From genomes to networks by using tree-based supervised learning methods GENIE3 within the DREAM4 and DREAM5 challenges

Pierre Geurts

Dept. of EECS & GIGA-R, University of Liège, Belgium

BioMAGNet Annual Meeting 2011 Monday, March 21st, 2011

Vân Anh Huynh-Thu, Alexandre Irrthum, Louis Wehenkel (ULg) Yvan Saeys (PSB, UGent) Jimmy Vandel (INRA Toulouse)

Biological networks

Networks or graphs are very common to represent biological information

GENIE3 within the DREAM challenges

- The knowledge about these networks is typically obtained through wet-lab (small or large-scale) experiments
- \Rightarrow partial, noisy, costly
 - Experimental techniques are usefully complemented by computational inference methods
 - Motivation:
 - Predict novel interactions
 - Confirm/invalidate experimental predictions
 - Explain known interactions from different points of view
 - Inference of properties of "new" genes/proteins

Regulatory network inference

Simplified view for inference

Regulatory network inference methods

Nature Reviews | Microbiology

(De Smet & Marchal, Nature Review Microbiology, 2010)

Regulatory network inference methods

Nature Reviews | Microbiology

(De Smet & Marchal, Nature Review Microbiology, 2010)

1 Motivation

2 Unsupervised inference of gene regulatory networks

③ DREAM challenges

- 5 Experiments within the DREAM challenges
- 6 Conclusions and future works

Gene regulatory network inference from expression data

Several issues for GRN inference algorithms:

- Very heterogeneous data, far from i.i.d. (knock-out, time series, multifactorial, etc.)
- Directing the edges is difficult (esp. with static data)
- Direct vs indirect interactions
- Large *p*/small *n* problem
- Scalability (thousands of genes, millions of pairs)
- Edge ranking vs network prediction
- Difficult to validate (very few known real networks)

Two main families of methods:

• Score-based: define a similarity score between genes based on their expression profiles and connect two genes if their similarity is above some threshold

Score matrix		Target gene			
		gene 1	gene 2		gene p
	gene 1	-	0.05		0.56
Regulating	gene 2	0.19	-		0.03
gene					
	gene p	0.11	0.42		-

(eg., CLR, MRNET, ARACNE, GeneNet)

• Model-based: learn a model that explains as well as possible the observed expression data and extract the network from this model

(eg., Boolean networks, differential equations, (dynamic) Bayesian networks)

DREAM challenges

(Marbach et al., PNAS, 2010)

- \bullet Very few reliable real benchmark datasets exist \Rightarrow evaluation on simulated data
- DREAM, "Dialogue for Reverse Engineering Assessments and Methods", is an annual reverse engineering competition, organized since 5 years (http://wiki.c2b2.columbia.edu/dream)

DREAM challenges

1 Motivation

2 Unsupervised inference of gene regulatory networks

3 DREAM challenges

4 GENIE3

- 5 Experiments within the DREAM challenges
- 6 Conclusions and future works

- Main idea: decompose the problem of network inference into p sub-problems
- Sub-problem *i* = find the regulators of gene *i*, ie., those genes whose expression is predictive of gene *i*'s expression
- Solved as *p* feature selection problems (in regression)

Tree-based ensemble methods are good candidates

Bagging Random Forests Extra-Trees Non-parametric models

Can deal with interacting features

(Almost) parameter-free

Work well with high-dimensional datasets

Scalable

(Bagging, with 1000 trees in all experiments)

GENIE3 (GEne Network Inference with Ensemble of Trees)

GENIE3:

- Extends score-based methods by taking into account variable dependencies
- Can be considered as a non-parametric model-based approach, related to Bayesian networks
- Has a reasonable computational complexity (at most $O(p^2 N \log(N)))$ and is trivially parallelizable

