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Tensors can change over time
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Tensors can change over time

I Data only becomes available gradually

I The data is non-stationary

I The full tensor does not fit into memory
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Tensors can change over time

I Example: EEG data
I New EEG samples are obtained
I Old data becomes outdated
I Test subjects are added/removed
I Mobile EEG
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Recomputing the full decomposition can be infeasible or unnecessary

≈

≈

≈
I The new data arrives too fast
I The full tensor takes up too much memory
I We want to locally improve the accuracy of the decomposition
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Can tensor decompositions adapt to changes in the tensor?

≈

≈
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CPD updating

I A new slice M gets added to the tensor

I Factor matrix B obtains an extra column, b

I The original factor matrices A, B and C are updated

I The algorithm should be fast, accurate and memory-efficient

M ≈ A
B

C

b
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Existing algorithms are sequential

I Estimate b with its least squares solution:[
(CT

oldCold) ∗ (AT
oldAold)

]−1
(Cold �Aold)

Tvec(M)

I Update A and C

I Refine b: [
(CT

newCnew) ∗ (AT
newAnew)

]−1
(Cnew �Anew)

Tvec(M)
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All-at-once CPD updating

Adapt batch NLS CPD algorithm to the updating context

I Replace old slices by an approximation (CPD, MLSVD . . . )

I Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices

I Apply Conjugate Gradients to solve the system JTJp = −g
I Use block-Jacobi preconditioner M

I Limit number of NLS and CG iterations
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All-at-once CPD updating

Adapt batch NLS CPD algorithm to the updating context

I Replace old slices by an approximation (CPD, MLSVD . . . )
I Derive efficient expressions for objective function, gradient and Hessian

approximation JTJ by exploiting structure of old slices
I Split the computation in parts depending on the old data and parts depending on

new slices
I Use the structured tensor framework for the old data

I Apply Conjugate Gradients to solve the system JTJp = −g
I Use block-Jacobi preconditioner M

I Limit number of NLS and CG iterations

A
B

C

M ≈ A′
B′

C′
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I Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices

I Apply Conjugate Gradients to solve the system JTJp = −g
I Forming and inverting JTJ is not needed
I Products of the form JTJx can be computed efficiently

I Use block-Jacobi preconditioner M

I Limit number of NLS and CG iterations
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I Replace old slices by an approximation (CPD, MLSVD . . . )

I Derive efficient expressions for objective function, gradient and Hessian
approximation JTJ by exploiting structure of old slices

I Apply Conjugate Gradients to solve the system JTJp = −g
I Use block-Jacobi preconditioner M

I Left-multiply both sides of JTJp = −g by M−1

I Good choice of M improves convergence of CG algorithm

I Limit number of NLS and CG iterations
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Numerous generalizations of the algorithm exist

I Applicable to (N − 1)-th order updates of N th-order tensors in any number of
modes simultaneously

I Truncated exponential windows are easily applied

I Rank changes are possible

I Extendable to structured or coupled CPDs

I Weighted least squares (WLS) CPD updating
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Numerous generalizations of the algorithm exist

I Applicable to (N − 1)-th order updates of N th-order tensors in any number of
modes simultaneously

I Truncated exponential windows are easily applied

I Rank changes are possible

I Extendable to structured or coupled CPDs
I Weighted least squares (WLS) CPD updating

I CPD of weight tensor is updated
I This CPD is used in WLS update of the data tensor CPD

∗ ≈ ∗

7 / 12



Updating is both accurate and fast

I Model with slowly evolving second mode and 20dB SNR

I Comparison of batch and updating methods

I Mean errors of the CPD approximation

I CPU-time of the CPD approximation (ms)
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Updating is both accurate and fast

I Model with slowly evolving second mode and 20dB SNR
I Comparison of batch and updating methods

I Batch CPD-NLS and CPD-ALS (Sorber et al. 2013)
I PARAFAC-SDT and PARAFAC-RLST (Nion et al. 2009)
I CPD updating

I Mean errors of the CPD approximation

I CPU-time of the CPD approximation (ms)
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Updating is both accurate and fast

I Model with slowly evolving second mode and 20dB SNR
I Comparison of batch and updating methods
I Mean errors of the CPD approximation

I CPU-time of the CPD approximation (ms)
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Updating is both accurate and fast

I Model with slowly evolving second mode and 20dB SNR

I Comparison of batch and updating methods

I Mean errors of the CPD approximation

I CPU-time of the CPD approximation (ms)

R 2 3 4 5 6

Updating 60 81 104 140 169
NLS 2375 4464 2557 3563 5522

ALS 910 1222 1400 1401 2352

SDT 48 71 98 136 172

RLST 570 607 623 775 822
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NLS updating enables real-time CPD applications
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NLS updating enables real-time CPD applications

I Direction-of-arrival estimation using a uniform rectangular array (URA)

I Three moving sources, SNR 10dB
I Azimuth and elevation angles of sources are recovered from CPD of data tensor
I NLS updating: 6-8ms per update
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NLS updating enables real-time CPD applications

I WLS NLS CPD updating
I Direction-of-arrival estimation with three moving sources
I Some sensors break down, leading to bad readings
I Less weight is given to readings of these sensors
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Main advantages of all-at once CPD updating

I Fast and accurate

I Versatile

I Low memory requirements O(New slice)
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Improvements can still be made

I Automatic rank-adaptation
I Additionally track an MLSVD or higher-rank CPD of the tensor

I Compromise between storing full tensor and only CPD
I Track enough data for rank-increases
I Countering numerical error accumulation

I Numerical error increases for all modes
I Statistical error decreases for non-updated modes
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Further possibilities for updating algorithms

I Other decompositions (MLSVD, BTD)

I Different cost functions

I Tensor data changing in other ways
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