Updating tensor decompositions

Michiel Vandecappelle michiel.vandecappelle@kuleuven.be Nico Vervliet Martijn Boussé Lieven De Lathauwer

Vlaamse overheid

EURASIP Summer School on Tensor-Based Signal Processing August 29, 2018

inopean Research Council addished by the European Commission

Tensors can change over time

Tensors can change over time

- Data only becomes available gradually
- ► The data is non-stationary
- ▶ The full tensor does not fit into memory

Tensors can change over time

- ► Example: EEG data
 - New EEG samples are obtained
 - Old data becomes outdated
 - Test subjects are added/removed
 - Mobile EEG

Recomputing the full decomposition can be infeasible or unnecessary

- The new data arrives too fast
- The full tensor takes up too much memory
- We want to locally improve the accuracy of the decomposition

Can tensor decompositions adapt to changes in the tensor?

 \blacktriangleright A new slice ${\bf M}$ gets added to the tensor

- \blacktriangleright A new slice ${\bf M}$ gets added to the tensor
- ▶ Factor matrix B obtains an extra column, b

- \blacktriangleright A new slice ${\bf M}$ gets added to the tensor
- ► Factor matrix B obtains an extra column, b
- ▶ The original factor matrices A, B and C are updated

- \blacktriangleright A new slice ${\bf M}$ gets added to the tensor
- ► Factor matrix B obtains an extra column, b
- \blacktriangleright The original factor matrices ${\bf A},\, {\bf B}$ and ${\bf C}$ are updated
- > The algorithm should be fast, accurate and memory-efficient

Existing algorithms are sequential

• Estimate b with its least squares solution:

$$\left[(\mathbf{C}_{\mathsf{old}}^{\mathsf{T}} \mathbf{C}_{\mathsf{old}}) \ast (\mathbf{A}_{\mathsf{old}}^{\mathsf{T}} \mathbf{A}_{\mathsf{old}}) \right]^{-1} (\mathbf{C}_{\mathsf{old}} \odot \mathbf{A}_{\mathsf{old}})^{\mathsf{T}} \mathsf{vec}(\mathbf{M})$$

Existing algorithms are sequential

Estimate b with its least squares solution:

$$\left[(\mathbf{C}_{\mathsf{old}}^{\mathsf{T}} \mathbf{C}_{\mathsf{old}}) \ast (\mathbf{A}_{\mathsf{old}}^{\mathsf{T}} \mathbf{A}_{\mathsf{old}}) \right]^{-1} (\mathbf{C}_{\mathsf{old}} \odot \mathbf{A}_{\mathsf{old}})^{\mathsf{T}} \mathsf{vec}(\mathbf{M})$$

 \blacktriangleright Update ${\bf A}$ and ${\bf C}$

Existing algorithms are sequential

Estimate b with its least squares solution:

$$\left[(\mathbf{C}_{\mathsf{old}}^{\mathsf{T}} \mathbf{C}_{\mathsf{old}}) \ast (\mathbf{A}_{\mathsf{old}}^{\mathsf{T}} \mathbf{A}_{\mathsf{old}}) \right]^{-1} (\mathbf{C}_{\mathsf{old}} \odot \mathbf{A}_{\mathsf{old}})^{\mathsf{T}} \mathsf{vec}(\mathbf{M})$$

- \blacktriangleright Update ${\bf A}$ and ${\bf C}$
- ► Refine **b**:

$$\left[\left(\mathbf{C}_{\mathsf{new}}^{\mathsf{T}} \mathbf{C}_{\mathsf{new}} \right) * \left(\mathbf{A}_{\mathsf{new}}^{\mathsf{T}} \mathbf{A}_{\mathsf{new}} \right) \right]^{-1} \left(\mathbf{C}_{\mathsf{new}} \odot \mathbf{A}_{\mathsf{new}} \right)^{\mathsf{T}} \mathsf{vec}(\mathbf{M})$$

$$M \approx A^{\mathbf{C}}$$

Adapt batch NLS CPD algorithm to the updating context

▶ Replace old slices by an approximation (CPD, MLSVD ...)

- ▶ Replace old slices by an approximation (CPD, MLSVD ...)
- Derive efficient expressions for objective function, gradient and Hessian approximation J^TJ by exploiting structure of old slices
 - Split the computation in parts depending on the old data and parts depending on new slices
 - Use the structured tensor framework for the old data

- ▶ Replace old slices by an approximation (CPD, MLSVD ...)
- Derive efficient expressions for objective function, gradient and Hessian approximation J^TJ by exploiting structure of old slices
- Apply Conjugate Gradients to solve the system $\mathbf{J}^\mathsf{T} \mathbf{J} \mathbf{p} = -\mathbf{g}$
 - \blacktriangleright Forming and inverting $\mathbf{J}^{\mathsf{T}}\mathbf{J}$ is not needed
 - \blacktriangleright Products of the form $\mathbf{J}^\mathsf{T}\mathbf{J}\mathbf{x}$ can be computed efficiently

