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MOTIVATIONS



Engineers need accurate models

® In many practical situations, engineers have to determine
dynamical models of real systems from available data sets
and prior knowledge.

GE-LAMIH-RU-LIAS project

AIRBUS-ONERA-LIAS project

Fluttering detection
DDM from short duration data

Fouling detection in heat exchangers

SINTERS-ICUBE-LIAS project
s | MICHELIN-LIAS project

Flexibility estimation and control for remote surgery

Tire-road interaction estimation for autonomous cars Univérsité
dePoitiers
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Common denominator of these projects

® During these projects, we were asked to generate (new)
estimators of physical parameters and signals.
o "The best" parameter estimates were produced with non-
linear optimization based solutions.
o "The best" signal estimates were produced with Kalman
filters.
® Precise results were achieved solely through meticulous
tuning of these techniques.
o Nonlinear optimization works well when initial guesses are
in the vicinity of the global optimum.
o Kalman filters are efficient when the noise covariance ma-
trices are well selected a priori.

* We primarily developed new tuning solutions based on ini-
tial estimates generated by subspace based model learning.
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SUBSPACE BASED
MODEL LEARNING: A
REMINDER



Problem formulation

¢ Subspace based model learning (SML) methods mainly fo-
cus on state space models of the form

L1 = A.’Bk + B’U,k + wyg, (13)
yr = Cxy + vg. (1b)

where the noise sources are assumed to be realizations of
zero mean white noises statically independent of the input
sequence such that

’ HH vy }] - B{r If/'] o ()
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Problem formulation (cont'd)

® By assuming that
Al the input vector sequence is quasi stationary and exciting
of sufficient order,
A2 the pair (A, C) is observable and the pair (A, [B V'1/2])
is reachable,
standard SML solutions aim at estimating
o the order n, of the system,
o an approximated minimum variance estimate of xy, k € T,
o (A,B,C) up to a similarity transformation.
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® Under Assumption Al and A2, standard SML solutions
consists in

@ selecting future and past indexes f and p with the con-
straint that f > n; and p large "enough",

@ building "past" and "future" Hankel matrices Z,, Uy and
Y,

@ computing the RQ factorization of [UfT Z; Y;

@ extracting R3s and Roy from this RQ factorization, then
computing the SVD of R32R2_21Zp to determine 7, as
well as an estimate X[f’M] of the state on a user defined
horizon,

@® resorting to a LLS solution for determining A B and C.

]T

® Keep in mind that all these estimates are valid up to a
similarity transformation!!!! .

Univérsité
dePoitiers

G. Mercére Seminar at KU Leuven 11 June 2024 9/ 64



KALMAN FILTER
TUNING WITH
SUBSPACE BASED
MODEL LEARNING



KALMAN FILTERING: A
REMINDER



Toy example

® Let us assume we want! to determine from remote noisy
measurements the position and speed (state) of a cart mov-
ing straightforward.

Clock

Fixed antenna @

T
s Moving antenna

Noisy measurement

L

1See Understanding the basis of the Kalman filter via a simple and, =

intuitive derivation, R. Faragher, IEEE Signal Processing Magazine, 2012. """

G. Mercére Seminar at KU Leuven 11 June 2024 12 / 64




* In order to reach this goal, we need?
o a model of the cart dynamics, i.e.,

1 = Az + Buy,
o a model of the measuring process, i.e.,

Y = ka‘y

2We focus on LTI systems only.
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® In order to reach this goal, we need
o a model of the cart dynamics, i.e.,

Tpr1 = Az + Buy+wy,
o a model of the measuring process, i.e.,
yr = Cxptuy,

o a description of the noise and uncertainties acting on the
system, i.e.,

E {Wk.} = 0,
E {WijT} = Wkékj, Wi =0,

E{Vk} = 0,
E{vv] } = Vidij, Vi = 0. o
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Main steps (cont'd)

Clock (Initial) confidence in
oc the estimated position

€ =

KT

s

® Prior:
o the model matrices A, B and C,
o the estimated state :I:;;l and its covariance matrix X,:l.
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Main steps (cont'd)

Predicted position and uncertainty
Clock computed by equation propagation

& 7

kT

S

e "Prediction" Kalman filter equations are

&, = Az} | + Buy_1,
X, =AX AT +W,.

