to macromolecules)
%***************************************************************************
% CALL: signal = basOffCor(signal,step,frequency,ndp,begin,boundL,boundH,M)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: signal -- corrected signal row vector
%**************************************************************************

Description
Suppress the baseline offset but do not suppress the baseline due to macromolecules. The mean of
the spectrum in the frequency region of NO interest is subtracted from the spectrum. This region
should only contain noise! No peaks!

A.15 Correction for baseline distortions

%***************************************************************************
% basCorrGol.M
%***************************************************************************
% PURPOSE: Baseline correction with a method based on Golotvin et al.’s paper
%***************************************************************************
% CALL: signal = basCorrGol(signal,step,frequency,ndp,begin,M,N,n,nn,dispplot)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% M -- filter order (smoothing) scalar
% N -- number of spectral points in the
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% rectangle (baseline detection) scalar
% n -- noise factor scalar
% nn -- noise definition
% (number of points) scalar
% dispplot -- display of denoised and binary
% original signals
% OUTPUT: signal -- denoised signal row vector
%**************************************************************************

Description
Correction for baseline distortions with a method based on Golotvin et al.’s paper (Journal of
Magnetic Resonance 146, 122125 (2000)). This method should only be used on baseline distortions
(rolling baseline), not on macromolecular baseline. For a distinction between macromolecular
baseline and baseline distortions, we refer to the review paper by Poullet et et al. [PSH08].

A.16 SNR improvement

%***************************************************************************
% SNRapodization.M
%***************************************************************************
% PURPOSE: SNR improvement using an apodization function
%***************************************************************************
% CALL: signal = SNRapodization(signal,step,frequency,ndp,begin,factor)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% factor -- apodization coefficient scalar
% OUTPUT: signal -- SNR improved signal row vector
%**************************************************************************

Description
SNR improvement using an apodization function. The signal is simply multiplied by an apodization
function, which is here a simple exponential function.

A.17 Denoising using wavelets

%***************************************************************************
% denoisWav.M
%***************************************************************************
% PURPOSE: Denoising using wavelets
%***************************************************************************
% CALL: signal = denoisWav(signal,step,frequency,ndp,begin,wname,level,adl,thr,sorh,keepapp,dispplot)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
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% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% wname -- wavelet name cell of 1 string
% level -- Level at which the wavelet scalar
% decomposition is performed
% adl -- automatic def. of defaults binary
% thr -- Global positive threshold scalar
% sorh -- 1:hard, 0:soft thresholding binary
% keepapp -- 1:approximation coefficients binary
% cannot be thresholded, or 0:not
% dispplot -- display of denoised and binary
% original signals
% OUTPUT: signal -- denoised signal row vector
%**************************************************************************

Description
Denoising using wavelets.

A.18 Denoising using moving average filter

%***************************************************************************
% denoisMAF.M
%***************************************************************************
% PURPOSE: Denoising using moving average filter
%***************************************************************************
% CALL: signal = denoisMAF(signal,step,frequency,ndp,begin,,dispplot)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% M -- filter order scalar
% dispplot -- display of denoised and binary
% original signals
% OUTPUT: signal -- denoised signal row vector
%**************************************************************************

Description
Denoising using moving average filter. This method is not usually used for MRS and should be
used for tests only.

A.19 zerofill

%***************************************************************************
% zerofill.M
%***************************************************************************
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% PURPOSE: Zero filling
%***************************************************************************
% CALL: [signal,ndp] = zerofill(signal,step,frequency,ndp,begin,nbr)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% nbr -- number of zeros to add scalar
% OUTPUT: signal -- baseline corrected signal row vector
%**************************************************************************

Description
Add nbr zeros at the end of the signal.

B Processing methods

B.1 Quantification with HLSVD-PRO

%***************************************************************************
% HLSVDPROquant.M
%***************************************************************************
% PURPOSE: Filter out a specific region of the spectrum using the
% HLSVD-PRO by T. Laudadio et al.
%***************************************************************************
% CALL: signal = HLSVDPROquant(signal,step,frequency,ndp,begin,boundL,boundH,M)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% M -- model order scalar
% OUTPUT: scores -- filtered signal row vector
% misc -- see bottom of the file structure
%**************************************************************************

Description
Quantification with HLSVD-PRO. More information about the method can be found in [PSVHVH07,
LMV+02].

