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Biological networks

Networks or graphs are very common to represent biological information
Gene regulatory networkMetabolic network

Disease gene network Protein-protein interaction network
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Biological network inference

The knowledge about these networks is typically obtained through
wet-lab (small or large-scale) experiments

⇒ partial, noisy, costly
Experimental techniques are usefully complemented by computational
inference methods
Motivation:

Predict novel interactions

Confirm/invalidate experimental predictions

Explain known interactions from different points of view

Inference of properties of ”new” genes/proteins
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Regulatory network inference

Gene1
Gene2

Gene3

Transcription regulation

Simplified view for 
inference
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Regulatory network inference methods

(De Smet & Marchal, Nature Review Microbiology, 2010)
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Gene regulatory network inference from expression data

Apply diverse 
treatments to cells

Knockout

Stress

RNAI

Overexpress

Drug

Measure RNA 
expression from 
each treatment

Inference 
algorithm

Learn GRN from 
expression data

Model of 
transcription 

regulation
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GRN inference: issues

Several issues for GRN inference algorithms:
Very heterogeneous data, far from i.i.d. (knock-out, time series,
multifactorial, etc.)
Directing the edges is difficult (esp. with static data)
Direct vs indirect interactions
Large p/small n problem
Scalability (thousands of genes, millions of pairs)
Edge ranking vs network prediction
Difficult to validate (very few known real networks)
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GRN inference: existing methods

Two main families of methods:

Score-based: define a similarity score between genes based on their

expression profiles and connect two genes if their similarity is above some

threshold
Score matrix Target gene

gene 1 gene 2 · · · gene p
gene 1 - 0.05 · · · 0.56

Regulating gene 2 0.19 - · · · 0.03
gene · · · · · · · · · · · · · · ·

gene p 0.11 0.42 · · · -

(eg., CLR, MRNET, ARACNE, GeneNet)

Model-based: learn a model that explains as well as possible the observed

expression data and extract the network from this model

(eg., Boolean networks, differential equations, (dynamic) Bayesian networks)
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DREAM challenges

(Marbach et al., PNAS, 2010)

Very few reliable real benchmark datasets exist ⇒ evaluation on
simulated data
DREAM, “Dialogue for Reverse Engineering Assessments and
Methods”, is an annual reverse engineering competition, organized
since 5 years (http://wiki.c2b2.columbia.edu/dream)
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Network inference as p feature selection problems

Expression data

Gene
1

Gene
2

Gene
3

Gene
p

...

LS

LS

LS

...

Output gene Input gene

...

...

...

Exp1
Exp2
Exp3

ExpN

1

2

p

Main idea: decompose the problem
of network inference into p

sub-problems
Sub-problem i = find the regulators
of gene i , ie., those genes whose
expression is predictive of gene i ’s
expression
Solved as p feature selection
problems (in regression)

GENIE3 within the DREAM challenges GENIE3 BioMAGNet 12 / 39



Feature selection with tree-based ensemble methods

Tree-based ensemble methods are good candidates

Bagging
Random Forests
Extra-Trees
...

Non-parametric models

Can deal with interacting features

(Almost) parameter-free

Work well with high-dimensional
datasets

Scalable
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Our approach

Gout

G15

G4

G10

G15<0.2

G4<0.5 G10<0.7

Gout=0.7Gout=0.4Gout=0.4Gout=0.8

(Bagging, with 1000 trees in all experiments)
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GENIE3 (GEne Network Inference with Ensemble of Trees)

Tree ensemble1

Tree ensemble2

Tree ensemblep

Expression data
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Discussion

GENIE3:
Extends score-based methods by taking into account variable
dependencies
Can be considered as a non-parametric model-based approach, related
to Bayesian networks
Has a reasonable computational complexity (at most O(p2N log(N)))
and is trivially parallelizable
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Experiments within the DREAM challenges