Univeérsité
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Main steps (cont'd)

Noisy measurement
Clock y

@E /ﬁ(

* We get noisy measurements, i.e.,

yp = Cxp + vy
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Main steps (cont'd)

Updated estimate
and confidence interval

Clock

(D

(k+1)T_

>
e "Update" Kalman filter equations are
K, = X;C" (CX;C" +V;) ",
&) = 2, + Ki(yr — C2y),
X7 = (I, un, — K:C) X; . ol
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Basic idea of the solution

® The sequences (v;);er and (w;);ct are used to describe
o the noise acting on the real system,
o the (in)accuracy of the model representation,
thanks to their covariance matrices V;, and W, k € T.
® Because V and W are used to describe the confidence

we have in the model and the measurements, we aim at
determining them by comparing

o the model used in the Kalman filter,
o a model estimated from the available data sets.

® Herein, the data driven model learning solution is a SML
method.
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NOISE COVARIANCE MATRIX
ESTIMATION



Main ingredients

® When a Kalman filter is designed, we have access to
o /O data samples,
o a "reliable" DT state space representation of the system
dynamics, i.e., (A, B,C).
® When the 1/O data is rich enough, it can be used with a
SML algorithm to generate

o an approximated minimum variance estimate of ¢, k € T,
o estimates of (A, B,C),

up to a similarity transformation.
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Main ingredients

® When a Kalman filter is designed, we have access to
o 1/0O data samples,
o a "reliable" DT state space representation of the system
dynamics, ie., (A, B,C).
® When the /O data is rich enough, it can be used with a
SML algorithm to generate
o an approximated minimum variance estimate of xy, k € T,
o estimates of (A, B,C),
up to a similarity transformation.

Notation interlude

For any vector r, € R™*! and parameters M, i and ¢ € N},
we define

R[z,M] — [ri iyl - 'ri-i—M—l] c RRTXM.
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Similarity transformation

® The SML algorithm gives access to X[LM] in an unknown
basis.

* Knowing (A, C) and (A, ) he similarity transformation

T between (A, B,C) and (A, B C’) satisfies

=TI,

I:(A,C)T =Ty(A,C),
where
C
cA
]._‘z(A,C) = : 5 1 2 Ny
CA1!

® Thus, we can get X[@M] is the "correct basis" as follows

Xy =T1(A,C)Ti(A, C) X,

Univeérsité
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Covariance matrix estimation

® We can finally estimate

[VAY[Z',MH} _ lX[i+1,M]] _ {A B} |:X[z‘,M—1]:|

Vii.v-1) Yii v C 0] [Ujn-y
and
v S — 1 1 W[i,Mfll T OrT
[SA'T VAV} a A/lfgnooﬁ |:‘A/[i,M—1] [VV[LM—H ‘/[i,M—l]] .
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NUMERICAL ILLUSTATIONS



Toy example

e We consider

0.603 0.603 0 0
A= 7060306030 0
- —0.603 —0.603 | »
0.603 —0.603
1. 1650 —0. 6965
B = | 0.6268 1.6961
0.0751 0.0591 )
0.3516 1.7971
C = |:O 2641 —1.4462 1.2460 0.5774 :|
— [0.8717 —0.7012 —0.6390 —0.3600
0.1242 —0.0895
— —0.0828 —0.0128
K =4x 0.0390 —0.0968
—0.0225 0.1459
__ [ 0.0176 —0.0267
Re - [ —0.0267 0.0497 ]

® We generate 103 realizations of the noise sequence and we
select a data length N = 1000.

