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MOTIVATIONS



Engineers need accurate models

• In many practical situations, engineers have to determine
dynamical models of real systems from available data sets
and prior knowledge.
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Common denominator of these projects

• During these projects, we were asked to generate (new)
estimators of physical parameters and signals.

"The best" parameter estimates were produced with non-
linear optimization based solutions.
"The best" signal estimates were produced with Kalman
filters.

• Precise results were achieved solely through meticulous
tuning of these techniques.

Nonlinear optimization works well when initial guesses are
in the vicinity of the global optimum.
Kalman filters are efficient when the noise covariance ma-
trices are well selected a priori.

• We primarily developed new tuning solutions based on ini-
tial estimates generated by subspace based model learning.
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SUBSPACE BASED
MODEL LEARNING: A

REMINDER



Problem formulation

• Subspace based model learning (SML) methods mainly fo-
cus on state space models of the form

xk+1 = Axk +Buk +wk, (1a)
yk = Cxk + vk. (1b)

where the noise sources are assumed to be realizations of
zero mean white noises statically independent of the input
sequence such that

E
[[

vi
wi

] [
v⊤j w⊤

j

]]
=

[
V S
S⊤ W

]
δij. (2)
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Problem formulation (cont’d)

• By assuming that
A1 the input vector sequence is quasi stationary and exciting

of sufficient order,
A2 the pair (A,C) is observable and the pair (A,

[
B V 1/2

]
)

is reachable,
standard SML solutions aim at estimating

the order nx of the system,
an approximated minimum variance estimate of xk, k ∈ T,
(A,B,C) up to a similarity transformation.
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Main steps

• Under Assumption A1 and A2, standard SML solutions
consists in

1 selecting future and past indexes f and p with the con-
straint that f > nx and p large "enough",

2 building "past" and "future" Hankel matrices Zp, Uf and
Yf ,

3 computing the RQ factorization of
[
U⊤

f Z⊤
p Yf

]⊤
,

4 extracting R32 and R22 from this RQ factorization, then
computing the SVD of R32R

−1
22 Zp to determine n̂x as

well as an estimate X̂[f,M ] of the state on a user defined
horizon,

5 resorting to a LLS solution for determining Â B̂ and Ĉ.
• Keep in mind that all these estimates are valid up to a

similarity transformation!!!!
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KALMAN FILTER
TUNING WITH

SUBSPACE BASED
MODEL LEARNING



KALMAN FILTERING: A
REMINDER



Toy example

• Let us assume we want1 to determine from remote noisy
measurements the position and speed (state) of a cart mov-
ing straightforward.

1See Understanding the basis of the Kalman filter via a simple and
intuitive derivation, R. Faragher, IEEE Signal Processing Magazine, 2012.
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Main steps

• In order to reach this goal, we need2

a model of the cart dynamics, i.e.,

xk+1 = Axk +Buk,

a model of the measuring process, i.e.,

yk = Cxk,

2We focus on LTI systems only.
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Main steps

• In order to reach this goal, we need
a model of the cart dynamics, i.e.,

xk+1 = Axk +Buk+wk,

a model of the measuring process, i.e.,

yk = Cxk+vk,

a description of the noise and uncertainties acting on the
system, i.e.,

E {wk} = 0,

E
{
wkw

⊤
j

}
= Wkδkj , Wk ≻ 0,

E {vk} = 0,

E
{
vkv

⊤
j

}
= Vkδkj , Vk ≻ 0.
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Main steps (cont’d)

• Prior:
the model matrices A, B and C,
the estimated state x+

k−1 and its covariance matrix X+
k−1.
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Main steps (cont’d)

• "Prediction" Kalman filter equations are

x̂−
k = Ax̂+

k−1 +Buk−1,

X−
k = AX+

k−1A
⊤ +Wk.
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Main steps (cont’d)

• We get noisy measurements, i.e.,

yk = Cxk + vk.
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Main steps (cont’d)

• "Update" Kalman filter equations are

Kk = X−
k C

⊤ (CX−
k C

⊤ + Vk

)−1
,

x̂+
k = x̂−

k +Kk(yk −Cx̂−
k ),

X+
k = (Inx×nx −KkC)X−

k .
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Basic idea of the solution

• The sequences (vi)i∈T and (wi)i∈T are used to describe
the noise acting on the real system,
the (in)accuracy of the model representation,

thanks to their covariance matrices Vk and Wk, k ∈ T.
• Because V and W are used to describe the confidence

we have in the model and the measurements, we aim at
determining them by comparing

the model used in the Kalman filter,
a model estimated from the available data sets.