B.2 Quantification with AMARES

%***************************************************************************
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% AMAREStempl.M
%***************************************************************************
% PURPOSE: Quantitation using AMARES
%***************************************************************************
% CALL: [scores,misc] = AMAREStempl(signal,step,frequency,ndp,begin,MPFIR)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% MPFIR -- MPFIR =1, nothing =0 binary
% OUTPUT: newscores -- new scores (best variables) matrix
% misc -- nothing structure
%**************************************************************************

Description
THIS FUNCTION NEEDS TO BE UPDATED. Calcul of the metabolite amplitude estimates based
on the quantitation method AMARES [VvdBVH97]. AMARES can be used with the maximum-
phase FIR filter proposed by Sundin et al. [SVVH+99] (MPFIR=1) or not (MPFIR=0). The prior
knowledge is given in a separate .par file called input.par.

B.3 Quantification using AQSES and based on the subtract method
from QUEST for the baseline modeling

%***************************************************************************
% SUBTRACTTEMPL.M
%***************************************************************************
% PURPOSE: subtract method using AQSES
%***************************************************************************
% CALL: [scores,misc] = subtract(signal,step,frequency,ndp,begin,trunc,bascorr,dbase,abs_scl_factor,...
% lineshape, phasedistort,filtertype,boundL,boundH,ripple,filterlength,...
% prior_equal,equal_to,allow_damp,allow_freq,equalph,baseline_boolean,lambda,...
% maxiter,plotting,wname,level,adl,thr,sorh,keepapp)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% trunc -- number of truncated points to scalar
% estimate the baseline
% bascorr -- baseline fitting method scalar
% 1:HLSVD-PRO, 2:wavelet (denoising)
% iter -- 1:iterations,0: no iter. binary
% dbase -- database name (met. profiles) string cell
% abs_scl_factor-- scaling factor scalar
% lineshape -- 1=Lorentzian,2=Gaussian, scalar
% 3 = Voigt
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% phasedistort-- phase distortion binary
% filtertype -- ’fir’ for MP-FIR string
% (Sundin et al.)
% ’hlsvd’ for HLSVD-PRO
% (Laudadio et al.)
% boundL -- low bound scalar
% boundH -- high bound scalar
% ripple -- ripples (FIR filter) scalar
% filterlength-- nbr of filter coefficients scalar
% prior_equal -- vector
% equal_to -- vectors of indeces specifying vector
% simple prior knowledge, i.e., dampings
% and frequences of metabolites in prior_equal
% are equal to equal_to (default [], [])
% allow_damp -- allowed damping variations scalar
% allow_freq -- allowed frequency variations scalar
% equalph -- 1 = equal phase binary
% 0 = non equal phase
% baseline_boolean-- 1 = baseline in the model binary
% 0 = no basline in the model
% lambda -- regularization parameter scalar
% maxiter -- maximum nbr of iterations scalar
% plotting -- display (=1) or not (=0) binary
% wname -- wavelet name cell of 1 string
% level -- Level at which the wavelet scalar
% decomposition is performed
% adl -- automatic def. of defaults binary
% thr -- Global positive threshold scalar
% sorh -- 1:hard, 0:soft thresholding binary
% keepapp -- 1:approximation coefficients binary
% cannot be thresholded, or 0:not
% OUTPUT: scores -- new scores (best variables) vector
% misc -- parameters (ampl., damp., etc)structure
% modeled baseline, residual, etc.
%**************************************************************************

Description
Subtract method using AQSES to quantify MRS data. Information about the subtract method
can be found in [RSC+05]. This method is employed for baseline modeling. Information about
AQSES can be found in [PSS+07]. More details about AQSES and its parameters can be found in
[SVH04], [SVH05a] and [SVH05b].

