Revisiting gray box model learning and Kalman filtering with subspace based model learning

Guillaume Mercère

University of Poitiers Université dePoitiers

KU Leuven, 11 June 2024

Outline

- Motivations
- ② Subspace based model learning (SML): a reminder
- 3 Kalman filter tuning with SML
- Gray box model learning with SML
- Discussion

MOTIVATIONS

Engineers need accurate models

 In many practical situations, engineers have to determine dynamical models of real systems from available data sets and prior knowledge.

AIRBUS-ONERA-LIAS project

Fluttering detection DDM from short duration data

SINTERS-ICUBE-LIAS project

Flexibility estimation and control for remote surgery

GE-LAMIH-RU-LIAS project

Fouling detection in heat exchangers

MICHELIN-LIAS project

Tire-road interaction estimation for autonomous cars

Common denominator of these projects

- During these projects, we were asked to generate (new) estimators of physical parameters and signals.
 - "The best" parameter estimates were produced with nonlinear optimization based solutions.
 - "The best" signal estimates were produced with Kalman filters.
- Precise results were achieved solely through meticulous tuning of these techniques.
 - Nonlinear optimization works well when initial guesses are in the vicinity of the global optimum.
 - Kalman filters are efficient when the noise covariance matrices are well selected *a priori*.
- We primarily developed new tuning solutions based on initial estimates generated by subspace based model learning.

SUBSPACE BASED MODEL LEARNING: A REMINDER

Problem formulation

• Subspace based model learning (SML) methods mainly focus on state space models of the form

$$egin{aligned} oldsymbol{x}_{k+1} &= oldsymbol{A} oldsymbol{x}_k + oldsymbol{B} oldsymbol{u}_k + oldsymbol{w}_k, & ext{(1a)} \ oldsymbol{y}_k &= oldsymbol{C} oldsymbol{x}_k + oldsymbol{v}_k. & ext{(1b)} \end{aligned}$$

where the noise sources are assumed to be realizations of zero mean white noises statically independent of the input sequence such that

$$\mathbb{E}\left[\begin{bmatrix}\mathbf{v}_i\\\mathbf{w}_i\end{bmatrix}\begin{bmatrix}\mathbf{v}_j^\top & \mathbf{w}_j^\top\end{bmatrix}\right] = \begin{bmatrix}\mathbf{V} & \mathbf{S}\\\mathbf{S}^\top & \mathbf{W}\end{bmatrix}\delta_{ij}.$$
 (2)

Problem formulation (cont'd)

- By assuming that
 - A1 the input vector sequence is quasi stationary and exciting of sufficient order,
 - A2 the pair (A, C) is observable and the pair $(A, \begin{bmatrix} B & V^{1/2} \end{bmatrix})$ is reachable,
 - standard SML solutions aim at estimating
 - the order n_x of the system,
 - an approximated minimum variance estimate of \pmb{x}_k , $k\in\mathbb{T}$,
 - (A, B, C) up to a similarity transformation.

- Under Assumption A1 and A2, standard SML solutions consists in
 - (1) selecting future and past indexes f and p with the constraint that $f>n_x$ and p large "enough",
 - ② building "past" and "future" Hankel matrices $oldsymbol{Z}_p$, $oldsymbol{U}_f$ and $oldsymbol{Y}_f$,
 - **③** computing the RQ factorization of $\begin{bmatrix} m{U}_f^{ op} & m{Z}_p^{ op} & m{Y}_f \end{bmatrix}^{ op}$,
 - (a) extracting \mathbf{R}_{32} and \mathbf{R}_{22} from this RQ factorization, then computing the SVD of $\mathbf{R}_{32}\mathbf{R}_{22}^{-1}\mathbf{Z}_p$ to determine \hat{n}_x as well as an estimate $\hat{\mathbf{X}}_{[f,M]}$ of the state on a user defined horizon,
 - **(5)** resorting to a LLS solution for determining $\hat{A} \ \hat{B}$ and \hat{C} .
- Keep in mind that all these estimates are valid up to a similarity transformation!!!!

KALMAN FILTER TUNING WITH SUBSPACE BASED MODEL LEARNING

KALMAN FILTERING: A REMINDER

Toy example

 Let us assume we want¹ to determine from remote noisy measurements the position and speed (state) of a cart moving straightforward.

¹See Understanding the basis of the Kalman filter via a simple and intuitive derivation, R. Faragher, IEEE Signal Processing Magazine, 2012.

Main steps

In order to reach this goal, we need²
 a model of the cart dynamics, *i.e.*,

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k,$$

• a model of the measuring process, *i.e.*,

$$\boldsymbol{y}_k = \boldsymbol{C}\boldsymbol{x}_k,$$

²We focus on LTI systems only.