DREAM3 (2008):
In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data:

time series+knock-down+knock-out

DREAM4 (2009):
In Silico Size 100: 5 networks of 100 genes, data: time

series+knock-down+knock-out

In Silico Size 100 Multifactorial: 5 networks of 100 genes, steady-state

levels under multifactorial pertubations

DREAM5 (2010):
Network Inference challenge: 3 real networks + 1 artificial network,

data: microarray compendia

Systems Genetics challenge: 5×3 networks of 100 genes, data: gene

expression and genotyping data
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Steady-state data (and microarray compendia)

DREAM3 (2008):
In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data:

time series+knock-down+knock-out

DREAM4 (2009):
In Silico Size 100: 5 networks of size 100, data: time

series+knock-down+knock-out

In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state

levels under multifactorial pertubations

DREAM5 (2010):
Network Inference challenge: 3 real networks + 1 artificial network,

data: microarray compendia

Systems Genetics challenge: 5×3 networks of 100 genes, data: gene

expression and genotyping data
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DREAM4 In silico multifactorial challenge

5 networks of 100 genes each,
extracted from real GRN of E.

coli and S. cerevisiae

Detailed kinetic model in the
form of (stochastic) ordinary
differential equations (plus noise)

dxi

dt
= mi fi (y)− λRNA

i xi

dyi

dt
= rixi − λProt

i yi

100 expression measurements:
static steady-state expression
profiles obtained from (slight)
perturbations of the basal
activation of all genes
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Evaluation protocol (all challenges)

AUROC=0.91 AUPR=0.79

Output of algorithms: a ranked list of predicted interactions (directed)
Evaluation through ROC and Precision-recall curves

⇒ Area under ROC (AUROC) and Precision-recall (AUPR) curves
⇒ p-values under random model

Overall score = −0.5 log10(procppr )
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Our Results on DREAM4

Final ranking of the challenge (directed network)

Rank Team
Overall Mean Mean

Score AUPR p-value AUROC p-value

1 GENIE3-Bagging 37.736 0.22 5.93e-54 0.76 1.93e-28

2 Team 549 28.165 0.14 7.45e-35 0.73 6.29e-23

· · · · · · · · · · · · · · · · · ·

Comparison with existing approaches (undirected network)

GENIE3-Bagging CLR ARACNE MRNET GGM

Overall score 36.736 35.838 32.632 34.124 26.846
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GENIE3 is able to predict a directed network

Predicted networks contain a significant number (52%) of asymmetric links
(versus 95% in the gold standard).

At 5% (resp. 100%) recall, mean error rate on edge directionality is 20%
(resp. 25%)
(edges i → j for which wi→j < wj→i ).

→ GENIE3 is a plausible approach for directing an undirected network.
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DREAM5 Network Inference Challenge

DREAM4 datasets are not realistic
i.i.d. multifactorial data
Small number of genes
Number of genes � number of experiments

DREAM5 data:
3 real networks: E. coli, S. cerevisae, S. aureus (no gold standard for the last

one but community predictions will be verified experimentally).

1 simulated network: same simulation model as in DREAM4 but
mimic main features of real microarray compendia
Potential TFs are supposed to be known in advance

Network # TFs # Genes # Chips

in-silico 195 1643 805

S. aurus 99 2810 160

E. coli 334 4511 805

S. cerevisiae 333 5950 536
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DREAM5 - In silico network

0 1
0

1

Recall

Precision

 

 
GENIE3  Random Forest
GENIE3  Bagging

Team AUPR AUROC

GENIE3-Bag 0.38 0.82
Team 862 0.31 0.76

Team 776 0.30 0.78

GENIE3-RF 0.29 0.82
Team 868 0.28 0.74

Team 870 0.28 0.75

· · · · · · · · ·
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DREAM5 - In vivo networks

E. coli

0 1
0

1

Recall

Precision

 

 
GENIE3  Random Forest
GENIE3  Bagging

Team AUPR AUROC

Team 543 0.12 0.67

GENIE3-RF 0.09 0.62
Team 772 0.09 0.61

Team 48 0.09 0.61

Team 395 0.08 0.60

· · · · · · · · ·
GENIE3-Bag 0.07 0.61

· · · · · · · · ·

S. Cerevisiae

0 1
0

1

Recall

Precision

 