• Herein, the data driven model learning solution is a SML
method.
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NOISE COVARIANCE MATRIX
ESTIMATION



Main ingredients

• When a Kalman filter is designed, we have access to
I/O data samples,
a "reliable" DT state space representation of the system
dynamics, i.e., (A,B,C).

• When the I/O data is rich enough, it can be used with a
SML algorithm to generate

an approximated minimum variance estimate of xk, k ∈ T,
estimates of (A,B,C),

up to a similarity transformation.
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• When a Kalman filter is designed, we have access to
I/O data samples,
a "reliable" DT state space representation of the system
dynamics, i.e., (A,B,C).

• When the I/O data is rich enough, it can be used with a
SML algorithm to generate

an approximated minimum variance estimate of xk, k ∈ T,
estimates of (A,B,C),

up to a similarity transformation.

Notation interlude
For any vector rk ∈ Rnr×1 and parameters M , i and ℓ ∈ N+

∗ ,
we define

R[i,M ] =
[
ri ri+1 · · · ri+M−1

]
∈ Rnr×M .
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Similarity transformation

• The SML algorithm gives access to X̂[i,M ] in an unknown
basis.

• Knowing (A,C) and (Â, Ĉ), the similarity transformation
T between (A,B,C) and (Â, B̂, Ĉ) satisfies

Γi(A,C)T = Γi(Â, Ĉ),

where

Γi(A,C) =


C
CA

...
CAi−1

 , i ≥ nx.

• Thus, we can get X̆[i,M ] is the "correct basis" as follows

X̆[i,M ] = Γ†
i (A,C)Γi(Â, Ĉ)X̂[i,M ].
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Covariance matrix estimation

• We can finally estimate[
Ŵ[i,M−1]

V̂[i,M−1]

]
=

[
X̆[i+1,M ]

Y[i,M−1]

]
−
[
A B
C 0

] [
X̆[i,M−1]

U[i,M−1]

]
,

and[
V̂ Ŝ

Ŝ⊤ Ŵ

]
= lim

M→∞

1

M

[
Ŵ[i,M−1]

V̂[i,M−1]

] [
Ŵ⊤

[i,M−1] V̂ ⊤
[i,M−1]

]
.
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NUMERICAL ILLUSTATIONS



Toy example

• We consider

A =

[
0.603 0.603 0 0
−0.603 0.603,0 0

0 0 −0.603 −0.603
0 0 0.603 −0.603

]
,

B =

[
1.1650 −0.6965
0.6268 1.6961
0.0751 0.0591
0.3516 1.7971

]
,

C =
[
0.2641 −1.4462 1.2460 0.5774
0.8717 −0.7012 −0.6390 −0.3600

]
,

K = 4×
[

0.1242 −0.0895
−0.0828 −0.0128
0.0390 −0.0968
−0.0225 0.1459

]
,

Re =
[

0.0176 −0.0267
−0.0267 0.0497

]
.

• We generate 103 realizations of the noise sequence and we
select a data length N = 1000.
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Estimates of the elements of V

v̂11 v̂12 v̂22

Theo. value 0.0176 -0.0267 0.0497
Sample cov. avg. 0.0176 -0.0267 0.0497

std. 0.0008 0.0012 0.0022
ICM avg. 0.0588 -0.0750 0.0888

std. 0.0412 0.0149 0.0057
DCM avg. 0.031 -0.041 0.028

std. 0.0041 0.0013 0.006
CMM avg. 0.023 -0.073 0.031

std. 0.0087 0.0066 0.0092
New meth. avg. 0.0198 -0.0272 0.0516

std. 0.0011 0.0013 0.0024
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Estimates of the elements of W

ŵ11 ŵ12 ŵ22 ŵ23 ŵ34 ŵ44

Theo. value 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031
Sample cov. avg. 0.0202 -0.0045 0.0149 -0.0198 0.0012 -0.0031

std. 0.8886e-03 0.2054e-03 0.6563e-03 0.8750e-03 0.0509e-03 0.1487e-03
ICM avg. 0.0526 -0.0150 0.0355 -0.0454 0.0041 -0.0103

std. 0.0146 0.0079 0.0066 0.0067 0.0042 0.0036
DCM avg. 0.0113 -0.0058 0.0186 -0.0285 0.003 -0.0103

std. 0.004 0.0033 0.0068 0.0067 0.0039 0.0033
CMM avg. 0.0170 -0.0041 0.0124 -0.0234 0.0041 -0.0043

std. 0.0097 0.0082 0.0064 0.0062 0.0052 0.0028
New meth. avg. 0.0196 -0.0041 0.0145 -0.0190 0.0015 -0.0026

std. 0.0017 0.0006 0.0011 0.0011 0.0004 0.0005
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Estimates of the elements of S