Um\'urslt(
Doitiers
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Estimates of the elements of V'

011 D12 )

Theo. value 0.0176 -0.0267 0.0497
Sample cov. avg. 0.0176 -0.0267 0.0497
std. 0.0008 0.0012 0.0022

ICM avg. 0.0588 -0.0750 0.0888
std. 0.0412 0.0149 0.0057

DCM avg. 0.031 -0.041 0.028
std. 0.0041 0.0013 0.006

CMM avg. 0.023 -0.073 0.031
std. 0.0087 0.0066 0.0092

New meth. avg. 0.0198 -0.0272 0.0516
std. 0.0011 0.0013 0.0024
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Estimates of the elements of W

Wiy Wia Way a3 W34 om

Theo. value 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031

Sample cov. avg. 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031
std. 0.8886e-03 0.2054e-03 0.6563e-03 0.8750e-03 0.0509e-03 0.1487e-03

ICM avg. 0.0526 -0.0150 0.0355 -0.0454 0.0041 -0.0103

std. 0.0146 0.0079 0.0066 0.0067 0.0042 0.0036

DCM avg. 0.0113 -0.0058 0.0186 -0.0285 0.003 -0.0103

std. 0.004 0.0033 0.0068 0.0067 0.0039 0.0033

CMM avg. 0.0170 -0.0041 0.0124 -0.0234 0.0041 -0.0043

std. 0.0097 0.0082 0.0064 0.0062 0.0052 0.0028

New meth. avg. 0.0196 -0.0041 0.0145 -0.0190 0.0015 -0.0026

std. 0.0017 0.0006 0.0011 0.0011 0.0004 0.0005
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Estimates of the elements of S

S11 S13 Sa1 S24
Theo. value 0.0183 -0.0045 0.0131 -0.0172
Sample cov. avg. 0.0183 -0.0045 0.0131 -0.0172
std. 0.0008 0.0002 0.0006 0.0008
New meth. avg. 0.0181 -0.0039 0.0137 -0.0169
std. 0.0011 0.0007 0.0010 0.0010
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MICHELIN PROJECT



PhD thesis with Michelin

¢ Future autonomous vehicles will require well-developed Ad-
vanced Driver Assistance Systems (ADAS) to assist human
beings in driving.

® One path chosen by Michelin for ADAS improvement con-
sists in providing ADAS with information related to the
state of the road.

® Such information is included in the grip potential quantity.

* Benefits for passenger security (to name a few) are

o detection of roads with low grip area,
o evaluation of the driving conditions,
o reduction of the impact of rear end collisions.

Univérsité
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Problem formulation

® The grip potential is

P e
max Fz Y

i.e., the maximum effort a tire can generate before sliding
on the road. .
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Problem formulation (cont'd)

Problem

Estimate the grip potential under standard driving conditions
from sensors fitted on production vehicles.

P~
17\
1
0.8
L 06
2 Grip potential
0.4
a5
‘0.2 [ fe
Iy
o/
1 1 Y 1 1 I
0 0.02 0.04 0.06 0.08 0.1 0.12 s
s(=) Université
dePoitiers
G. Mercére
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Problem formulation (cont'd)

¢ Getting (noisy) data requires to measure the friction 1 and
the slip ratio s.

* No dedicated sensors exist on production vehicles.

® These signals must be estimated knowing that, for the lon-
gitudinal dynamics,

M_F’

z
WRroI — Ug

s = .

max (wRo — vz)

¢ A Kalman filter was suggested to reconstruct the compo-
nents of i and s accurately.

e Efficient Kalman filter tuning solutions must be introduced ..
to guarantee accurate estimates. Unygisie
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Michelin results

¢ Data is generated with VI-CRT (realistic simulator).
* A nonlinear state space model is used, i.e.,

x(t) = fz(t),u(t),t,0),
y(t) = g(x(t),1,0),
with
.’B:[Ux wr Wy sz Fxr wa F$ Kk R}T7
u = [Tf Tr]Ta
AT
y:[vx W Wr H] )

involving
o a single track model for the vehicle dynamics,
o an effective tire radius model,
o a suspension model and a load transfer model. Rl
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Input data

Front axle driving/braking torque T

1500 -
1000
g
2 500 -
=
ok
500 I I I I I I I I I |
0 20 40 60 80 100 120 140 160 180 200
time (s)
; Rear axle driving/braking torque T,
05+
g
zZ 0
=
-0.5
4 I I I I I I I I I |
0 20 40 60 80 100 120 140 160 180 200

time (s)
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Output data

Measurements used by the observer, SNR = 25 dB

Vehicle speed v, Front wheel speed wy
35- 120
7730 T 100
n ]
£ E
2 .. 80
v, noisy B —wj noisy
20 \ —wy true
T 60 | | !
0 50 100 150 200 0 50 100 150 200
time (s) time (s)
Rear wheel speed w,
120 -

