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The World is Toric

Toric varieties provide the geometric foundations for many
successes in the mathematical sciences. In statistics they appear
as discrete exponential families. In optimization, they furnish
nonnegativity certificates and they govern entropic regularization
of linear programming.
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The World is Toric

Toric varieties provide the geometric foundations for many
successes in the mathematical sciences. In statistics they appear
as discrete exponential families. In optimization, they furnish
nonnegativity certificates and they govern entropic regularization
of linear programming. Notable sightings in phylogenetics,
stochastic analysis, Gaussian inference and chemical reaction
networks led to the slogan  The World is Toric.
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Being Positive

Example (Two binary random variables)

_ |poo Po1| st s(1—t)
P = [pm pn] = {(1—s)t (1—s)(1-1)

Among all nonnegative matrices P with fixed row and column
sums, a unique matrix satisfies det(P) = poop11—po1p10 = O.

LP — Optimal Transport
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Being Positive

Example (Two binary random variables)

_ |poo Po1| st s(1—t)
P = [pm pn] = [(1—s)t (1—s)(1-1)

Among all nonnegative matrices P with fixed row and column
sums, a unique matrix satisfies det(P) = poop11—po1p10 = O.

LP —

In applications, the key player is the positive part of the toric variety.
That manifold is identified with a convex polytope by the moment map.
The fibers of the underlying linear map are polytopes of complementary
dimension, and each fiber intersects the toric variety in a unique point.
This is the unique maximizer of the entropy over the fiber. In statistical
physics and computer science, this is known as the Gibbs distribution.
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Abstract

Gibbs manifolds are images of linear spaces of symmetric matrices under
the exponential map. Arising in applications like optimization, statistics
and quantum physics, they extend the ubiquitous role of toric geometry.

’Vao + bg 0 0 0 —|
| 0 ao + b1 0 0 |
0 0 a1 + bg 0
L 0 0 0 a+ le

poo = exp(ao+bo), po1 = exp(ao+b1),
pio = exp(ai+bo), p11 = exp(ai+b1).
poop11 — po1pio = 0.
The Gibbs variety is the zero locus of all polynomials that vanish on the
Gibbs manifold. We compute these polynomials and show that the Gibbs

variety is low-dimensional. Our theory is applied to a wide range of
scenarios, including matrix pencils and quantum optimal transport.
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Exponentials and Logarithms

The space S” of symmetric n x n-matrices has dimension ("%).
The cone of positive semidefinite (PSD) matrices is denoted S7.

The PSD cone S is self-dual under the inner product

(X,Y) = trace(XY) for X,Y eS"
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Exponentials and Logarithms
n+1

The space S" of symmetric n x n-matrices has dimension ("5%).

The cone of positive semidefinite (PSD) matrices is denoted S} .

The PSD cone S is self-dual under the inner product
(X,Y) = trace(XY) for X,Y eS"

The exponential function maps symmetric matrices
to positive definite symmetric matrices:

exp : S" — int(S7) XHZ X'

This map is invertible, with inverse given by the logarithm:

—1y-1 ’
log : int(S7) — S", YHZ Y (Y —id, ).
J
j=1
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Players

Fix Ag, A1, Az, ..., Aq € S", where the last d are linearly independent.
They determine a d-dim’l affine space of symmetric matrices (ASSM):

L = Ao +spang(A1, Az, ..., Ad) C sm ~ ("),

If Ao =0, then L is a linear space of symmetric matrices (LSSM).

We are interested in the image of £ under the exponential map.
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Players
Fix Ag, A1, Az, ..., Aq € S", where the last d are linearly independent.
They determine a d-dim’l affine space of symmetric matrices (ASSM):

L = Ao +spang(A1, Az, ..., Ad) C sm ~ ("),

If Ao =0, then L is a linear space of symmetric matrices (LSSM).
We are interested in the image of £ under the exponential map.
Definition
The Gibbs manifold is GM(L) :=exp(£) C Sf.
This is diffeomorphic to £ = R? via the logarithm map.

Consider all polynomials that vanish on GM(L).
What is their common zero set?

Definition -
The Gibbs variety GV(L) is the Zariski closure of GM(L) in c("2).