B.4 Quantification with AQSES

%***************************************************************************
% AQSES.M
%***************************************************************************
% PURPOSE: Quantitation using AQSES
%***************************************************************************
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% CALL: [scores,misc] = AQSES(signal,step,frequency,ndp,begin,dbase,abs_scl_factor,...
% lineshape, phasedistort,filtertype,boundL,boundH,ripple,filterlength,...
% prior_equal,equal_to,allow_damp,allow_freq,equalph,baseline_boolean,lambda,...
% maxiter,plotting)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% dbase -- database name (met. profiles) string cell
% abs_scl_factor-- scaling factor scalar
% lineshape -- 1=Lorentzian,2=Gaussian, scalar
% 3 = Voigt
% phasedistort-- phase distortion binary
% filtertype -- ’fir’ for MP-FIR string
% (Sundin et al.)
% ’hlsvd’ for HLSVD-PRO
% (Laudadio et al.)
% boundL -- low bound scalar
% boundH -- high bound scalar
% ripple -- ripples (FIR filter) scalar
% filterlength-- nbr of filter coefficients scalar
% prior_equal -- vector
% equal_to -- vectors of indeces specifying vector
% simple prior knowledge, i.e., dampings
% and frequences of metabolites in prior_equal
% are equal to equal_to (default [], [])
% allow_damp -- allowed damping variations scalar
% allow_freq -- allowed frequency variations scalar
% equalph -- 1 = equal phase binary
% 0 = non equal phase
% baseline_boolean-- 1 = baseline in the model binary
% 0 = no basline in the model
% lambda -- regularization parameter scalar
% maxiter -- maximum nbr of iterations scalar
% plotting -- display (=1) or not (=0) binary
% OUTPUT: scores -- new scores (best variables) vector
% misc -- parameters (ampl., damp., etc)structure
% modeled baseline, residual, etc.
%**************************************************************************

Description
Calcul of the metabolite amplitude estimates based on the quantitation method AQSES [PSS+07].
More details on the method can be found in [SVH04], [SVH05a] and [SVH05b].

B.5 Feature extraction using the whole spectrum

%***************************************************************************
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% WHOLESPECT.M
%***************************************************************************
% PURPOSE: Feature extraction by taking the whole spectrum in the region
% of interest
%***************************************************************************
% CALL: [scores,misc] = wholespect(signal,step,frequency,ndp,begin,boundL,boundH)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: scores -- amplitude values of the points matrix
% misc -- see bottom of the file structure
%**************************************************************************

Description
Feature extraction using the whole spectrum in the region of interest.

B.6 Quantification with peak integration

%***************************************************************************
% peakintegtempl.M
%***************************************************************************
% PURPOSE: Feature extraction with peak integration
%***************************************************************************
% CALL: [scores,misc] = peakintegtempl(signal,step,frequency,ndp,begin,...
% ir,freqmatrix,compNames)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% ir -- interval types scalar (integer)
% freqmatrix -- interval matrix matrix
% compNames -- Names of the intervals cell
% OUTPUT: scores -- peak integrated values matrix
% misc -- see bottom of the file structure
%**************************************************************************

Description
The integrals of the absolute spectrum in the given frequency regions are calculated. scores is a
N ×M matrix where N is the number of spectra and M is the number of intervals. Five different
types of intervals are at user’s disposal.

ir=0 User’s intervals. The user must give the intervals in a M × 2 matrix simply concatening
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the intervals one after the other (one interval per row). Example: intervals [2.09 2.17], [2.21
2.23], [2.39 2.50] will be encoded by [2.09 2.17; 2.21 2.23; 2.39 2.50]. The component names
associated to the corresponding intervals must also be given as a cell of strings. The number
of rows of freqmatrix must match the length of compNames.

ir=1 Intervals corresponding to short echo time MR spectra at 1.5 T: Not corrected yet.

ir=2 Intervals corresponding to long echo time MR spectra at 1.5 T: Not corrected yet.

ir=3 Intervals corresponding to HRMAS spectra at 11 T: [1.30 1.34], [1.45 1.49], [1.84 1.94], [1.99
2.025], [2.09 2.17], [2.21 2.23], [2.39 2.50], [3.01 3.03], [3.19 3.205], [3.205 3.23], [3.235 3.245],
[3.255 3.275], [3.33 3.36],[3.39 3.435], [3.50 3.58], [3.58 3.70], [3.71 3.82], [3.91 3.945], [4.03
4.075], [4.08 4.14].

ir=4 Intervals corresponding to HRMAS spectra at 14.1 T: idem as at 11 T.

The intervals should be disjoint to avoid information redundancy. The intervals are defined in
processing/readintervals.m. An error message is displayed if ir> 4.

B.7 Quantification with peak bucketting

%***************************************************************************
% peakbuckettempl.M
%***************************************************************************
% PURPOSE: Feature extraction with peak bucketing
%***************************************************************************
% CALL: [scores,misc] = peakbuckettempl(signal,step,frequency,ndp,begin,...
% ir,freqmatrix,compNames)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% ir -- interval types scalar (integer)
% freqmatrix -- interval matrix matrix
% compNames -- Names of the intervals cell
% OUTPUT: scores -- peak integrated values matrix
% misc -- see bottom of the file structure
%**************************************************************************

Description
All the points of the spectrum in given frequency intervals are extracted as features (scores). The
intervals are defined in the same way as in peakintegtempl (see processing/readintervals.m).