Pitch speed &

2
3

wr (rad.s™)

w, moisy
—w, true
50 100 150

time (s)

\

200 0

50 100 150

200
time (s)
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Long. tire force estimation

Front axle longitudinal tire force F,;, (GFCyy = 0.9212, GFC,y4a = 0.2240)

4000
g 2000
>
= 0
2000 I I I I I I I I
20 40 60 80 100 120 140 160 180 200
time (s)
Error evolution of £,/ (V.. and W, Error evolution of £, ; N4SID
1000 of (Vo ) 1000, o
0 0
Z 1000 Z 1000 -
R g
' -2000 “ -2000
-3000 -3000
50 100 150 200 50 100 150 200
time (s) time (s)
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Vehicle speed estimation

Vehicle speed v, (GFCly, = 0.9896, GFCliyq = 0.9513)

35
.30
B — v, e
]
£ 25
&

20

15 I I I I I I I I

20 40 60 80 100 120 140 160 180 200
time (s)

Error evolution of o, (V,;, and W) Error evolution of @, N4SID

50 100 150 200 50 100 150 200
time (s)

time (s)
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Friction reconstruction

Front friction 7, (GFC = 0.9240)

0.6
0.4
T
— 02
-
X
ok
¥ i L\ ¥ Laa Ll
02 I I I I I I I I I |
20 40 60 80 100 120 140 160 180 200
time (s)
Error evolution of jiy
01
005
|
< 0f
w
-0.05
01 I I I I I I I I I |
20 40 60 80 100 120 140 160 180 200
time (s)
é
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Slip ratio reconstruction

Front slip ratio sy, (GFC = 0.4909)

0.04
,v y | \
[ 1 | | [ | |
I 0.02f | | ) ’
- 1 \ | |
Py i | f ’
0 |l WA | \ 'l I L
-0.02 1 1 I 1 1 1 1 I 1 ]
20 40 60 80 100 120 140 160 180 200
time (s)
Error evolution of 57
0.04
_0.02
L
$ O
-0.02 u
I I I I I I I I I |
20 40 60 80 100 120 140 160 180 200
time (s)

G. Mercére

Seminar at KU Leuven

11 June 2024

36 / 64



GRAY BOX MODEL
LEARNING WITH
SUBSPACE BASED
MODEL LEARNING



Running example: a printer

Belt
Pulley
o Light cmiter

—
Printing
device

T k
e

Printing
device
position

Sensor
v = ky

Picture from “Modern control systems”, 2010, pp. 222—-228.
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Running example (cont'd)

® This system satisfies

with

z1(t) = ré(t) —2(1), o) = 2(t),  z3(t) = 6(1),

and

o y(t) the speed of the printing device,
o u(t) the torque applied to drive the belt.
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Running example (cont'd)

® This system satisfies

with

0 -1 6 0

A(9>_[92 : ] Bw)_H,
s 0 0,

CO)=1[0 6 0].

Univeérsité
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Running example (cont'd)

® This system satisfies

&(t) = A(0)z(t) + B(O)ul(t),
y(t) = C(0)x(t),

with
91_T7 92:%7 93__2_m7
m J
b ko,
94——3, 05 Ry 0 = k1

From the available 1/O data, estimate consistently (and
uniquely) a gray box (GB) model of this system. lm‘
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A STANDARD SOLUTION



Output error method

® Fix a model parameterization

0 -1 6 0
A(9) = [92 0 0] ., B = [0] :

05 0 0, 0
c@)=1[0 6 0], D(9) =0.

Univeérsité
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Output error method

® Fix a model parameterization
® Check the identifiability

Structural identifiability

We must assume that ki, m, r, and R are known a priori to
guarantee that the model is structurally identifiable.