Quiz: What do we get if £ consists of diagonal matrices?

Answer: Toric geometry
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Example
Fix n = 3 and consider the LSSM

nt+y+ys n y2
L = { » ity+y 3 SY1,Y2,¥3 GR}
y2 ¥ n+y+y

The Gibbs manifold GM(L) C int(S3) has dimension 3.

Its points are the matrices X € S® whose logarithm has constant

diagonal, with entries equal to the sum of the off-diagonal entries.
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Example
Fix n = 3 and consider the LSSM

nnt+yty »n Y2
L= { i vi+y:+ys y3 vy, 3 €R
y2 3 n+y+y

The Gibbs manifold GM(L) C int(S3) has dimension 3.

Its points are the matrices X € S® whose logarithm has constant

diagonal, with entries equal to the sum of the off-diagonal entries.

The Gibbs variety GV(L) has dimension 5.
It is the cubic hypersurface

{X S3 - (x11 — x22)(x11 — Xx33) (X2 — X33) = }
S 2 2 2 2 2 2
x33(X{3—x33) + x22(X33—Xin) + x11(Xir —xi3)

Q: How to find such polynomials?
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The Gibbs manifold GM(L) C int(S3) has dimension 3.

Its points are the matrices X € S® whose logarithm has constant

diagonal, with entries equal to the sum of the off-diagonal entries.

The Gibbs variety GV(L) has dimension 5.
It is the cubic hypersurface

{X S3 - (x11 — x22)(x11 — Xx33) (X2 — X33) = }
S 2 2 2 2 2 2
x33(X{3—x33) + x22(X33—Xin) + x11(Xir —xi3)

Q: How to find such polynomials?
Al: Numerically A2: Symbolically
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Maximizing Entropy

The quotient map from S® ~ R® onto S3/£+ ~ R3 takes
matrices X = [x;] to their inner products with a basis of L:

m:S3 = R X > (trace(X)+2x2, trace(X)+2xy3, trace(X)+2x23)

Each fiber 7=1(b) is a 3-dimensional spectrahedron:
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Maximizing Entropy

The quotient map from S3 ~ R% onto S3/£+ ~ R? takes
matrices X = [x;] to their inner products with a basis of L:

m:S3 = R X > (trace(X)+2x2, trace(X)+2xy3, trace(X)+2x23)

Each fiber 7=1(b) is a 3-dimensional spectrahedron:

The von Neumann entropy h(X) = trace(X — X - log(X)) is maximized
at the Gibbs point 7~ 1(b) N GM(L). The Gibbs manifold GM(L) is the
set of all Gibbs points, in the various spectrahedra 7r*1(b), for all b € R3.
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Dimension

Theorem

Let L C S" be an ASSM of dimension d. The dimension
of the Gibbs variety GV(L) is at most n+d. If Ap =0,
i.e. L is an LSSM, then dim GV(L) is at most n+ d — 1.
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Dimension

Theorem

Let L C S" be an ASSM of dimension d. The dimension
of the Gibbs variety GV(L) is at most n+d. If Ap =0,
i.e. L is an LSSM, then dim GV(L) is at most n+ d — 1.

Theorem

Let L be an affine space of pairwise commuting symmetric
matrices. The Gibbs variety GV (L) is a toric variety whose
dimension is determined by the arithmetic of the eigenvalues.

Example
4 1 1

Let n=3, d =1, and fix the LSSM £ =R|1 3 1|. The Gibbs
1 1 3

manifold GM(L) is a curve. lts Zariski closure GV(L) is the surface

3. _ — — A 3
{X S S D X11 — X23 — X33 = X12 — X13 =— X292 — X33 = X23 — 4X23X33
2 2 3 4 2 2 2
+6x33x53 — dxa3X33 + X33 + 2x73 — X553 — 2x3X33 — X33 = 0}.
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Symbolic Algorithm

Algorithm 1 Implicitization of the Gibbs variety of an LSSM £, defined over Q
Input: Linearly independent matrices Ay, ..., Ay € S" with rational entries
Output: Polynomials that define GV(£), where £ = spang (A, ..., Aq)

1: Compute the characteristic polynomial P:(A;y) = co(y) + c1(y)A+ -+ - + cn(y) A"