ŝ11 ŝ13 ŝ21 ŝ24

Theo. value 0.0183 -0.0045 0.0131 -0.0172
Sample cov. avg. 0.0183 -0.0045 0.0131 -0.0172

std. 0.0008 0.0002 0.0006 0.0008
New meth. avg. 0.0181 -0.0039 0.0137 -0.0169

std. 0.0011 0.0007 0.0010 0.0010
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MICHELIN PROJECT



PhD thesis with Michelin

• Future autonomous vehicles will require well-developed Ad-
vanced Driver Assistance Systems (ADAS) to assist human
beings in driving.

• One path chosen by Michelin for ADAS improvement con-
sists in providing ADAS with information related to the
state of the road.

• Such information is included in the grip potential quantity.
• Benefits for passenger security (to name a few) are

detection of roads with low grip area,
evaluation of the driving conditions,
reduction of the impact of rear end collisions.
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Problem formulation

• The grip potential is

µmax = max

(√
F 2
x + F 2

y

Fz

)
,

i.e., the maximum effort a tire can generate before sliding
on the road.
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Problem formulation (cont’d)

Problem
Estimate the grip potential under standard driving conditions
from sensors fitted on production vehicles.
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Problem formulation (cont’d)

• Getting (noisy) data requires to measure the friction µ and
the slip ratio s.

• No dedicated sensors exist on production vehicles.
• These signals must be estimated knowing that, for the lon-

gitudinal dynamics,

µ =
Fx

Fz

,

s =
ωRrol − vx

max (ωRrol − vx)
.

• A Kalman filter was suggested to reconstruct the compo-
nents of µ and s accurately.

• Efficient Kalman filter tuning solutions must be introduced
to guarantee accurate estimates.
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Michelin results

• Data is generated with VI-CRT (realistic simulator).
• A nonlinear state space model is used, i.e.,

ẋ(t) = f(x(t),u(t), t,θ),

y(t) = g(x(t), t,θ),

with

x =
[
vx ωf ωr Fxf

Fxr Ḟxf
Ḟxr κ κ̇

]⊤
,

u =
[
Tf Tr

]⊤
,

y =
[
vx ωf ωr κ̇

]⊤
,

involving
a single track model for the vehicle dynamics,
an effective tire radius model,
a suspension model and a load transfer model.
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Input data
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Output data
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Long. tire force estimation
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Vehicle speed estimation
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Friction reconstruction
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Slip ratio reconstruction
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GRAY BOX MODEL
LEARNING WITH

SUBSPACE BASED
MODEL LEARNING



Running example: a printer belt

Picture from “Modern control systems”, 2010, pp. 222–228.
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Running example (cont’d)

• This system satisfies

ẋ(t) = A(θ)x(t) +B(θ)u(t),

y(t) = C(θ)x(t),

with

x1(t) = rϕ(t)− z(t), x2(t) = ż(t), x3(t) = ϕ̇(t),

and
y(t) the speed of the printing device,
u(t) the torque applied to drive the belt.
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Running example (cont’d)

• This system satisfies

ẋ(t) = A(θ)x(t) +B(θ)u(t),

y(t) = C(θ)x(t),

with

A(θ) =

 0 −1 θ1
θ2 0 0
θ3 0 θ4

 , B(θ) =

 0
0
θ5

 ,

C(θ) =
[
0 θ6 0

]
.
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Running example (cont’d)

• This system satisfies

ẋ(t) = A(θ)x(t) +B(θ)u(t),

y(t) = C(θ)x(t),

with

θ1 = r, θ2 =
2k

m
, θ3 = −2kr

J
,

θ4 = − b

J
, θ5 =

km
RJ

, θ6 = k1.