Motivation

2 Unsupervised inference of gene regulatory networks

3 DREAM challenges

4 GENIE3

5 Experiments within the DREAM challenges

- Steady-state data
- Time-series (and steady-state) data
- Genotyping data

6 Conclusions and future works

Experiments within the DREAM challenges

- DREAM3 (2008):
 - In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data: time series+knock-down+knock-out
- DREAM4 (2009):
 - In Silico Size 100: 5 networks of 100 genes, data: time series+knock-down+knock-out
 - In Silico Size 100 Multifactorial: 5 networks of 100 genes, steady-state levels under multifactorial pertubations
- DREAM5 (2010):
 - Network Inference challenge: 3 real networks + 1 artificial network, data: microarray compendia
 - Systems Genetics challenge: 5×3 networks of 100 genes, data: gene expression and genotyping data

Steady-state data (and microarray compendia)

- DREAM3 (2008):
 - In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data: time series+knock-down+knock-out
- DREAM4 (2009):
 - In Silico Size 100: 5 networks of size 100, data: time series+knock-down+knock-out
 - In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state levels under multifactorial pertubations
- DREAM5 (2010):
 - Network Inference challenge: 3 real networks + 1 artificial network, data: microarray compendia
 - Systems Genetics challenge: 5×3 networks of 100 genes, data: gene expression and genotyping data

DREAM4 In silico multifactorial challenge

- 5 networks of 100 genes each, extracted from real GRN of *E. coli* and *S. cerevisiae*
- Detailed kinetic model in the form of (stochastic) ordinary differential equations (plus noise)

$$\frac{dx_i}{dt} = m_i f_i(y) - \lambda_i^{\text{RNA}} x_i$$
$$\frac{dy_i}{dt} = r_i x_i - \lambda_i^{\text{Prot}} y_i$$

• 100 expression measurements: static steady-state expression profiles obtained from (slight) perturbations of the basal activation of all genes

Evaluation protocol (all challenges)

- Output of algorithms: a ranked list of predicted interactions (directed)
- Evaluation through ROC and Precision-recall curves
- \Rightarrow Area under ROC (AUROC) and Precision-recall (AUPR) curves
- \Rightarrow p-values under random model
- Overall score = $-0.5 \log_{10}(p_{roc}p_{pr})$

Final ranking of the challenge (*directed* network)

Rank Team		Overall	Mean		Mean	
		Score	AUPR	p-value	AUROC	p-value
1	GENIE3-Bagging	37.736	0.22	5.93e-54	0.76	1.93e-28
2	Team 549	28.165	0.14	7.45e-35	0.73	6.29e-23
•••		•••	•••			

Comparison with existing approaches (undirected network)

	GENIE3-Bagging	CLR	ARACNE	MRNET	GGM
Overall score	36.736	35.838	32.632	34.124	26.846

Predicted networks contain a significant number (52%) of asymmetric links (versus 95% in the gold standard).

At 5% (resp. 100%) recall, mean error rate on edge directionality is 20% (resp. 25%) (edges $i \rightarrow j$ for which $w_{i\rightarrow j} < w_{j\rightarrow i}$).

 \rightarrow GENIE3 is a plausible approach for directing an undirected network.

DREAM5 Network Inference Challenge

DREAM4 datasets are not realistic

- i.i.d. multifactorial data
- Small number of genes
- Number of genes \simeq number of experiments

DREAM5 data:

- 3 real networks: *E. coli*, *S. cerevisae*, *S. aureus* (no gold standard for the last one but community predictions will be verified experimentally).
- 1 simulated network: same simulation model as in DREAM4 but mimic main features of real microarray compendia
- Potential TFs are supposed to be known in advance

Network	# TFs	# Genes	# Chips
in-silico	195	1643	805
S. aurus	99	2810	160
E. coli	334	4511	805
S. cerevisiae	333	5950	536

Team	AUPR	AUROC
GENIE3-Bag	0.38	0.82
Team 862	0.31	0.76
Team 776	0.30	0.78
GENIE3-RF	0.29	0.82
Team 868	0.28	0.74
Team 870	0.28	0.75
• • •		