Require: P;(\;y) has n distinct roots in R(y)

E} + {the n polynomials (—1)'c,_;(\) — ¢;(y) in (8)}

E; < {gencrators of any associated prime over Q of (E4)}

E; « {the entries of ¢(y, A, z) — X}, with X = (z;;) a symmetric matrix of variables
Ey, D < clear denominators in E, and record the least common denominator D

if the roots A, ..., A, of Pz(\;y) are Q-linearly dependent then
By {2 =2 . Y\ =Y By, a, B € 72}

else
E; 0

10: I < the ideal generated by Ej, Es, E3 in the polynomial ring R[y, A, z, X]

11: I« 1:D>

12: J  elimination ideal obtained by eliminating y, A, z from [

13: return a set of generators of J

Theorem

Let £L C S™ be an LSSM with distinct eigenvalues.

The Gibbs variety GV (L) is irreducible and unirational.
The ideal J found by Algorithm 1 is its prime ideal.
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Pencils

A pencil of quadrics is an LSSM of dimension d = 2. They are
classified by Segre symbols. We compute their Gibbs varieties.
Example

The pencil £ for Segre symbol o = [(3), (1)] is spanned by

0 0 a1 O 0 01 0O

0 a1 1 0 0 1 0 O _
a1 0 0 and 100 0 for a1,z € R distinct.
0 0 0 0 0 0 1

Here, dim GV(L) = 5, our upper bound. Algorithm 1 finds the ideal

2 2
J = < X14, X24, X34, X13—X22+X33, X{p—X11X22—X12X23+X11X33+X22X33 —X33 >
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Pencils
A pencil of quadrics is an LSSM of dimension d = 2. They are
classified by Segre symbols. We compute their Gibbs varieties.

Example
The pencil £ for Segre symbol o = [(3), (1)] is spanned by

0 0 a1 O 0 01 0O

0 a1 1 0 0 1 0 O _
a1 0 0 and 100 0 for a1,z € R distinct.
0 0 0 0 0 0 1

Here, dim GV(L) = 5, our upper bound. Algorithm 1 finds the ideal
2 2
J = <X14, X4, X34, X13—X22+X33, X12*X11X22*X12X23+X11X33+X22X33*X33>
If a1 = arp, then o = [(3,1)]. Now dim = 4, given by the additional cubic
2 2 2 .
X11X22X33 + 2X12X13X23 X13X22 — X11Xp3 — X12X33 Xa4 e J
We have several general results on Gibbs varieties of pencils.
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Convex Optimization
Fix an LSSM £ = spang (A1, ..., Aq) and its linear map

ST 5 RY X = ((ALX), (A, X), ..., (Ag, X)).

Remark: The image of the PSD cone is the spectrahedral shadow (S ).
Semidefinite programming (SDP)

Minimize (C,X) subjectto X €S’ and w(X) = b.

The feasible region 771(b) is a spectrahedron.

Remark: These spectrahedra are compact if and only if £ N int(S7) # 0.
Entropic regularization of SDP
Minimize (C,X) —e€-h(X) subjectto X €S and n(X)=05b

Remark: h(X) = trace(X — X -log(X)) is the von Neumann entropy.
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Convex Optimization: Example
Consider the linear map 7 : S3 — R3 given by

yi+y2+ys » Y2
L = { » yity2+ys 3 Y1,Y2,¥3 ER}

y2 ys ity:tys
m(S") is the convex cone over the region defined by the red sextic

Black curve separates two types of spectrahedra seen as fibers

Wy e

Samosa Teardrop
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Entropic Regularization

We incorporate € and the cost matrix C in the ASSM

Le = K—EC for any € > 0.
€

For € = oo, this is the LSSM, i.e. Lo = L.

Theorem

For b € w(S7.), the intersection of m~1(b) with the Gibbs manifold
GM(L,) consists of a single point X*. This point is the optimal
solution to the regularized SDP. For ¢ = oo, it is the maximizer

of von Neumann entropy over the spectrahedron ==1(b).
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Entropic Regularization

We incorporate € and the cost matrix C in the ASSM

Le = K—EC for any € > 0.
€

For € = oo, this is the LSSM, i.e. Lo = L.

