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a b s t r a c t

Recent research has provided a better understanding of the power cepstrum, which has led to several
applications in time series clustering, classification, and anomaly detection. It has also provided a
deeper understanding of the theoretical framework that relates the power cepstrum with some system
theoretic properties of the underlying dynamics. In this paper, we pursue the intricate connections
between the power cepstrum of a signal and the pole polynomial of the underlying generative model.
In this way, we develop a simple and extremely efficient method to identify an autoregressive (AR)
system, starting from the power cepstrum of its output signal. This general framework uses Newton’s
identities to set up a system of elementary symmetric polynomials over the cepstral coefficients
and results in an identification algorithm that is independent of the length of the power cepstrum,
with computational complexity only linearly dependent on the order of the model. We provide
several numerical examples, first on synthetic time series, then on the classical Yule sunspot numbers
modeling problem, and finally on a contemporary application involving structural health monitoring.
Subsequently, the novel system identification algorithm is employed to provide insight in the results of
weighted cepstral clustering, showing that the model estimated from the center of a cluster provides
a good estimator for the dynamics in that cluster.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Given the steady increase in sensor data (Perera, Zaslavsky,
hristen, & Georgakopoulos, 2014), computational capacity, and
torage capabilities, interest in the analysis of large time series
as grown substantially over the past decades. While scaleable
ata-driven algorithms for pattern recognition exist, dynami-
al system modeling on signals remains a laborious and time-
onsuming task, often requiring expert knowledge. Existing sys-
em identification techniques (for a good overview of core con-
epts, see Ljung, 2010) do not always scale well for large data sets
f long signals, though an important line of research based on
he covariance extension method (see Mari, Dahlén, & Lindquist,
000) already mitigates this problem and does feature high scal-
bility. Novel system identification techniques offering low com-
utational complexity are always of interest.

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Cristian
R. Rojas under the direction of Editor Torsten Söderström.
∗ Corresponding author.

E-mail addresses: oliver.lauwers@esat.kuleuven.be (O. Lauwers),
hristof.vermeersch@esat.kuleuven.be (C. Vermeersch),
art.demoor@esat.kuleuven.be (B. De Moor).
1 Fellow IEEE, SIAM.
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005-1098/© 2022 Elsevier Ltd. All rights reserved.
Various novel technologies, such as smart meters (Uddin, Ah-
mad, Qamar, & Altaf, 2018), wearables (Kim, Campbell, Esteban-
Fernández de Ávila, &Wang, 2019), and autonomous vehicles (Ed-
wards, 2019), only increase the need for this type of new system
identification techniques. Existing approaches often apply black-
box machine learning methods, but do not provide insight in
the underlying dynamics of the problem. Results from these
algorithms lack interpretability, which can be detrimental in an
engineering context. Generating insight in the results and trans-
parency in the method of operation should, therefore, be an
important aspect of data analysis in general, and especially in
time series analysis. Unsupervised learning, in particular, would
benefit tremendously from methods that can be explicitly linked
to the underlying dynamics or other fundamental properties of
the signals, as the lack of labels or clear learning goals can easily
result in confusing, uninterpretable, and sub-par results (Vel-
lido, Martín-Guerrero, & Lisboa, 2012). Time series clustering
is a prime example of such an unsupervised learning problem
where results from black-box techniques are opaque. Similarity
measures play a crucial role in providing interpretability, whereas
traditional methods come up short (Pereira & de Mello, 2013).

Earlier work (De Cock & De Moor, 2002; Lauwers & De Moor,
2017) has mitigated this problem somewhat by proposing and ex-
tending a data-based distance measure, i.e., the weighted cepstral
distance, that mimics a model norm. While this provides some
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nsight in what a clustering algorithm considers to be similar time
eries, it still fails to explicitly show what the resulting clusters
epresent. In this paper, we address this issue and develop a new
ystem identification method that provides this insight. Our main
ontributions are

• introducing an extremely efficient, novel system identifica-
tion technique that relies on exact solutions of a system of
multivariate polynomial equations, which relates the power
cepstrum of a signal to the coefficients of the pole poly-
nomial of its generating linear model; when the power
cepstrum is known, the algorithm is independent of the
length of the power cepstrum and its computational com-
plexity is only linearly dependent on the order of the model
(starting from a signal with unknown power cepstrum, on
the other hand, the computation of the power cepstrum
dominates and the procedure has complexity O(N logN),
with N the signal length);
• interpreting the cluster centers from a cepstral clustering

problem as good estimators for the average dynamics of the
signals present in these clusters;
• exploring synthetic, historical, and contemporary illustra-

tions and applications to corroborate the theoretical results
of this paper with practical examples.