- ▶ Replace old slices by an approximation (CPD, MLSVD ...)
- Derive efficient expressions for objective function, gradient and Hessian approximation J^TJ by exploiting structure of old slices
- \blacktriangleright Apply Conjugate Gradients to solve the system $\mathbf{J}^\mathsf{T} \mathbf{J} \mathbf{p} = -\mathbf{g}$
- \blacktriangleright Use block-Jacobi preconditioner ${\bf M}$
 - \blacktriangleright Left-multiply both sides of $\mathbf{J}^\mathsf{T} \mathbf{J} \mathbf{p} = -\mathbf{g}$ by \mathbf{M}^{-1}
 - \blacktriangleright Good choice of ${\bf M}$ improves convergence of CG algorithm

- ▶ Replace old slices by an approximation (CPD, MLSVD ...)
- Derive efficient expressions for objective function, gradient and Hessian approximation J^TJ by exploiting structure of old slices
- Apply Conjugate Gradients to solve the system $\mathbf{J}^\mathsf{T} \mathbf{J} \mathbf{p} = -\mathbf{g}$
- \blacktriangleright Use block-Jacobi preconditioner ${\bf M}$
- Limit number of NLS and CG iterations

► Applicable to (N − 1)-th order updates of Nth-order tensors in any number of modes simultaneously

- ► Applicable to (N − 1)-th order updates of Nth-order tensors in any number of modes simultaneously
- Truncated exponential windows are easily applied

- ► Applicable to (N − 1)-th order updates of Nth-order tensors in any number of modes simultaneously
- Truncated exponential windows are easily applied
- Rank changes are possible

- ► Applicable to (N − 1)-th order updates of Nth-order tensors in any number of modes simultaneously
- Truncated exponential windows are easily applied
- Rank changes are possible
- Extendable to structured or coupled CPDs

- ► Applicable to (N − 1)-th order updates of Nth-order tensors in any number of modes simultaneously
- Truncated exponential windows are easily applied
- Rank changes are possible
- Extendable to structured or coupled CPDs
- Weighted least squares (WLS) CPD updating
 - CPD of weight tensor is updated
 - This CPD is used in WLS update of the data tensor CPD

 \blacktriangleright Model with slowly evolving second mode and 20dB SNR

- ▶ Model with slowly evolving second mode and 20dB SNR
- Comparison of batch and updating methods
 - Batch CPD-NLS and CPD-ALS (Sorber et al. 2013)
 - PARAFAC-SDT and PARAFAC-RLST (Nion et al. 2009)
 - CPD updating

- Model with slowly evolving second mode and 20dB SNR
- Comparison of batch and updating methods
- Mean errors of the CPD approximation

- Model with slowly evolving second mode and 20dB SNR
- Comparison of batch and updating methods
- Mean errors of the CPD approximation
- CPU-time of the CPD approximation (ms)

R	2	3	4	5	6
Updating	60	81	104	140	169
NLS	2375	4464	2557	3563	5522
ALS	910	1222	1400	1401	2352
SDT	48	71	98	136	172
RLST	570	607	623	775	822

Direction-of-arrival estimation using a uniform rectangular array (URA)

- Direction-of-arrival estimation using a uniform rectangular array (URA)
- Three moving sources, SNR 10dB

- Direction-of-arrival estimation using a uniform rectangular array (URA)
- Three moving sources, SNR 10dB
- > Azimuth and elevation angles of sources are recovered from CPD of data tensor

- Direction-of-arrival estimation using a uniform rectangular array (URA)
- Three moving sources, SNR 10dB
- > Azimuth and elevation angles of sources are recovered from CPD of data tensor
- ▶ NLS updating: 6-8ms per update

- WLS NLS CPD updating
 - Direction-of-arrival estimation with three moving sources
 - Some sensors break down, leading to bad readings
 - Less weight is given to readings of these sensors

► Fast and accurate

- ► Fast and accurate
- ► Versatile

- Fast and accurate
- Versatile
- ► Low memory requirements O(New slice)

Automatic rank-adaptation

- Automatic rank-adaptation
- Additionally track an MLSVD or higher-rank CPD of the tensor

- Automatic rank-adaptation
- Additionally track an MLSVD or higher-rank CPD of the tensor
 - Compromise between storing full tensor and only CPD

- Automatic rank-adaptation
- Additionally track an MLSVD or higher-rank CPD of the tensor
 - Compromise between storing full tensor and only CPD
 - Track enough data for rank-increases

- Automatic rank-adaptation
- Additionally track an MLSVD or higher-rank CPD of the tensor
 - Compromise between storing full tensor and only CPD
 - Track enough data for rank-increases
 - Countering numerical error accumulation
 - Numerical error increases for all modes
 - Statistical error decreases for non-updated modes

Further possibilities for updating algorithms

- Other decompositions (MLSVD, BTD)
- Different cost functions
- Tensor data changing in other ways

Updating tensor decompositions

Michiel Vandecappelle michiel.vandecappelle@kuleuven.be Nico Vervliet Martijn Boussé Lieven De Lathauwer

Vlaamse overheid

EURASIP Summer School on Tensor-Based Signal Processing August 29, 2018

inopean Research Council addished by the European Commission