Theorem

For b € w(S7.), the intersection of m~1(b) with the Gibbs manifold
GM(L,) consists of a single point X*. This point is the optimal
solution to the regularized SDP. For ¢ = oo, it is the maximizer

of von Neumann entropy over the spectrahedron ==1(b).

Remark: The limit lim._,o X exists and it is an optimal solution to the SDP.
It is unique for generic C. This limit process is entropic regularization of SDP.

Quiz: What do we get if £ consists of diagonal matrices?
Answer: Linear Programming and Toric Geometry

14 /19



Quantum Optimal Transport

Fix the space S“% of symmetric matrices X of size didy x dydr. Write
X = (xjjn), where (i), (k, 1) € [di] x [d2]. The marginalization map is

T ST & St xS%h, X (Y, 2).

The dixdy matrix Y = (yi) and the dyxd, matrix Z = (zj) are the

partial traces of X. They satisfy y; = Zfil Xijig and zj = Z:il Xijil
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Quantum Optimal Transport

Fix the space S“% of symmetric matrices X of size didy x dydr. Write
X = (xjjn), where (i), (k, 1) € [di] x [d2]. The marginalization map is

T ST & St xS%h, X (Y, 2).
The dixdy matrix Y = (yi) and the dyxd, matrix Z = (zj) are the
partial traces of X. They satisfy y; = Ztl Xijig and zj = Z:il Xijil -

J

Quantum optimal transport (QOT) is the task of minimizing a linear
function X — (C, X) over the spectrahedra m=1(Y, Z). For this SDP,
the Gibbs manifold equals the Gibbs variety inside the PSD cone Sildz.

Theorem
The Gibbs manifold for QOT is a semialgebraic subset of Sildz, namely

GM(L) = {Y®Z:YeS? and Z € S¢}.

Gibbs variety GV (L) is the cone over the Segre variety ]P’(dlzﬂ)_1 X ]P’(dzgl)_l.
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Example
Fix di = d» = 2. The map 7 takes any 4 x 4 PSD matrix
X1111  X1112  X1121  X1122
X — X1112  X1212  X1221  X1222

X1121  X1221  X2121  X2122
X1122  X1222  X2122  X2222

to its partial traces

X+ xae12 xa121 + X2 and Z — Xt + X121 X1112 + X2122
X1121 + X1222  X2121 + X2222 X1112 + X2122  X1212 + X2222

Here m(S%) is the cone over the product of two disks. The fibers
771(Y, Z) are the 5-dimensional transportation spectrahedra.

Quiz: What if we restrict to diagonal matrices?
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Example
Fix di = d» = 2. The map 7 takes any 4 x 4 PSD matrix

X1111  X1112  X1121  X1122
X — X1112  X1212  X1221  X1222
X1121  X1221  X2121  X2122
X1122  X1222  X2122  X2222

to its partial traces

X1111 + X1212  Xi121 + Xi222 and Z — Xt + X121 X1112 + X2122
X1121 + X1222  X2121 + X2222 X1112 + X2122  X1212 + X2222

Here m(S%) is the cone over the product of two disks. The fibers
771(Y, Z) are the 5-dimensional transportation spectrahedra.

Quiz: What if we restrict to diagonal matrices?

Answer: We get the familiar toric picture i

it
Jirnn,
T
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Conclusion

Gibbs manifolds are images of linear spaces of symmetric matrices under
the exponential map. Arising in applications like optimization, statistics
and quantum physics, they extend the ubiquitous role of toric geometry.

’Vao + bg 0 0 0 —|
| 0 ao + b1 0 0 |
0 0 a1 + bg 0
L 0 0 0 a+ le

poo = exp(ao+bo), po1 = exp(ao+b1),
pio = exp(ai+bo), p11 = exp(ai+b1).
poop11 — po1pio = 0.
The Gibbs variety is the zero locus of all polynomials that vanish on the
Gibbs manifold. We compute these polynomials and show that the Gibbs

variety is low-dimensional. Our theory is applied to a wide range of
scenarios, including matrix pencils and quantum optimal transport.
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Algebraic Statistics

is the setting of the
papers in blue eI 194

Algebraic
Statistics

Seth Sullivant

And, yes, let’s chat about
finding those roots
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