Univeérsité
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Output error method

® Fix a model parameterization
® Check the identifiability
e Compare with a signal norm the outputs of the system and
the model, e.g.,
N-1

2
k=

o

with

Univeérsité
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Output error method

® Fix a model parameterization
® Check the identifiability

e Compare with a signal norm the outputs of the system and
the model, e.g.,

Va (0) = 3 ly(t) — 1t O]

Minimizing Vy (@) can be efficiently performed by using, e.g.,
the Levenberg-Marquardt or a BFGS like algorithm.

Univérsité
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Simulation example

® Simulation procedure:

o one noise free data set for model learning (PRBS)
o A double Monte Carlo simulation is run
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Simulation example

® Simulation procedure:

o one noise free data set for model learning (PRBS)
o A double Monte Carlo simulation is run

o for the noise, 100 zero mean white Gaussian noises are
generated such that the SNR = 10 dB,
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Simulation example

® Simulation procedure:

o one noise free data set for model learning (PRBS)
o A double Monte Carlo simulation is run
o for the noise, 100 zero mean white Gaussian noises are
generated such that the SNR = 10 dB,
o for the initialization, 100 initial guesses are generated as

follows o
0" = 07°°'(0.5 + N),

where )\ is a random value drawn from the standard uni-
form distribution on the open interval (0, 1).

Univeérsité
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Parameter estimation results

NOMINAL BEST STD MEAN MEDIAN

k1 1.4 1.4 0 1.4 1.4

m 0.2 0.2 0 0.2 0.2

T 0.15 0.15 0 0.15 0.15

R 2 2 0 2 2

b 0.25 0.24399 0.0030617 0.25072 0.25106
J 0.01 0.0091905 0.00034345 0.0099452 0.0099247
k 20 19.9461 0.051731 20.0234 20.0317
km 2 1.9554 0.024181 2.006 2.0088

G. Mercére
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Quick analysis

¢ Getting such good results require
o reliable initial guesses,
o tuning the nonlinear optimization efficiently,
in order to help the algorithm converge towards the global
minimum of Vy.

Some important questions

e Can we suggest alternatives to this output error approach?

e Can we generate reliable initial guesses for nonlinear opti-
mization?

Univérsité
dePoitiers

G. Mercére Seminar at KU Leuven 11 June 2024 46 / 64



FROM BLACK BOX TO GRAY
BOX WITH LINEAR ALGEBRA



Problem formulation

® Let use assume that

o A reliable fully parameterized continuous? time linear time
invariant state space model (2,8, €) is available.
o The parameterization (A(0), B(0),C(0)) is identifiable.

® \We know that matrices T or S exist such that

AT = TAO), B=TB(O), €T =C(H)
SA = A6)S, SB=DB(0), ¢ =C(0)S.

Problem to solve

Determine the matrices T or S (and by extension 6) by solving
the aforementioned set of equations.

2Several transformations exist to convert a DT LTI SS model into a CT
LTI SS model efficiently.
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 In [Prot and Merceére, 2020], we have shown that the sim-
ilarity transformation T or S can be determined by

o extracting a large system of equations linear in terms of
the similarity transformation,

o solving this system of linear equations by using standard
linear algebra tools,

o completing this two step procedure by a numerical opti-
mization solution (dedicated now to a very small number
of unknowns) if necessary,

when

o the dependence on @ is affine,
o the system to identify is in the model class.

Univérsité
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A toy example

® Let us consider the gray box model (¢; = —1 and 0y = —2
when necessary)

o) = |, a0+ | %] uo,

y(t)=[1 0] =(t).
® Let us assume that
_ [2.1961e+01 —5.9101e+01 _ [3.6753
A = [ 7.4341 —1.9961e+01] , B =305,
T — [9.5974e—01 5.85276—01} ¢l — [ 1.4360e-+-01 }
= [ 3.4039¢—01 2.2381e—01 | » = [ —3.7552e401
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A toy example (cont'd)

® Instead of focusing on the unknowns 6; and 6,, we con-
centrate on the known parameters, i.e.,

S2A = {1 91] S, [0 1]sA=1[0 1]8,

0 1
S%:[eg], [0 1] 8B =3
¢=[10]8 ¢c=[1 0]S.