B.8 Feature extraction with fish criterion

%***************************************************************************
% fishcrit.M
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%***************************************************************************
% PURPOSE: Feature selection using the Fisher criterion
%***************************************************************************
% CALL: [newscores,misc] = fishcrit(signal,procres,classopt,nbrvar)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% nbrvar -- number of variables to keep integer
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: newscores -- new scores (best variables) matrix
% misc(i).ranked_vector -- ranked vector vector
%**************************************************************************

Description
The main features are selected using the Fisher criterion. The number of features to keep is given
by nbrvar. This method can only select features of already extracted features. In other words,
procres.scores cannot be empty. The selected features are saved in a 3D array: data in the first
dimension, features in the second dimension and classification problem number in the third di-
mension. This method is only usable with binary classification methods and classopt.classtype
must be defined.

Example:
procres.scores = [1 2 3 4;1.1 2.1 3.1 4.1; 1.2 2.2 3.2 4.2];
classopt.classtype = {’GBM’,’MET’,’MEN’,’GBM’};
nbrvar = 2;
... selection of the best features for each pair of classes...
newscores(:,:,1) = [1 4;1.1 4.1;1.2 4.2]; %classes GBM vs MET
newscores(:,:,2) = [2 4;2.1 4.1;2.2 4.2]; %classes GBM vs MEN
newscores(:,:,3) = [2 4;2.1 4.1;2.2 4.2]; %classes MET vs MEN

B.9 Feature extraction with kruskal-wallis method

%***************************************************************************
% kruswal.M
%***************************************************************************
% PURPOSE: Feature selection using the Kruskal-Wallis test
%***************************************************************************
% CALL: [newscores,misc] = kruswal(signal,procres,classopt,nbrvar)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
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% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% nbrvar -- number of variables to keep integer
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: newscores -- new scores (best variables) matrix
% misc(i).ranked_vector -- ranked vector vector
%**************************************************************************

Description
Feature selection using the Kruskal-Wallis test. For information about the parameters, see the
description of fishcrit.m above.

B.10 Feature extraction with Relief-F

%***************************************************************************
% relieff.M
%***************************************************************************
% PURPOSE: Feature selection using Relief-f
%***************************************************************************
% CALL: [newscores,misc] = relieff(signal,procres,classopt,nbrvar,iterations,neighbors)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% nbrvar -- number of variables to keep integer
% iterations -- number of iterations scalar
% neighbors -- number of neighbors scalar
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: newscores -- new scores (best variables) matrix
% misc(i).ranked_vector -- ranked vector vector
%**************************************************************************

Description
Feature selection using Relief-F. For information about the parameters, see the description of
fishcrit.m above.

B.11 Feature extraction with PCA

%***************************************************************************
% PCAtemp.M
%***************************************************************************
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% PURPOSE: Feature selection using PCA
%***************************************************************************
% CALL: [newscores,misc] = PCAtempl(signal,procres,classopt,nbrvar)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% nbrvar -- number of variables to keep integer
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: newscores -- new scores (best variables) matrix
% misc -- see bottom of file structure
%**************************************************************************

Description
Feature selection using principal component analysis (PCA). For information about the parameters,
see the description of fishcrit.m above.

B.12 Feature extraction with ICA

%***************************************************************************
% ICAtemp.M
%***************************************************************************
% PURPOSE: Feature selection using ICA
%***************************************************************************
% CALL: [newscores,misc] = ICAtempl(signal,procres,classopt,nbrvar)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% nbrvar -- number of variables to keep integer
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: newscores -- new scores (best variables) matrix
% misc -- see bottom of file structure
%**************************************************************************

Description
Feature selection using fast-ICA (http://www.cis.hut.fi/projects/ica/fastica/), fast-independent
component analysis. For information about the parameters, see the description of fishcrit.m
above.
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B.13 Dimensionality reduction using the toolbox by Vandermaaten

%***************************************************************************
% dimreductempl.M
%***************************************************************************
% PURPOSE: Feature selection using dimensionality reduction techniques
%***************************************************************************
% CALL: [newscores,misc] = dimreductempl(signal,step,frequency,ndp,begin,...
procres, classopt,methname,nbrvar,boundL,boundH)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% methname -- method name string
% nbrvar -- number of variables to keep integer
% boundL -- low bound scalar
% boundH -- high bound scalar
% OUTPUT: newscores -- new scores (best variables) matrix
% misc -- see bottom of file structure
%**************************************************************************