Main steps

In order to reach this goal, we need
 a model of the cart dynamics, *i.e.*,

$$\boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{x}_k + \boldsymbol{B}\boldsymbol{u}_k + \boldsymbol{w}_k,$$

• a model of the measuring process, *i.e.*,

$$\boldsymbol{y}_k = \boldsymbol{C}\boldsymbol{x}_k + \boldsymbol{v}_k,$$

• a description of the noise and uncertainties acting on the system, *i.e.*,

$$\mathbb{E} \{ \mathbf{w}_k \} = \mathbf{0},$$

$$\mathbb{E} \{ \mathbf{w}_k \mathbf{w}_j^\top \} = \mathbf{W}_k \delta_{kj}, \ \mathbf{W}_k \succ 0,$$

$$\mathbb{E} \{ \mathbf{v}_k \} = \mathbf{0},$$

$$\mathbb{E} \{ \mathbf{v}_k \mathbf{v}_j^\top \} = \mathbf{V}_k \delta_{kj}, \ \mathbf{V}_k \succ 0.$$

Main steps (cont'd)

• Prior:

- ullet the model matrices $oldsymbol{A}$, $oldsymbol{B}$ and $oldsymbol{C}$,
- the estimated state x_{k-1}^+ and its covariance matrix X_{k-1}^+ .

Main steps (cont'd)

"Prediction" Kalman filter equations are

$$\hat{oldsymbol{x}}_k^- = oldsymbol{A}\hat{oldsymbol{x}}_{k-1}^+ + oldsymbol{B}oldsymbol{u}_{k-1}, \ oldsymbol{X}_k^- = oldsymbol{A}oldsymbol{X}_{k-1}^+oldsymbol{A}^ op + oldsymbol{W}_k.$$

• We get noisy measurements, *i.e.*,

$$\boldsymbol{y}_k = \boldsymbol{C} \boldsymbol{x}_k + \boldsymbol{v}_k.$$

Main steps (cont'd)

"Update" Kalman filter equations are

$$egin{aligned} oldsymbol{K}_k &= oldsymbol{X}_k^-oldsymbol{C}^ op oldsymbol{\left(Coldsymbol{X}_k^-oldsymbol{C}^ op+oldsymbol{V}_k
ight)^{-1},\ oldsymbol{\hat{x}}_k^+ &= oldsymbol{\hat{x}}_k^- + oldsymbol{K}_k(oldsymbol{y}_k - oldsymbol{C}oldsymbol{\hat{x}}_k^-),\ oldsymbol{X}_k^+ &= oldsymbol{\left(I_{n_x imes n_x} - oldsymbol{K}_koldsymbol{C}
ight)oldsymbol{X}_k^-. \end{aligned}$$

Université ^{de}Poitiers

Basic idea of the solution

- The sequences $(oldsymbol{v}_i)_{i\in\mathbb{T}}$ and $(oldsymbol{w}_i)_{i\in\mathbb{T}}$ are used to describe
 - the noise acting on the real system,
 - the (in)accuracy of the model representation,

thanks to their covariance matrices V_k and W_k , $k \in \mathbb{T}$.

- Because V and W are used to describe the confidence we have in the model and the measurements, we aim at determining them by comparing
 - the model used in the Kalman filter,
 - a model estimated from the available data sets.
- Herein, the data driven model learning solution is a SML method.

NOISE COVARIANCE MATRIX ESTIMATION

Main ingredients

- When a Kalman filter is designed, we have access to
 - I/O data samples,
 - a "reliable" DT state space representation of the system dynamics, *i.e.*, (*A*, *B*, *C*).
- When the I/O data is rich enough, it can be used with a SML algorithm to generate
 - an approximated minimum variance estimate of \boldsymbol{x}_k , $k \in \mathbb{T}$, • estimates of $(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$,

up to a similarity transformation.

Main ingredients

- When a Kalman filter is designed, we have access to
 - I/O data samples,
 - a "reliable" DT state space representation of the system dynamics, *i.e.*, (A, B, C).
- When the I/O data is rich enough, it can be used with a SML algorithm to generate
 - an approximated minimum variance estimate of x_k , $k \in \mathbb{T}$,
 - estimates of $({m A},{m B},{m C})$,

up to a similarity transformation.