Note that the method presented in this text shares its com-
putational efficiency with covariance extension methods (Mari
et al., 2000), providing an exact solution, with a computational
complexity linearly dependent on the order of the model, but now
starting from the cepstrum rather than from the spectrum of the
signal.

The remainder of this paper proceeds as follows: Section 2
introduces notation and model class assumptions, and it ex-
plicitly defines the identification objective that we meet in this
paper. Section 3 provides relevant elements from the theory of
symmetric polynomials, which are used in Section 4 to develop
the new system identification algorithm. In Section 5, we give
some background on cepstral clustering and show how the iden-
tification algorithm can be used to identify the representative
dynamics of a cluster. Section 6 provides several numerical ex-
amples, showing the theoretical results in practice. We show
results on synthetic signals, the classical Yule sunspot numbers
time series, and structural health monitoring data. All code used
in the numerical examples is available on GitHub.2 We conclude
his paper and introduce some ideas for future work in Section 7.
ppendix A shows how the input white noise hypothesis can be
elaxed, Appendix B relaxes the assumption of stable models, and
ppendix C elaborates on the computational aspects of the power
epstrum.

. Notation & objective

.1. Model class assumptions

Consider an nth order autoregressive (AR) model, which can
e represented in the z-domain as

(z) =
1

a(z)
U(z), (1)

where Y (z) is the z-transform of the output signal, y(t), U(z) is
the z-transform of the white noise input signal, u(t), and a(z) is
the pole polynomial of the model,

a(z) = zn +
n∑

i=1

aizn−i =
n∏

j=1

(
z − αj

)
, (2)

2 The code used to generate the results of the numerical exam-
les can be found on https://github.com/Olauwers/Cepstral-Identification-of-
utoregressive-Systems.
 c

2

with ai the coefficients of the pole polynomial and αj the (com-
plex) roots of the pole polynomial, which are the poles of the AR
model. We also assume

⏐⏐αj
⏐⏐ < 1, though we relax this stability

assumption in Appendix B.
We call H(z) = 1

a(z) the transfer function of the AR model and
define its power spectral density, Φh

(
eiω

)
, as

Φh
(
eiω

)
= H

(
eiω

)
H

(
eiω

)
=

⏐⏐H (
eiω

)⏐⏐2 , (3)

where · corresponds to the complex conjugate.
When we denote the Fourier transform as F , the model

(power)3 cepstral coefficients, ch(k), with k the coefficient number,
of a model with transfer function H(z) are

F {ch(k)} = log
⏐⏐H (

eiω
)⏐⏐2 = log

(
Φh

(
eiω

))
. (4)

Similarly, we define the (power) cepstrum of a signal y(t) as

F
{
cy(k)

}
= log |F {y(t)}|2 .

Computationally, we can employ the fast Fourier transform
(FFT), as shown in Fig. 1, to obtain these coefficients. A de-
tailed discussion of the computational aspects can be found in
Appendix C.

In the remainder of this paper, we work with the model
cepstral coefficients ch(k). When we assume white noise inputs
in Eq. (1), we have that cy(k) = ch(k) (Oppenheim & Schafer,
1975). However, we can even relax this assumption: as long as
the input signal is stationary, so that its Fourier transform is well-
defined, we can find the model cepstrum using the results from
Appendix A.

Combining Eqs. (1), (2), and (4), we can relate the model
cepstrum with the poles of the AR model as in Oppenheim and
Schafer (1975):

ch(k) =
n∑

j=1

α
|k|
j

|k|
, ∀k ̸= 0, (5)

and ch(0) = g ′, a constant that depends on the gain and initial
conditions of the system.

2.2. Identification objective

We pursue the following identification objective:

Identify the pole polynomial, a(z), from a discrete-
time model cepstrum, ch(k), generated by a linear
time-invariant (LTI) system with unknown transfer
function H(z) = 1

a(z) .