Problem
From the available I/O data, estimate consistently (and
uniquely) a gray box (GB) model of this system.
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A STANDARD SOLUTION



Output error method

• Fix a model parameterization

A(θ) =

 0 −1 θ1
θ2 0 0
θ3 0 θ4

 , B(θ) =

 0
0
θ5

 ,

C(θ) =
[
0 θ6 0

]
, D(θ) = 0.

• Check the identifiability
• Compare with a signal norm the outputs of the system and

the model, e.g.,

VN (θ) =
N−1∑
k=0

∥y(tk)− γ(tk,θ)∥2Q .

Remark
Minimizing VN (θ) can be efficiently performed by using, e.g.,
the Levenberg-Marquardt or a BFGS like algorithm.
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Output error method

• Fix a model parameterization
• Check the identifiability

Structural identifiability
We must assume that k1, m, r, and R are known a priori to
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Simulation example

• Simulation procedure:
one noise free data set for model learning (PRBS)
A double Monte Carlo simulation is run

for the noise, 100 zero mean white Gaussian noises are
generated such that the SNR = 10 dB,
for the initialization, 100 initial guesses are generated as
follows

θiniti = θreali (0.5 + λ),

where λ is a random value drawn from the standard uni-
form distribution on the open interval (0, 1).
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Parameter estimation results

NOMINAL BEST STD MEAN MEDIAN

k1 1.4 1.4 0 1.4 1.4
m 0.2 0.2 0 0.2 0.2
r 0.15 0.15 0 0.15 0.15
R 2 2 0 2 2
b 0.25 0.24399 0.0030617 0.25072 0.25106
J 0.01 0.0091905 0.00034345 0.0099452 0.0099247
k 20 19.9461 0.051731 20.0234 20.0317

km 2 1.9554 0.024181 2.006 2.0088
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Quick analysis

• Getting such good results require
reliable initial guesses,
tuning the nonlinear optimization efficiently,

in order to help the algorithm converge towards the global
minimum of VN .

Some important questions
• Can we suggest alternatives to this output error approach?
• Can we generate reliable initial guesses for nonlinear opti-

mization?
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FROM BLACK BOX TO GRAY
BOX WITH LINEAR ALGEBRA



Problem formulation

• Let use assume that
A reliable fully parameterized continuous2 time linear time
invariant state space model (A,B,C) is available.
The parameterization (A(θ),B(θ),C(θ)) is identifiable.

• We know that matrices T or S exist such that

AT = TA(θ), B = TB(θ), CT = C(θ),

SA = A(θ)S, SB = B(θ), C = C(θ)S.

Problem to solve
Determine the matrices T or S (and by extension θ) by solving
the aforementioned set of equations.

2Several transformations exist to convert a DT LTI SS model into a CT
LTI SS model efficiently.
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Solution

• In [Prot and Mercère, 2020], we have shown that the sim-
ilarity transformation T or S can be determined by

extracting a large system of equations linear in terms of
the similarity transformation,
solving this system of linear equations by using standard
linear algebra tools,
completing this two step procedure by a numerical opti-
mization solution (dedicated now to a very small number
of unknowns) if necessary,

when
the dependence on θ is affine,
the system to identify is in the model class.
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A toy example

• Let us consider the gray box model (θ1 = −1 and θ2 = −2
when necessary)

ẋ(t) =

[
1 θ1
0 1

]
x(t) +

[
θ2
3

]
u(t),

y(t) =
[
1 0

]
x(t).

• Let us assume that

A =
[
2.1961e+01 −5.9101e+01

7.4341 −1.9961e+01

]
, B = [ 3.67531.3522 ] ,

T =
[
9.5974e−01 5.8527e−01
3.4039e−01 2.2381e−01

]
, C⊤ =

[
1.4360e+01
−3.7552e+01

]
.
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A toy example (cont’d)

• Instead of focusing on the unknowns θ1 and θ2, we con-
centrate on the known parameters, i.e.,

SA =

[
1 θ1
0 1

]
S,

[
0 1

]
SA =

[
0 1

]
S,

SB =

[
θ2
3

]
,

[
0 1

]
SB = 3

C =
[
1 0

]
S C =

[
1 0

]
S.

• Written differently, we getA⊤ ⊗ I2×2 − I2×2 ⊗
[
0 1

]
I2×2 ⊗

[
1 0

]
B⊤ ⊗ I2×2

 vec(S) =

 01×2

vec(C)
3

 .