* Written differently, we get

A @ Iy — Lo ® [0 1] O1x2
Ly, ® [1 0] vec(S) = |vec(€)
B ® Iy 3

Univeérsité
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A toy example (cont'd)

® S is obtained by solving this system of linear equations,

ie.,
[ 1.4360e+01 —3.7552e+017 _ mn—1
S = [—2.184064—01 6.1580e+01 ] =T .

G. Mercére Seminar at KU Leuven 11 June 2024 52 / 64



Printer belt (cont'd)

—
Printing
device

" Printing
device
position

T i
e

lemuzgl Sl
L

= - = dr "

v = ky

Picture from “Modern control systems”, 2010, pp. 222—-228.
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Printer belt (cont'd)

® We consider the model parameterization

0 -1 6 0
A(e)_[a2 : ] Bw)_[o],
05 0 0,
CO)=1[0 05 0].
* We know (in red)
0 -1 6 0
A(@)_[02 : ] Bw)_H,
g5 0 O,
CO)=1[0 0s 0].

Univeérsité
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Printer belt (cont'd)

¢ Thanks to the insight on four rows in (A(6), B(6),C(0))
as well as the availability of (2,2, &), we try to estimate
S via the set of linear equations

[1 0 0]SA=[1 0 0] A(9)S,
b 1o s== o).

¢ =C(0)S.
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Printer belt (cont'd)

® By using the vectorization tool

A @1 0 0 —Iss®[0 —1 6]

0351
B [(1) ? 8 vec(S) = | 02y
vec(&
I35 ® C(G) #
N]\? «

* With N € R® we have 8 equations for 9 unknown pa-
rameters in S.

® Because ker (IN) # {0}, the solution of this set of equa-
tions is not unique!

® We can however compute a (non unique) solution of it.
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Printer belt (cont'd)

® We can compute ker (IN) and show that ker (IN) € R?*2.
e Furthermore,

vec(S’) = N (a+ anai)

where @, stands for any vector belonging to ker (IV).

* In order to bypass the ambiguities relevant to ker (IV), we
can use the prior on A(€) unused until now.
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Printer belt (cont'd)

® We introduce the cost function

0
. 010 0
HE R [0 0 1] Alz) |1 = M
zE O
¢ A(z) = S(2)A8 ' (2)
>t S(z) = reshape(NTa +ker (N)z,ng,n,)

¢ Thanks to linear algebra, we have to determine 2 unknown
parameters instead of 4.

® This cost function can be minimized with a L-BFGS algo-
rithm without strong prior.
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Parameter estimation results

® We use (again) the 100 noisy data sets to estimate 100
black box models by using N4SID + d2c.

® We select the best black box model (A, 8, €) giving the
best fit on a validation data set.

® The initialization of the BFGS algorithm is performed with
100 different initial vectors z randomly generated from a
standard zero-mean normal distribution.

* The best z is chosen by selecting the S having the best
condition number.
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Parameter estimation results (cont'd)

* We can compute (A(6), B(8),C(0)) from (A, B, &) and

S.
NOMINAL ESTIMATED
k1 1.4 14
m 0.2 0.2
r 0.15 0.15
R 2 2
b 0.25 0.24401
J 0.01 0.0091916
k 20 19.9462
km 2 1.9555

G. Mercére Seminar at KU Leuven 11 June 2024

60 / 64



Explanations with the printer belt (cont'd)

® Let us assume that & is known as well.

® Because 6, is now known a priori, we know the first two
rows of A(0).

® By combining this prior with the knowledge of C(8), we

get
[t o o] 0 -1 6]
A ®[0 10 I3x3®{92 0 0]
L I3 2 C(0) i
~
_ [ 06><1
x vec(S) = vec(QZ)}'
N——
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* Now N € R and ker (IN) = {0}!
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Parameter estimation results (cont'd)

* We can compute S without any nonlinear optimization!!!
* Again, (A(8),B(8),C(0)) from (A,"B,€) and S.

NOMINAL ESTIMATED

k1 1.4 1.4

m 0.2 0.2

r 0.15 0.15

R 2 2

b 0.25 0.25483
J 0.01 0.0099987
k 20 20

km 2 2.0367
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DISCUSSION
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