Description
Feature selection using dimensionality reduction techniques (Matlab Toolbox for Dimensionality
Reduction v0.1b, http://www.cs.unimaas.nl/l.vandermaaten). For information about the parame-
ters, see the description of fishcrit.m above. In addition to classical methods like ’PCA’, ’LDA’
or ’ICA’, this toolbox proposes the following methods ’MDS’, ’Isomap’, ’LandmarkIsomap’, ’LLE’,
’Laplacian’, ’HessianLLE’, ’LTSA’, ’DiffusionMaps’, ’KernelPCA’, ’GDA’, ’SNE’, ’SPE’, ’AutoEn-
coder’, and ’AutoEncoderEA’. For more information on the techniques, we refer to the paper
“Dimensionality Reduction: A Comparative Review” by L.J.P. van der Maaten, E.O. Postma,
and H.J. van den Herik. The paper is available from http://www.cs.unimaas.nl/l.vandermaaten.
Please refer this paper or the website if you use the dimension toolbox in SPID.

B.14 Scale normalization

%***************************************************************************
% scalenorm.M
%***************************************************************************
% PURPOSE: Normalize variables
%***************************************************************************
% CALL: [scores,misc] = scalenorm(signal,step,frequency,ndp,begin,ir,freqmatrix,compNames)
%***************************************************************************
% INPUT: signal -- signal row vector
% step -- time step between points (ms) scalar
% frequency -- spectrometer frequency (kHz) scalar
% ndp -- number of data points scalar
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% begin -- begin time (ms) scalar
% procres -- structure of processing results
% classopt -- structure of classification options
% scale -- scaling option integer
% sigmoid -- =1 : sigmoid shape binary
% OUTPUT: scores -- spectrum point values matrix
% misc -- see bottom of file structure
%**************************************************************************

Description
This method normalize the columns or rows of a matrix, or both:

% scale = 0: do nothing,
% 1: columns have mean 0, std 1
% 2: rows have mean, std 1
% 3: try to do do both 1 & 2

If sigmoid = 1, x is replaced by tanh(x*sigmoid).

C Classification methods

C.1 Least-Squares Support Vector Machines (LSSVM)

%***************************************************************************
% LSSVMtempl.M
%***************************************************************************
% PURPOSE: Multiclass Binary Classification with LSSVM
%***************************************************************************
% CALL: classres = LSSVMtempl(procres,classopt,validtype,L,classifiernbr,dispplot)
%***************************************************************************
% INPUT: procres -- processing results structure
% scores -- data (MxN with M=nbr of
% data and N=nbr of variables) matrix
% classopt -- classification options structure
% classtype -- class type vector/cell
% validtype -- validation type scalar
% L -- number of folds in CV scalar
% classifiernbr-- LSSVM=1, SVM=2 scalar
% dispplot -- plot=1, no plot=0 binary
% OUTPUT: classres -- classification results structure
% misclassifications-- nbr of vector
% misclassifications for the
% different pair combinations
% gamma -- hyperparam in LSSVM scalar
% sigma -- hyperparam in LSSVM scalar
% predictionmatrix -- pred. matrix matrix
% auc -- area under ROC curve vector
%**************************************************************************
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Description
Multiclass Binary Classification with LS-SVM (can only handle binary classification problems).
This method uses the LS-SVM toolbox available at http://www.esat.kuleuven.ac.be/sista/lssvmlab/.
Please refer to the LS-SVM toolbox website if you use LS-SVM in SPID. Three validation meth-
ods are available: leave-one-out, L-fold cross validation and stratified random sampling. Gamma
and sigma are tuned by tunelssvm.m. The bayesian version is based on the paper by Lu et al.
[LDS+07]. It is also possible to weight the features using the automatic relevance determination
(ARD) method.