Notation interlude

For any vector $r_k \in \mathbb{R}^{n_r \times 1}$ and parameters M, i and $\ell \in \mathbb{N}^+_*$, we define

$$oldsymbol{R}_{[i,M]} = egin{bmatrix} oldsymbol{r}_i & oldsymbol{r}_{i+1} \cdots & oldsymbol{r}_{i+M-1} \end{bmatrix} \in \mathbb{R}^{n_r imes M}.$$

Similarity transformation

- The SML algorithm gives access to $\hat{X}_{[i,M]}$ in an unknown basis.
- Knowing (A, C) and (\hat{A}, \hat{C}) , the similarity transformation T between (A, B, C) and $(\hat{A}, \hat{B}, \hat{C})$ satisfies

$$\Gamma_i(\boldsymbol{A}, \boldsymbol{C})\boldsymbol{T} = \Gamma_i(\hat{\boldsymbol{A}}, \hat{\boldsymbol{C}}),$$

where

$$m{\Gamma}_i(m{A},m{C}) = egin{bmatrix} m{C}\ m{CA}\ m{arepsilon}\ m{LA}\ m{arepsilon}\ m{CA}^{i-1} \end{bmatrix}, \; i \geq n_x.$$

• Thus, we can get $reve{X}_{[i,M]}$ is the "correct basis" as follows

$$reve{oldsymbol{X}}_{[i,M]} = oldsymbol{\Gamma}_i^\dagger(oldsymbol{A},oldsymbol{C})oldsymbol{\Gamma}_i(\hat{oldsymbol{A}},\hat{oldsymbol{C}})\hat{oldsymbol{X}}_{[i,M]}.$$

Covariance matrix estimation

• We can finally estimate

$$egin{bmatrix} \hat{m{W}}_{[i,M-1]} \ \hat{m{V}}_{[i,M-1]} \end{bmatrix} = egin{bmatrix} m{m{X}}_{[i+1,M]} \ m{Y}_{[i,M-1]} \end{bmatrix} - egin{bmatrix} m{A} & m{B} \ m{C} & m{0} \end{bmatrix} egin{bmatrix} m{m{X}}_{[i,M-1]} \ m{U}_{[i,M-1]} \end{bmatrix},$$

and

$$\begin{bmatrix} \hat{\boldsymbol{V}} & \hat{\boldsymbol{S}} \\ \hat{\boldsymbol{S}}^{\top} & \hat{\boldsymbol{W}} \end{bmatrix} = \lim_{M \to \infty} \frac{1}{M} \begin{bmatrix} \hat{\boldsymbol{W}}_{[i,M-1]} \\ \hat{\boldsymbol{V}}_{[i,M-1]} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{W}}_{[i,M-1]}^{\top} & \hat{\boldsymbol{V}}_{[i,M-1]}^{\top} \end{bmatrix}.$$

NUMERICAL ILLUSTATIONS

• We consider

$$\begin{split} \boldsymbol{A} &= \begin{bmatrix} 0.603 & 0.603 & 0 & 0 \\ -0.603 & 0.603 & 0 & 0 \\ 0 & 0 & -0.603 & -0.603 \\ 0 & 0 & 0.603 & -0.603 \end{bmatrix}, \\ \boldsymbol{B} &= \begin{bmatrix} 1.1650 & -0.6965 \\ 0.6268 & 1.6961 \\ 0.0751 & 0.0591 \\ 0.3516 & 1.7971 \end{bmatrix}, \\ \boldsymbol{C} &= \begin{bmatrix} 0.2641 & -1.4462 & 1.2460 & 0.5774 \\ 0.8717 & -0.7012 & -0.6390 & -0.3600 \\ 0.8717 & -0.7012 & -0.6390 & -0.3600 \end{bmatrix}, \\ \boldsymbol{K} &= 4 \times \begin{bmatrix} 0.1242 & -0.0895 \\ -0.0828 & -0.0128 \\ 0.0390 & -0.0968 \\ -0.0225 & 0.1459 \end{bmatrix}, \\ \boldsymbol{R}_e &= \begin{bmatrix} 0.0176 & -0.0267 \\ -0.0267 & 0.0497 \end{bmatrix}. \end{split}$$

• We generate 10^3 realizations of the noise sequence and we select a data length N = 1000.

Estimates of the elements of $oldsymbol{V}$

	\hat{v}_{11}	\hat{v}_{12}	\hat{v}_{22}
	0.0176	-0.0267	0.0497
avg.	0.0176	-0.0267	0.0497
std.	0.0008	0.0012	0.0022
avg.	0.0588	-0.0750	0.0888
std.	0.0412	0.0149	0.0057
avg.	0.031	-0.041	0.028
std.	0.0041	0.0013	0.006
avg.	0.023	-0.073	0.031
std.	0.0087	0.0066	0.0092
avg.	0.0198	-0.0272	0.0516
std.	0.0011	0.0013	0.0024
	avg. std. avg. std. avg. std. avg. std. avg. std.	$\begin{array}{c} \hat{v}_{11} \\ 0.0176 \\ \text{avg.} & 0.0176 \\ \text{std.} & 0.0008 \\ \text{avg.} & 0.0588 \\ \text{std.} & 0.0412 \\ \text{avg.} & 0.031 \\ \text{std.} & 0.0041 \\ \text{avg.} & 0.023 \\ \text{std.} & 0.0087 \\ \text{avg.} & 0.0198 \\ \text{std.} & 0.0011 \\ \end{array}$	$\begin{array}{c cccc} \hat{v}_{11} & \hat{v}_{12} \\ \hline 0.0176 & -0.0267 \\ \text{avg.} & 0.0176 & -0.0267 \\ \text{std.} & 0.0008 & 0.0012 \\ \text{avg.} & 0.0588 & -0.0750 \\ \text{std.} & 0.0412 & 0.0149 \\ \text{avg.} & 0.031 & -0.041 \\ \text{std.} & 0.0041 & 0.0013 \\ \text{avg.} & 0.023 & -0.073 \\ \text{std.} & 0.0087 & 0.0066 \\ \text{avg.} & 0.0198 & -0.0272 \\ \text{std.} & 0.0011 & 0.0013 \\ \end{array}$