DREAM5 - In vivo networks

E. coli

Team	AUPR	AUROC
Team 543	0.12	0.67
GENIE3-RF	0.09	0.62
Team 772	0.09	0.61
Team 48	0.09	0.61
Team 395	0.08	0.60
GENIE3-Bag	0.07	0.61
4		

Team	AUPR	AUROC
Team 702	0.03	0.51
Team 548	0.03	0.51
Team 395	0.03	0.54
Team 705	0.03	0.52
GENIE3-RF	0.02	0.52
GENIE3-Bag	0.02	0.52

GENIE3 within the DREAM challenges

Comparison with other methods

In silico

	Overall Score
GENIE3-RF	40.28
2nd DREAM5	34.02
CLR	23.93
Linear reg.	7.15
GGM	5.81
ARACNE	3.22

S. Cerevisiae

CLR: Faith et al. (2007) ARACNE: Margolin et al. (2006) GGM: Schafer et al. (2005)

Time-series (and steady-state) data

• DREAM3 (2008):

• In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data: time series+knock-down+knock-out

• DREAM4 (2009):

- In Silico Size 100: 5 networks of size 100, data: time series+knock-down+knock-out
- In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state levels under multifactorial pertubations
- DREAM5 (2010):
 - Network Inference challenge: 3 real networks + 1 artificial network, data: microarray compendia
 - Systems Genetics challenge: 5×3 networks of 100 genes, data: gene expression and genotyping data

Time-series only:

• Predict expressions at time *t* from previous time steps, i.e., minimizes for each gene *j*:

$$\sum_{t} (g_j(t+h) - f_j(g^{-j}(t)))^2$$

$g_1(t_1)$	$g_2(t_1)$	 $g_p(t_1)$	$g_{out}(t_1+h)$
$g_1(t_2)$	$g_2(t_2)$	 $g_p(t_2)$	$g_{out}(t_2+h)$
$g_1(t_3)$	$g_2(t_3)$	 $g_p(t_3)$	$g_{out}(t_3+h)$

(averaging over several time horizons h works best)

Time-series plus steady-state:

- Learn a *separate* ranking from both datasets and then combine them
- or *Jointly* learn a single model for both datasets by merely concatenating them

DREAM3 and DREAM4 In Silico Size100

- 5 networks of 100 genes each, extracted from real GRN of *E. coli* and *S. cerevisiae*
- Steady-state data: 201 profiles (systematic knock-down and knock-out of all genes, wild-type)
- Time-series: 210 profiles (10×21 time points)

Results

DREAM3 Size 100

DREAM4 Size 100

- DREAM3 (2008):
 - In-Silico-Network challenge (Size 100): 5×3 networks of 100 genes, data: time series+knock-down+knock-out
- DREAM4 (2009):
 - In Silico Size 100: 5 networks of size 100, data: time series+knock-down+knock-out
 - In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state levels under multifactorial pertubations
- DREAM5 (2010):
 - Network Inference challenge: 3 real networks + 1 artificial network, data: microarray compendia
 - Systems Genetics challenge: 5×3 networks of 100 genes, data: gene expression and genotyping data

TRENDS in Genetics

(Jansen and Nap, Trends in Genetics, 2001)

Conclusions:

- We obtained very good performances with GENIE3 on the DREAM challenges with different kinds of data
- Performances on real datasets are worse than expected from results on artificial data
- The availability of dynamical models (synthetic and real ones) is crucial to fairly assess and thus design network inference methods

Future works:

- Investigation of potential differences between real and artificial datasets
- Incorporate other kinds of regulations (miRNAs)
- Combination with dynamical models (in both directions)
- Application on real datasets

GENIE3 (steady-state, DREAM4):

 V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts.
Inferring regulatory networks from expression data using tree-based methods. *PLoS ONE*, 5(9):e12776, 2010.

Software:

http://www.montefiore.ulg.ac.be/~huynh-thu/software.html

DREAM challenges: http://wiki.c2b2.columbia.edu/dream