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Biological networks

Networks or graphs are very common to represent biological information

Metabolic network Gene regulatory network
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Biological network inference

@ The knowledge about these networks is typically obtained through
wet-lab (small or large-scale) experiments

= partial, noisy, costly
o Experimental techniques are usefully complemented by computational
inference methods
e Motivation:

Predict novel interactions
Confirm/invalidate experimental predictions
Explain known interactions from different points of view

]
]
]
o Inference of properties of "new” genes/proteins
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Regulatory
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(De Smet & Marchal, Nature Review Microbiology, 2010)
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Regulatory network inference methods
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© Unsupervised inference of gene regulatory networks
© DREAM challenges

@ GENIE3

© Experiments within the DREAM challenges

@ Conclusions and future works
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Gene regulatory network inference from expression data

Apply diverse Measure RNA Learn GRN from Model of
treatments to cells expression from transcription

expression data 3
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GRN inference: issues

Several issues for GRN inference algorithms:

@ Very heterogeneous data, far from i.i.d. (knock-out, time series,
multifactorial, etc.)

Directing the edges is difficult (esp. with static data)
Direct vs indirect interactions

Large p/small n problem

°
°
°
@ Scalability (thousands of genes, millions of pairs)
o Edge ranking vs network prediction

°

Difficult to validate (very few known real networks)
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GRN inference: existing methods

Two main families of methods:

@ Score-based: define a similarity score between genes based on their
expression profiles and connect two genes if their similarity is above some

threshold
Score matrix Target gene
gene 1 gene 2 R gene p
gene 1 - 0.05 -
Regulating gene 2 0.19 - B 0.03
gene
gene p 0.1T 0.42 R -

(eg., CLR, MRNET, ARACNE, GeneNet)

@ Model-based: learn a model that explains as well as possible the observed
expression data and extract the network from this model

AND ?
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(eg., Boolean networks, differential equations, (dynamic) Bayesian networks)
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DREAM challenges

B Synthetic gene expression data

C Network inference
Steady state and time series

method
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An silico gene networks D Predicted networks

(Marbach et al.,, PNAS, 2010)
@ Very few reliable real benchmark datasets exist = evaluation on
simulated data

o DREAM, “Dialogue for Reverse Engineering Assessments and
Methods", is an annual reverse engineering competition, organized
since b Y€Ars (nttp://wiki.c2b2.columbia.edu/dream)
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Outline

@ GENIE3
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Network inference as p feature selection problems

Expression data

Exp;
Expy
Expz

@ Main idea: decompose the problem
of network inference into p
sub-problems

Expy

Ls'

@ Sub-problem i = find the regulators
of gene i, ie., those genes whose
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— expression is predictive of gene i's
expression
@ Solved as p feature selection
Ls? . E problems (in regression)

. Output gene m Input gene
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Feature selection with tree-based ensemble methods

Tree-based ensemble methods are good candidates

* Non-parametric models

{ ! }
&7& /& @ Can deal with interacting features

(Almost) parameter-free

Work well with high-dimensional
datasets

Scalable
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Our approach
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(Bagging, with 1000 trees in all experiments)
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GENIE3 (GEne Network Inference with Ensemble of Trees)

Expression data

Gene, Gene, Gene, Gene . .
B Learning f; Gene ranking

Tree ensemble,
—| e =
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Tree ensemble,

Tree ensemblep
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Discussion

GENIES:
@ Extends score-based methods by taking into account variable
dependencies
@ Can be considered as a non-parametric model-based approach, related
to Bayesian networks

o Has a reasonable computational complexity (at most O(p?N log(N)))
and is trivially parallelizable
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© Experiments within the DREAM challenges
@ Steady-state data
@ Time-series (and steady-state) data
@ Genotyping data
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Experiments within the DREAM challenges

o DREAM3 (2008):

o In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data:
time series+knock-down+knock-out

o DREAM4 (2009):

o In Silico Size 100: 5 networks of 100 genes, data: time
series+knock-down+knock-out

e In Silico Size 100 Multifactorial: 5 networks of 100 genes, steady-state
levels under multifactorial pertubations

e DREAMS (2010):

o Network Inference challenge: 3 real networks + 1 artificial network,
data: microarray compendia

e Systems Genetics challenge: 5x3 networks of 100 genes, data: gene
expression and genotyping data
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Steady-state data (and microarray compendia)

o DREAM3 (2008):

o In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data:
time series+knock-down+knock-out

o DREAM4 (2009):

e In Silico Size 100: 5 networks of size 100, data: time
series+knock-down+knock-out

o In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state
levels under multifactorial pertubations

e DREAMS (2010):

o Network Inference challenge: 3 real networks + 1 artificial network,
data: microarray compendia

e Systems Genetics challenge: 5x3 networks of 100 genes, data: gene
expression and genotyping data
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DREAM4 In silico multifactorial challenge

@ 5 networks of 100 genes each,
extracted from real GRN of E.
coli and S. cerevisiae

@ Detailed kinetic model in the
form of (stochastic) ordinary
differential equations (plus noise)

13
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@ 100 expression measurements:
static steady-state expression
© profiles obtained from (slight)
perturbations of the basal
activation of all genes
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Evaluation protocol (all challenges)
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@ Output of algorithms: a ranked list of predicted interactions (directed)
e Evaluation through ROC and Precision-recall curves

= Area under ROC (AUROC) and Precision-recall (AUPR) curves

= p-values under random model

@ Overall score = —0.5log¢(ProcPpr)
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Our Results on DREAM4

Final ranking of the challenge (directed network)

Overall  Mean Mean

Score  AUPR  p-value AUROC  p-value
1 GENIE3-Bagging 37.736 0.22 5.93e-54 0.76 1.93e-28
2 Team 549 28.165 0.14 7.45e-35 0.73 6.29e-23

Rank Team

Comparison with existing approaches (undirected network)

GENIE3-Bagging CLR ARACNE MRNET GGM
Overall score 36.736 35.838 32.632 34.124  26.846
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GENIE3 is able to predict a directed network

Predicted networks contain a significant number (52%) of asymmetric links
(versus 95% in the gold standard).