Estimates of the elements of $oldsymbol{W}$

		\hat{w}_{11}	\hat{w}_{12}	\hat{w}_{22}	\hat{w}_{23}	\hat{w}_{34}	\hat{w}_{44}
Theo. value		0.0202	-0.0045	0.0149	-0.0198	0.0012	-0.0031
Sample cov.	avg.	0.0202	-0.0045	0.0149	-0.0198	0.0012	-0.0031
	std.	0.8886e-03	0.2054e-03	0.6563e-03	0.8750e-03	0.0509e-03	0.1487e-03
ICM	avg.	0.0526	-0.0150	0.0355	-0.0454	0.0041	-0.0103
	std.	0.0146	0.0079	0.0066	0.0067	0.0042	0.0036
DCM	avg.	0.0113	-0.0058	0.0186	-0.0285	0.003	-0.0103
	std.	0.004	0.0033	0.0068	0.0067	0.0039	0.0033
CMM	avg.	0.0170	-0.0041	0.0124	-0.0234	0.0041	-0.0043
	std.	0.0097	0.0082	0.0064	0.0062	0.0052	0.0028
New meth.	avg.	0.0196	-0.0041	0.0145	-0.0190	0.0015	-0.0026
	std.	0.0017	0.0006	0.0011	0.0011	0.0004	0.0005

Estimates of the elements of old S

		\hat{s}_{11}	\hat{s}_{13}	\hat{s}_{21}	\hat{s}_{24}
Theo. value		0.0183	-0.0045	0.0131	-0.0172
Sample cov.	avg.	0.0183	-0.0045	0.0131	-0.0172
	std.	0.0008	0.0002	0.0006	0.0008
New meth.	avg.	0.0181	-0.0039	0.0137	-0.0169
	std.	0.0011	0.0007	0.0010	0.0010

MICHELIN PROJECT

PhD thesis with Michelin

- Future autonomous vehicles will require well-developed Advanced Driver Assistance Systems (ADAS) to assist human beings in driving.
- One path chosen by Michelin for ADAS improvement consists in providing ADAS with information related to the state of the road.
- Such information is included in the grip potential quantity.
- Benefits for passenger security (to name a few) are
 - detection of roads with low grip area,
 - evaluation of the driving conditions,
 - reduction of the impact of rear end collisions.

Problem formulation

• The grip potential is

$$\mu_{\rm max} = \max{\left(\frac{\sqrt{F_x^2+F_y^2}}{F_z}\right)}, \label{eq:max}$$

i.e., the maximum effort a tire can generate before sliding on the road.

Problem formulation (cont'd)

Problem

Estimate the grip potential under standard driving conditions from sensors fitted on production vehicles.

Problem formulation (cont'd)

- Getting (noisy) data requires to measure the friction μ and the slip ratio s.
- No dedicated sensors exist on production vehicles.
- These signals must be estimated knowing that, for the longitudinal dynamics,

$$\mu = \frac{F_x}{F_z},$$

$$s = \frac{\omega R_{\text{rol}} - v_x}{\max\left(\omega R_{\text{rol}} - v_x\right)}.$$

- A Kalman filter was suggested to reconstruct the components of μ and s accurately.
- Efficient Kalman filter tuning solutions must be introduced to guarantee accurate estimates.

Seminar at KU Leuven

Michelin results

- Data is generated with VI-CRT (realistic simulator).
- A nonlinear state space model is used, *i.e.*,

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), t, \boldsymbol{\theta}), \\ \boldsymbol{y}(t) = \boldsymbol{g}(\boldsymbol{x}(t), t, \boldsymbol{\theta}),$$

with

$$\begin{aligned} \boldsymbol{x} &= \begin{bmatrix} v_x & \omega_f & \omega_r & F_{x_f} & F_{x_r} & \dot{F}_{x_f} & \dot{F}_{x_r} & \kappa & \dot{\kappa} \end{bmatrix}^\top, \\ \boldsymbol{u} &= \begin{bmatrix} T_f & T_r \end{bmatrix}^\top, \\ \boldsymbol{y} &= \begin{bmatrix} v_x & \omega_f & \omega_r & \dot{\kappa} \end{bmatrix}^\top, \end{aligned}$$

involving

- a single track model for the vehicle dynamics,
- an effective tire radius model,
- a suspension model and a load transfer model.