 
GENIE3  Random Forest
GENIE3  Bagging

Team AUPR AUROC

Team 702 0.03 0.51

Team 548 0.03 0.51

Team 395 0.03 0.54

Team 705 0.03 0.52

· · · · · · · · ·
GENIE3-RF 0.02 0.52
GENIE3-Bag 0.02 0.52

· · · · · · · · ·
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Comparison with other methods

In silico
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GENIE3 RF
CLR
ARACNE
Linear regression
GGM

Overall Score

GENIE3-RF 40.28

2nd DREAM5 34.02

CLR 23.93

Linear reg. 7.15

GGM 5.81

ARACNE 3.22

E. coli
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CLR
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GGM

S. Cerevisiae
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GENIE3 RF
CLR
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Linear regression
GGM

CLR: Faith et al. (2007) ARACNE: Margolin et al. (2006) GGM: Schafer et al. (2005)
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Time-series (and steady-state) data

DREAM3 (2008):
In-Silico-Network challenge (Size 100): 5 networks of 100 genes, data:

time series+knock-down+knock-out

DREAM4 (2009):
In Silico Size 100: 5 networks of size 100, data: time

series+knock-down+knock-out

In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state

levels under multifactorial pertubations

DREAM5 (2010):
Network Inference challenge: 3 real networks + 1 artificial network,

data: microarray compendia

Systems Genetics challenge: 5×3 networks of 100 genes, data: gene

expression and genotyping data
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GENIE3 with time-series data

Time-series only:
Predict expressions at time t from previous time steps, i.e., minimizes
for each gene j : �

t
(gj(t + h)− fj(g

−j(t)))2

g1(t1) g2(t1) · · · gp(t1) gout(t1 + h)
g1(t2) g2(t2) · · · gp(t2) gout(t2 + h)
g1(t3) g2(t3) · · · gp(t3) gout(t3 + h)

· · · · · · · · · · · · · · ·

(averaging over several time horizons h works best)

Time-series plus steady-state:
Learn a separate ranking from both datasets and then combine them
or Jointly learn a single model for both datasets by merely
concatenating them
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DREAM3 and DREAM4 In Silico Size100

5 networks of 100 genes each,
extracted from real GRN of E.

coli and S. cerevisiae

Steady-state data: 201 profiles
(systematic knock-down and
knock-out of all genes,
wild-type)
Time-series: 210 profiles (10×21
time points)
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Results

DREAM3 Size 100
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DREAM4 Size 100
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We would have been ranked 2nd on DREAM3 and 3rd on DREAM4.
(Best methods are based on dynamical models.)
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Expression + Genotyping data

DREAM3 (2008):
In-Silico-Network challenge (Size 100): 5×3 networks of 100 genes,

data: time series+knock-down+knock-out

DREAM4 (2009):
In Silico Size 100: 5 networks of size 100, data: time

series+knock-down+knock-out

In Silico Size 100 Multifactorial: 5 networks of size 100, steady-state

levels under multifactorial pertubations

DREAM5 (2010):
Network Inference challenge: 3 real networks + 1 artificial network,

data: microarray compendia

Systems Genetics challenge: 5×3 networks of 100 genes, data: gene

expression and genotyping data
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Systems genetics

(Jansen and Nap, Trends in Genetics, 2001)
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Conclusions and future works

Conclusions:

We obtained very good performances with GENIE3 on the DREAM

challenges with different kinds of data

Performances on real datasets are worse than expected from results on

artificial data

The availability of dynamical models (synthetic and real ones) is crucial to

fairly assess and thus design network inference methods

Future works:

Investigation of potential differences between real and artificial datasets

Incorporate other kinds of regulations (miRNAs)

Combination with dynamical models (in both directions)

Application on real datasets
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