At 5% (resp. 100%) recall, mean error rate on edge directionality is 20%
(resp. 25%)

(edges i — j for which w;_; < wj_;).

— GENIES is a plausible approach for directing an undirected network.
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DREAMS5 Network Inference Challenge

DREAM4 datasets are not realistic

@ i.i.d. multifactorial data

@ Small number of genes

@ Number of genes ~ number of experiments
DREAMb5 data:

o 3 real networks: E. coli, S. cerevisae, S. aureus (no gold standard for the last

one but community predictions will be verified experimentally).

@ 1 simulated network: same simulation model as in DREAM4 but
mimic main features of real microarray compendia

o Potential TFs are supposed to be known in advance

Network # TFs  # Genes # Chips

in-silico 195 1643 805
S. aurus 99 2810 160
E. coli 334 4511 805
S. cerevisiae 333 5950 536
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DREAMS - In silico network
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GENIE3 within the DREAM challenges

Experiments

Team AUPR | AUROC
GENIE3-Bag 0.38 0.82
Team 862 0.31 0.76
Team 776 0.30 0.78
GENIE3-RF 0.29 0.82
Team 868 0.28 0.74
Team 870 0.28 0.75
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DREAMS - In vivo networks

E. coli
Team AUPR | AUROC
b Team 543 0.12 0.67
i GENIE3-RF | 0.09 0.62
Team 772 0.09 0.61
B Team 48 0.09 0.61
& Team 395 0.08 0.60
GENIE3-Bag | 0.07 0.61
N‘»-.‘n e e
S. Cerevisiae
‘ Team AUPR | AUROC
Team 702 0.03 0.51
Team 548 0.03 0.51
Team 395 0.03 0.54
Precision Team 705 0.03 0.52
GENIE3-RF | 0.02 0.52
GENIE3-Bag | 0.02 0.52
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Comparison with other

Precision
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CLR: Faith et al. (2007) ARACNE: Margolin et al. (2006) GGM: Schafer et al. (2005)
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Time-series (and steady-state) data

o DREAM3 (2008):

o In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data:
time series+knock-down+knock-out

o DREAM4 (2009):

o In Silico Size 100: 5 networks of size 100, data: time
series+knock-down+knock-out

o In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state
levels under multifactorial pertubations

e DREAMS (2010):

o Network Inference challenge: 3 real networks + 1 artificial network,
data: microarray compendia

e Systems Genetics challenge: 5x3 networks of 100 genes, data: gene
expression and genotyping data
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GENIE3 with time-series data

Time-series only:

@ Predict expressions at time t from previous time steps, i.e., minimizes
for each gene j:

> (git+h) —fi(g (1))

gi(t1) | g(t1) | -+ | gp(ty) Bout(t1 + h)
gl(t2) g2(t2) ce gp(t2) gout(t2 + h)
gi(ts) | g2(ts) | - | gp(t3) || gout(ts + h)

(averaging over several time horizons h works best)

Time-series plus steady-state:

@ Learn a separate ranking from both datasets and then combine them

@ or Jointly learn a single model for both datasets by merely
concatenating them
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DREAM3 and DREAM4 In Silico Size100

@ 5 networks of 100 genes each,

K\i@"@\ extracted from real GRN of E.
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@ Steady-state data: 201 profiles
(systematic knock-down and
knock-out of all genes,
wild-type)

o Time-series: 210 profiles (10x21
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Results

DREAMS3 Size 100 DREAM4 Size 100
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We would have been ranked 2nd on DREAM3 and 3rd on DREAM4.
(Best methods are based on dynamical models.)
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Expression 4+ Genotyping data

o DREAM3 (2008):

o In-Silico-Network challenge (Size 100): 5x3 networks of 100 genes,
data: time series+knock-down-knock-out

o DREAM4 (2009):

e In Silico Size 100: 5 networks of size 100, data: time
series+knock-down+knock-out

o In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state
levels under multifactorial pertubations

e DREAMS (2010):

o Network Inference challenge: 3 real networks + 1 artificial network,
data: microarray compendia

e Systems Genetics challenge: 5x3 networks of 100 genes, data: gene
expression and genotyping data
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Systems genetics

(a) Parents
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(Jansen and Nap, Trends in Genetics, 2001)
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Conclusions and future works

Conclusions:

@ We obtained very good performances with GENIE3 on the DREAM
challenges with different kinds of data

@ Performances on real datasets are worse than expected from results on
artificial data

@ The availability of dynamical models (synthetic and real ones) is crucial to
fairly assess and thus design network inference methods

Future works:
@ Investigation of potential differences between real and artificial datasets
@ Incorporate other kinds of regulations (miRNAs)
@ Combination with dynamical models (in both directions)

@ Application on real datasets
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