Measurements used by the observer, SNR = 25 dB

Long. tire force estimation

Vehicle speed estimation

Friction reconstruction

Université "Poitiers

Slip ratio reconstruction

Université ^{de}Poitiers GRAY BOX MODEL LEARNING WITH SUBSPACE BASED MODEL LEARNING

Running example: a printer belt

Picture from "Modern control systems", 2010, pp. 222-228.

Running example (cont'd)

• This system satisfies

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{x}(t) + \boldsymbol{B}(\boldsymbol{\theta})\boldsymbol{u}(t), \\ \boldsymbol{y}(t) &= \boldsymbol{C}(\boldsymbol{\theta})\boldsymbol{x}(t), \end{split}$$

with

$$x_1(t) = r\phi(t) - z(t), \quad x_2(t) = \dot{z}(t), \quad x_3(t) = \dot{\phi}(t),$$

and

- y(t) the speed of the printing device,
- u(t) the torque applied to drive the belt.

Running example (cont'd)

• This system satisfies

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{x}(t) + \boldsymbol{B}(\boldsymbol{\theta})\boldsymbol{u}(t), \\ \boldsymbol{y}(t) &= \boldsymbol{C}(\boldsymbol{\theta})\boldsymbol{x}(t), \end{split}$$

with

$$\boldsymbol{A}(\boldsymbol{\theta}) = \begin{bmatrix} 0 & -1 & \theta_1 \\ \theta_2 & 0 & 0 \\ \theta_3 & 0 & \theta_4 \end{bmatrix}, \qquad \boldsymbol{B}(\boldsymbol{\theta}) = \begin{bmatrix} 0 \\ 0 \\ \theta_5 \end{bmatrix},$$
$$\boldsymbol{C}(\boldsymbol{\theta}) = \begin{bmatrix} 0 & \theta_6 & 0 \end{bmatrix}.$$

Running example (cont'd)

• This system satisfies

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{x}(t) + \boldsymbol{B}(\boldsymbol{\theta})\boldsymbol{u}(t), \\ \boldsymbol{y}(t) &= \boldsymbol{C}(\boldsymbol{\theta})\boldsymbol{x}(t), \end{split}$$

with

$$\theta_1 = r, \qquad \theta_2 = \frac{2k}{m}, \qquad \theta_3 = -\frac{2kr}{J},$$
$$\theta_4 = -\frac{b}{J}, \qquad \theta_5 = \frac{k_m}{RJ}, \qquad \theta_6 = k_1.$$

Problem

From the available I/O data, estimate consistently (and uniquely) a gray box (GB) model of this system.

G. Mercère

Seminar at KU Leuven

A STANDARD SOLUTION

• Fix a model parameterization

$$\boldsymbol{A}(\boldsymbol{\theta}) = \begin{bmatrix} 0 & -1 & \theta_1 \\ \theta_2 & 0 & 0 \\ \theta_3 & 0 & \theta_4 \end{bmatrix}, \qquad \boldsymbol{B}(\boldsymbol{\theta}) = \begin{bmatrix} 0 \\ 0 \\ \theta_5 \end{bmatrix},$$
$$\boldsymbol{C}(\boldsymbol{\theta}) = \begin{bmatrix} 0 & \theta_6 & 0 \end{bmatrix}, \qquad \boldsymbol{D}(\boldsymbol{\theta}) = 0.$$

- Fix a model parameterization
- Check the identifiability

Structural identifiability

We must assume that k_1 , m, r, and R are known *a priori* to guarantee that the model is structurally identifiable.

- Fix a model parameterization
- Check the identifiability
- Compare with a signal norm the outputs of the system and the model, *e.g.*,

$$V_N\left(oldsymbol{ heta}
ight) = \sum_{k=0}^{N-1} \left\|oldsymbol{y}(t_k) - oldsymbol{\gamma}(t_k,oldsymbol{ heta})
ight\|_{oldsymbol{Q}}^2,$$

with

$$\dot{\boldsymbol{x}}(t,\boldsymbol{\theta}) = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{x}(t,\boldsymbol{\theta}) + \boldsymbol{B}(\boldsymbol{\theta})\boldsymbol{u}(t),$$

$$\boldsymbol{\gamma}(t,\boldsymbol{\theta}) = \boldsymbol{C}(\boldsymbol{\theta})\boldsymbol{x}(t,\boldsymbol{\theta}).$$

- Fix a model parameterization
- Check the identifiability
- Compare with a signal norm the outputs of the system and the model, *e.g.*,

$$V_{N}\left(oldsymbol{ heta}
ight) = \sum_{k=0}^{N-1} \left\|oldsymbol{y}(t_{k}) - oldsymbol{\gamma}(t_{k},oldsymbol{ heta})
ight\|_{oldsymbol{Q}}^{2}.$$

Remark

Minimizing $V_N(\theta)$ can be efficiently performed by using, *e.g.*, the Levenberg-Marquardt or a BFGS like algorithm.