G. Mercère Seminar at KU Leuven 11 June 2024 51 / 64



A toy example (cont’d)

• S is obtained by solving this system of linear equations,
i.e.,

S =
[

1.4360e+01 −3.7552e+01
−2.1840e+01 6.1580e+01

]
= T−1.
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Printer belt (cont’d)

Picture from “Modern control systems”, 2010, pp. 222–228.
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Printer belt (cont’d)

• We consider the model parameterization

A(θ) =

 0 −1 θ1
θ2 0 0
θ3 0 θ4

 , B(θ) =

 0
0
θ5

 ,

C(θ) =
[
0 θ6 0

]
.

• We know (in red)

A(θ) =

 0 −1 θ1
θ2 0 0
θ3 0 θ4

 , B(θ) =

 0
0
θ5

 ,

C(θ) =
[
0 θ6 0

]
.
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Printer belt (cont’d)

• Thanks to the insight on four rows in (A(θ),B(θ),C(θ))
as well as the availability of (A,B,C), we try to estimate
S via the set of linear equations[

1 0 0
]
SA =

[
1 0 0

]
A(θ)S,[

1 0 0
0 1 0

]
SB =

[
0
0

]
,

C = C(θ)S.
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Printer belt (cont’d)

• By using the vectorization tool
A⊤ ⊗

[
1 0 0

]
− I3×3 ⊗

[
0 −1 θ1

]
B⊤ ⊗

[
1 0 0
0 1 0

]
I3×3 ⊗C(θ)


︸ ︷︷ ︸

N

vec(S) =

 03×1

02×1

vec(C)


︸ ︷︷ ︸

α

.

• With N ∈ R8×9, we have 8 equations for 9 unknown pa-
rameters in S.

• Because ker (N ) ̸= {0}, the solution of this set of equa-
tions is not unique!

• We can however compute a (non unique) solution of it.
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Printer belt (cont’d)

• We can compute ker (N ) and show that ker (N ) ∈ R9×2.
• Furthermore,

vec
(
Ŝ
)
= N † (α+αnull) ,

where αnull stands for any vector belonging to ker (N ).
• In order to bypass the ambiguities relevant to ker (N ), we

can use the prior on A(θ) unused until now.
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Printer belt (cont’d)

• We introduce the cost function

arg min
z∈R2×1

∥∥∥∥∥∥
[
0 1 0
0 0 1

]
A(z)

01
0

 −
[
0
0

]∥∥∥∥∥∥
2

2

s.t.
{

A(z) = S(z)AS−1(z)
S(z) = reshape

(
N †α+ ker (N )z, nx, nx

) .
• Thanks to linear algebra, we have to determine 2 unknown

parameters instead of 4.
• This cost function can be minimized with a L-BFGS algo-

rithm without strong prior.
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Parameter estimation results

• We use (again) the 100 noisy data sets to estimate 100
black box models by using N4SID + d2c.

• We select the best black box model (A,B,C) giving the
best fit on a validation data set.

• The initialization of the BFGS algorithm is performed with
100 different initial vectors z randomly generated from a
standard zero-mean normal distribution.

• The best z is chosen by selecting the Ŝ having the best
condition number.
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Parameter estimation results (cont’d)

• We can compute (A(θ),B(θ),C(θ)) from (A,B,C) and
Ŝ.

NOMINAL ESTIMATED
k1 1.4 1.4
m 0.2 0.2
r 0.15 0.15
R 2 2
b 0.25 0.24401
J 0.01 0.0091916
k 20 19.9462
km 2 1.9555
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Explanations with the printer belt (cont’d)

• Let us assume that k is known as well.
• Because θ2 is now known a priori, we know the first two

rows of A(θ).
• By combining this prior with the knowledge of C(θ), we

getA⊤ ⊗
[
1 0 0
0 1 0

]
− I3×3 ⊗

[
0 −1 θ1
θ2 0 0

]
I3×3 ⊗C(θ)


︸ ︷︷ ︸

N

× vec(S) =
[
06×1

vec(C)

]
︸ ︷︷ ︸

α

.

• Now N ∈ R9×9 and ker (N ) = {0}!
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Parameter estimation results (cont’d)

• We can compute Ŝ without any nonlinear optimization!!!
• Again, (A(θ),B(θ),C(θ)) from (A,B,C) and Ŝ.

NOMINAL ESTIMATED
k1 1.4 1.4
m 0.2 0.2
r 0.15 0.15
R 2 2
b 0.25 0.25483
J 0.01 0.0099987
k 20 20
km 2 2.0367
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DISCUSSION
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