C.2 Kernel Logistic Regression (KLR)

%***************************************************************************
% KLRtempl.M
%***************************************************************************
% PURPOSE: Multiclass Binary Classification with Kernel Logistic
% Regression (KLR)
%***************************************************************************
% CALL: classres = KLRtempl(procres,classopt,validtype,L,classifiernbr,dispplot)
%***************************************************************************
% INPUT: procres -- processing results structure
% scores -- data (MxN with M=nbr of
% data and N=nbr of variables) matrix
% classopt -- classification options structure
% classtype -- class type vector/cell
% validtype -- validation type scalar
% L -- number of folds in CV scalar
% classifiernbr-- LSSVM=1, SVM=2 scalar
% dispplot -- plot=1, no plot=0 binary
% OUTPUT: classres -- classification results structure
% misclassifications-- nbr of vector
% misclassifications for the
% different pair combinations
% gamma -- hyperparam in KLR scalar
% sigma -- hyperparam in KLR scalar
% predictionmatrix -- pred. matrix matrix
% auc -- area under ROC curve vector
%**************************************************************************

Description
Multiclass Binary Classification with Kernel Logistic Regression (can only handle binary classifi-
cation problems).

C.3 Linear Discriminant Analysis (LDA)

%***************************************************************************
% LDAtempl.M
%***************************************************************************
% PURPOSE: Classification using LDA
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%***************************************************************************
% CALL: [classres] = LDAtempl(procres,classopt,validtype,L,dispplot)
%***************************************************************************
% INPUT: procres -- structure of processing results
% classopt -- classification options structure
% classtype -- class type vector/cell
% procres -- processing options structure
% scores -- data (MxN with M=nbr of
% data and N=nbr of variables) matrix
% validtype -- validation type scalar
% L -- number of folds in CV scalar
% dispplot -- display options binary
% OUTPUT: classres -- classification results structure
% misoptimal-- minimum nbr of vector
% misclassifications for the
% different pair combinations
% predictionmatrix -- pred. matrix matrix
%**************************************************************************

Description
Multiclass Binary Classification with LDA (can only handle binary classification problems).

C.4 Multi-Layer Perceptron (MLP)

%***************************************************************************
% MLPtempl.M
%***************************************************************************
% PURPOSE: Multiclass Binary Classification with Multi-Layer Perceptron (MLP)
%***************************************************************************
% CALL: classres = MLPtempl(procres,classopt,validtype,L,classifiernbr,...
nhidden,alpha,ncycles,actfct,optim)
%***************************************************************************
% INPUT: procres -- processing results structure
% scores -- data (MxN with M=nbr of
% data and N=nbr of variables) matrix
% classopt -- classification options structure
% classtype -- class type vector/cell
% validtype -- validation type scalar
% L -- number of folds in CV scalar
% classifiernbr-- MLP=1 scalar
% nhidden -- number of hidden neurons integer
% alpha -- weigth decay scalar
% ncycles -- number of training cycles integer
% actfct -- activation function string
% optim -- optimization algorithm string
% OUTPUT: classres -- classification results structure
% misclassification-- minimum nbr of vector
% misclassifications for the
% different pair combinations
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% predictionmatrix -- pred. matrix matrix
%**************************************************************************

Description
Multiclass Binary Classification with Multi-Layer Perceptron (MLP; it can only handle binary
classification problems). MLP is used via de neural network software “Netlab” available at
http://www.ncrg.aston.ac.uk/netlab/down.php. Possible activation functions are ’linear’,’logistic’
or ’softmax’ and possible optimization algorithms are ’quasinew’, ’conjgrad’,’scg’, ’graddesc’
(quasi-Newton, conjugate gradients, scaled conjugate gradients, and gradient descent). More in-
formation can be found at http://www.ncrg.aston.ac.uk/netlab/.

C.5 clustertempl

%***************************************************************************
% clustertempl.M
%***************************************************************************
% PURPOSE: Multiclass Binary Classification with clustering methods
%***************************************************************************
% CALL: classres = clustertempl(procres,classopt,validtype,L,classifiernbr,...
% neighbors,genclust,dispplot)
%***************************************************************************
% INPUT: procres -- processing results structure
% scores -- data (MxN with M=nbr of
% data and N=nbr of variables) matrix
% classopt -- classification options structure
% classtype -- class type vector/cell
% validtype -- validation type scalar
% L -- number of folds in CV scalar
% classifiernbr-- KNN=1, Kmeans=2, Fuzzy c-means scalar
% neighbors -- number of neighbors integer
% genclust -- <2 (2 centers), >=2 (nbr classes) scalar
% dispplot -- plot = 1, no plot = 0 binary
% OUTPUT: classres -- classification results structure
% misclassification -- nbr of vector
% misclassifications for the
% different pair combinations
% predictionmatrix -- pred. matrix matrix
%**************************************************************************

Description
Multiclass Binary Classification with clustering methods (unsupervised methods). Available clus-
tering methods are ’KNN’, ’Kmeans’ and ’Fuzzy c-means’.
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