Simulation example

- Simulation procedure:
 - one noise free data set for model learning (PRBS)
 - A double Monte Carlo simulation is run

Simulation example

- Simulation procedure:
 - one noise free data set for model learning (PRBS)
 - A double Monte Carlo simulation is run
 - for the noise, 100 zero mean white Gaussian noises are generated such that the SNR = $10 \ dB$,

Simulation example

- Simulation procedure:
 - one noise free data set for model learning (PRBS)
 - A double Monte Carlo simulation is run
 - for the noise, 100 zero mean white Gaussian noises are generated such that the SNR = $10 \ dB$,
 - for the initialization, 100 initial guesses are generated as follows

$$\theta_i^{init} = \theta_i^{real}(0.5 + \lambda),$$

where λ is a random value drawn from the standard uniform distribution on the open interval (0,1).

Parameter estimation results

	NOMINAL	BEST	STD	MEAN	MEDIAN
k_1	1.4	1.4	0	1.4	1.4
m	0.2	0.2	0	0.2	0.2
r	0.15	0.15	0	0.15	0.15
R	2	2	0	2	2
b	0.25	0.24399	0.0030617	0.25072	0.25106
J	0.01	0.0091905	0.00034345	0.0099452	0.0099247
$_{k}$	20	19.9461	0.051731	20.0234	20.0317
k_m	2	1.9554	0.024181	2.006	2.0088

Quick analysis

- Getting such good results require
 - reliable initial guesses,
 - tuning the nonlinear optimization efficiently,

in order to help the algorithm converge towards the global minimum of $V_{\! N}.$

Some important questions

- Can we suggest alternatives to this output error approach?
- Can we generate reliable initial guesses for nonlinear optimization?

FROM BLACK BOX TO GRAY BOX WITH LINEAR ALGEBRA

Problem formulation

- Let use assume that
 - A reliable fully parameterized continuous² time linear time invariant state space model (𝔄,𝔅,𝔅) is available.
 - The parameterization $(A(\theta), B(\theta), C(\theta))$ is identifiable.
- We know that matrices ${m T}$ or ${m S}$ exist such that

 $\mathfrak{A}T = TA(\theta),$ $\mathfrak{B} = TB(\theta),$ $\mathfrak{C}T = C(\theta),$ $S\mathfrak{A} = A(\theta)S,$ $S\mathfrak{B} = B(\theta),$ $\mathfrak{C} = C(\theta)S.$

Problem to solve

Determine the matrices T or S (and by extension θ) by solving the aforementioned set of equations.

²Several transformations exist to convert a DT LTI SS model into a CT LTI SS model efficiently.

G. Mercère

Solution

- In [Prot and Mercère, 2020], we have shown that the similarity transformation ${\boldsymbol{T}}$ or ${\boldsymbol{S}}$ can be determined by
 - extracting a large system of equations linear in terms of the similarity transformation,
 - solving this system of linear equations by using standard linear algebra tools,
 - completing this two step procedure by a numerical optimization solution (dedicated now to a very small number of unknowns) if necessary,

when

- the dependence on heta is affine,
- the system to identify is in the model class.

A toy example

• Let us consider the gray box model ($\theta_1 = -1$ and $\theta_2 = -2$ when necessary)

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \begin{bmatrix} 1 & \theta_1 \\ 0 & 1 \end{bmatrix} \boldsymbol{x}(t) + \begin{bmatrix} \theta_2 \\ 3 \end{bmatrix} \boldsymbol{u}(t), \\ \boldsymbol{y}(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \boldsymbol{x}(t). \end{split}$$

Let us assume that

$$\begin{aligned} \boldsymbol{\mathfrak{A}} &= \begin{bmatrix} 2.1961e+01 & -5.9101e+01 \\ 7.4341 & -1.9961e+01 \end{bmatrix}, \quad \boldsymbol{\mathfrak{B}} &= \begin{bmatrix} 3.6753 \\ 1.3522 \end{bmatrix}, \\ \boldsymbol{T} &= \begin{bmatrix} 9.5974e-01 & 5.8527e-01 \\ 3.4039e-01 & 2.2381e-01 \end{bmatrix}, \quad \boldsymbol{\mathfrak{C}}^{\top} &= \begin{bmatrix} 1.4360e+01 \\ -3.7552e+01 \end{bmatrix}. \end{aligned}$$

A toy example (cont'd)

• Instead of focusing on the unknowns θ_1 and θ_2 , we concentrate on the known parameters, *i.e.*,

$$S\mathfrak{A} = \begin{bmatrix} 1 & \theta_1 \\ 0 & 1 \end{bmatrix} S, \qquad \begin{bmatrix} 0 & 1 \end{bmatrix} S\mathfrak{A} = \begin{bmatrix} 0 & 1 \end{bmatrix} S,$$
$$S\mathfrak{B} = \begin{bmatrix} \theta_2 \\ 3 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 1 \end{bmatrix} S\mathfrak{B} = 3$$
$$\mathfrak{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} S \qquad \mathfrak{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} S.$$

Written differently, we get

$$\begin{bmatrix} \boldsymbol{\mathfrak{A}}^{\top} \otimes \boldsymbol{I}_{2\times 2} - \boldsymbol{I}_{2\times 2} \otimes \begin{bmatrix} 0 & 1 \end{bmatrix} \\ \boldsymbol{I}_{2\times 2} \otimes \begin{bmatrix} 1 & 0 \end{bmatrix} \\ \boldsymbol{\mathfrak{B}}^{\top} \otimes \boldsymbol{I}_{2\times 2} \end{bmatrix} \operatorname{vec}(\boldsymbol{S}) = \begin{bmatrix} \boldsymbol{0}_{1\times 2} \\ \operatorname{vec}(\boldsymbol{\mathfrak{C}}) \\ 3 \end{bmatrix}.$$

A toy example (cont'd)

• S is obtained by solving this system of linear equations, *i.e.*,

$$\boldsymbol{S} = \left[egin{array}{cccc} 1.4360e+01 & -3.7552e+01 \ -2.1840e+01 & 6.1580e+01 \end{array}
ight] = \boldsymbol{T}^{-1}.$$

Picture from "Modern control systems", 2010, pp. 222-228.

• We consider the model parameterization

$$\boldsymbol{A}(\boldsymbol{\theta}) = \begin{bmatrix} 0 & -1 & \theta_1 \\ \theta_2 & 0 & 0 \\ \theta_3 & 0 & \theta_4 \end{bmatrix}, \qquad \boldsymbol{B}(\boldsymbol{\theta}) = \begin{bmatrix} 0 \\ 0 \\ \theta_5 \end{bmatrix},$$
$$\boldsymbol{C}(\boldsymbol{\theta}) = \begin{bmatrix} 0 & \theta_6 & 0 \end{bmatrix}.$$

• We know (in red)

$$oldsymbol{A}(oldsymbol{ heta}) = egin{bmatrix} 0 & -1 & heta_1 \ heta_2 & 0 & 0 \ heta_3 & 0 & heta_4 \end{bmatrix}, \qquad oldsymbol{B}(oldsymbol{ heta}) = egin{bmatrix} 0 \ 0 \ heta_5 \end{bmatrix}, \ oldsymbol{C}(oldsymbol{ heta}) = egin{bmatrix} 0 \ 0 \ heta_5 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ heta_5 \end{bmatrix},$$

Thanks to the insight on four rows in (A(θ), B(θ), C(θ)) as well as the availability of (𝔄, 𝔅, 𝔅), we try to estimate S via the set of linear equations

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{S} \mathfrak{A} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{A}(\boldsymbol{\theta}) \mathbf{S},$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mathbf{S} \mathfrak{B} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$
$$\mathfrak{C} = \mathbf{C}(\boldsymbol{\theta}) \mathbf{S}.$$

By using the vectorization tool

$$\underbrace{\begin{bmatrix} \boldsymbol{\mathfrak{A}}^{\top} \otimes \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} - \boldsymbol{I}_{3\times3} \otimes \begin{bmatrix} 0 & -1 & \theta_1 \end{bmatrix}}{\boldsymbol{\mathfrak{B}}^{\top} \otimes \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{\boldsymbol{I}_{3\times3} \otimes \boldsymbol{C}(\boldsymbol{\theta})} \operatorname{vec}(\boldsymbol{S}) = \underbrace{\begin{bmatrix} \boldsymbol{0}_{3\times1} \\ \boldsymbol{0}_{2\times1} \\ \operatorname{vec}(\boldsymbol{\mathfrak{C}}) \end{bmatrix}}_{\boldsymbol{\alpha}}$$

- With $N \in \mathbb{R}^{8 \times 9}$, we have 8 equations for 9 unknown parameters in S.
- Because $\ker\left(N\right)\neq\{0\},$ the solution of this set of equations is not unique!
- We can however compute a (non unique) solution of it.

- We can compute $\ker(\mathbf{N})$ and show that $\ker(\mathbf{N}) \in \mathbb{R}^{9 \times 2}$.
- Furthermore,

$$\mathsf{vec} \Big(\hat{oldsymbol{S}} \Big) = oldsymbol{N}^\dagger \left(oldsymbol{lpha} + oldsymbol{lpha}_{\mathsf{null}}
ight),$$

where $\boldsymbol{\alpha}_{null}$ stands for any vector belonging to ker (\boldsymbol{N}) .

• In order to bypass the ambiguities relevant to $\ker{(N)}$, we can use the prior on $A(\theta)$ unused until now.

• We introduce the cost function

$$\begin{split} \arg\min_{\boldsymbol{z}\in\mathbb{R}^{2\times1}} \left\| \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol{\mathcal{A}}(\boldsymbol{z}) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\|_{2}^{2} \\ \text{s.t.} \quad \begin{cases} \boldsymbol{\mathcal{A}}(\boldsymbol{z}) = \boldsymbol{\mathcal{S}}(\boldsymbol{z}) \boldsymbol{\mathfrak{A}} \boldsymbol{\mathcal{S}}^{-1}(\boldsymbol{z}) \\ \boldsymbol{\mathcal{S}}(\boldsymbol{z}) = \text{reshape} \left(\boldsymbol{N}^{\dagger} \boldsymbol{\alpha} + \ker(\boldsymbol{N}) \boldsymbol{z}, n_{x}, n_{x} \right) \end{cases} . \end{split}$$

- Thanks to linear algebra, we have to determine 2 unknown parameters instead of 4.
- This cost function can be minimized with a L-BFGS algorithm without strong prior.

Parameter estimation results

- We use (again) the 100 noisy data sets to estimate 100 black box models by using N4SID + d2c.
- We select the best black box model (𝔄,𝔅,𝔅) giving the best fit on a validation data set.
- The initialization of the BFGS algorithm is performed with 100 different initial vectors *z* randomly generated from a standard zero-mean normal distribution.
- The best z is chosen by selecting the \hat{S} having the best condition number.

Parameter estimation results (cont'd)

• We can compute $(A(\theta), B(\theta), C(\theta))$ from $(\mathfrak{A}, \mathfrak{B}, \mathfrak{C})$ and \hat{S} .

	NOMINAL	ESTIMATED
k_1	1.4	1.4
m	0.2	0.2
r	0.15	0.15
R	2	2
b	0.25	0.24401
J	0.01	0.0091916
k	20	19.9462
k_m	2	1.9555

Explanations with the printer belt (cont'd)

- Let us assume that k is known as well.
- Because θ_2 is now known *a priori*, we know the first two rows of $A(\theta)$.
- By combining this prior with the knowledge of C(heta), we get

$$\begin{split} \underbrace{ \left(\boldsymbol{\mathfrak{A}}^{\top} \otimes \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} - \boldsymbol{I}_{3 \times 3} \otimes \begin{bmatrix} 0 & -1 & \theta_1 \\ \theta_2 & 0 & 0 \end{bmatrix} \right) }_{\boldsymbol{N}} \\ \times \operatorname{vec}(\boldsymbol{S}) = \underbrace{ \begin{bmatrix} \boldsymbol{0}_{6 \times 1} \\ \operatorname{vec}(\boldsymbol{\mathfrak{C}}) \end{bmatrix} }_{\boldsymbol{\alpha}}. \end{split}$$
Now $\boldsymbol{N} \in \boldsymbol{R}^{9 \times 9}$ and $\ker(\boldsymbol{N}) = \{\boldsymbol{0}\}!$

Parameter estimation results (cont'd)

- We can compute $\hat{m{S}}$ without any nonlinear optimization!!!
- Again, $(A(\theta), B(\theta), C(\theta))$ from $(\mathfrak{A}, \mathfrak{B}, \mathfrak{C})$ and \hat{S} .

	NOMINAL	ESTIMATED
k_1	1.4	1.4
m	0.2	0.2
r	0.15	0.15
R	2	2
b	0.25	0.25483
J	0.01	0.0099987
k	20	20
k_m	2	2.0367

DISCUSSION

References I

Mussot, V., Mercère, G., Dairay, T., Arvis, V., and Vayssettes, J. (2021).

Noise covariance matrix estimation with subspace model identification for Kalman filtering.

International Journal of Adaptive Control and Signal Processing, 35:591–611.

Prot, O. and Mercère, G. (2020).

Combining linear algebra and numerical optimization for gray-box affine state-space model identification. *IEEE Transactions on Automatic Control*, 65:3272–3285.