In order to achieve this identification objective, we employ the
odel cepstrum, ch(k), and its relation to the poles of the model.
rom this relation, we find explicit solutions for the polynomial
oefficients, using some well-known results on symmetric poly-
omials. For the white noise input signals considered here, the
roblem corresponds to the identification of an AR system.
The computational complexity of traditional AR system iden-

ification algorithms grows linearly with signal length. However,
nce the model cepstrum is known, the novel identification pro-
edure proposed in this paper very efficiently estimates a model
rom only n model cepstral coefficients, with n the order of

3 In this paper, we use the terms power cepstrum and cepstrum interchange-
bly. This name stems from the fact that it is derived from the power spectral
ensity of a signal. There also exists a different notion, called the complex
epstrum, which we introduce in Appendix B. We always explicitly include the
omplex part of the name when referring to that notion.

https://github.com/Olauwers/Cepstral-Identification-of-Autoregressive-Systems
https://github.com/Olauwers/Cepstral-Identification-of-Autoregressive-Systems
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Fig. 1. The (power) cepstrum, cy(k), of a signal y(t) of length N can be computed by calculating the fast Fourier transform (FFT) of the signal, squaring its magnitude,
ividing the subsequent logarithm by N , and applying the inverse fast Fourier transform (IFFT) on the result. This procedure turns the convolutional structure of the

time domain, through the multiplicative structure of the frequency domain, into an additive structure in the log-frequency domain. The IFFT preserves this additive
structure in the (power) cepstral domain. For a more detailed discussion of the computational aspects, see Appendix C.
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the model, and is, therefore, independent of the length of the
cepstrum.

The proposed system identification method is related to the
covariance and cepstrum matching problem (Enqvist, 2004; Ot-
tersten, Stoica, & Roy, 1998), which aims to estimate an autore-
gressive moving-average (ARMA) filter from the covariances and
cepstral coefficients of a signal by solving a convex optimization
problem. There are, however, some important differences be-
tween the traditional approaches to this problem and the method
proposed in this paper, most notably that the latter approach does
not need an optimization routine, but rather provides an exact
analytical solution,4 decreasing its computational cost.

Moreover, there are instances where we have only cepstral
data available (e.g., the cluster centers in the cepstral clustering
problems mentioned in the introduction and discussed in de-
tail in Section 5). Traditional covariance and cepstrum matching
approaches also need the covariances, while the cepstral coeffi-
cients suffice for the proposed method (the cost of this is that
the estimated model class is reduced to just AR models, rather
than ARMA models). Finally, in the traditional covariance and
cepstrum matching approaches, it is the MA part of the model
that is estimated from the cepstral coefficients. In this paper, we
provide a method that is able to identify an AR model, without
needing the covariances.

Another class of system identification techniques, based on
the covariance extension method (Mari et al., 2000), bear some
relation to the approach developed here, and work without op-
timization routines. However, again, these covariance extension
based methods employ the covariances of the signal, while the
method in this text starts from the cepstral coefficients.

3. Symmetric polynomials

Symmetric polynomials are polynomials P (α1, . . . , αn) in n
variables (i.e., the n poles αj of the AR model), such that, for any
permutation σ of the subscripts {1, . . . , n}:

P
(
ασ (1), . . . , ασ (n)

)
= P (α1, . . . , αn) .

In this section, we exploit two special types of symmetric poly-
nomials, the elementary symmetric and power sum polynomials,
over the poles of an AR model. Well-known relations between
these two types of polynomials provide us with a way to link the
pole polynomial, a(z), and the model cepstral coefficients, ch(k),
f an AR model.
We define the elementary symmetric polynomials5 as

el (α1, . . . , αn) =
∑

1≤j1<···<jl≤n

αj1 · · ·αjl ,

ith l ∈ N and el (α1, . . . , αn) = 0 when l > n.

4 Traditional system identification methods using numerical linear algebra
e.g., subspace methods) ‘‘may yield a solution that is outside of the model
lass (e.g., non-stable models)’’ (Enqvist, 2004). The system identification method
eveloped in this paper suffers from no such problems and always returns stable
odels (see Appendix B).
5 For example, when n = 3, we distinguish four different (non-zero)
olynomials: e0 (x1, x2, x3) = 1, e1 (x1, x2, x3) = x1 + x2 + x3 , e2 (x1, x2, x3) =
x + x x + x x , and e x , x , x = x x x .
1 2 1 3 2 3 3 ( 1 2 3) 1 2 3

3

Vieta’s theorem (Blum-Smith & Coskey, 2017) expands the
ole polynomial, a(z), in terms of elementary symmetric polyno-
ials, as
n∏

j=1

(
z − αj

)
=

n∑
l=0

(−1)lel (α1, . . . , αn) zn−l. (6)

The coefficients ai of the pole polynomial are then nothing
more than the elementary symmetric polynomials of the poles
αj, up to their sign, or

i = (−1)iei (α1, . . . , αn) .

urthermore, the power sum polynomials are defined as

l (α1, . . . , αn) =

n∑
j=1

αl
j = lch(l), l ∈ N, (7)

here the last equality follows from Eq. (5) and αj denotes the
oles of an AR model with model cepstral coefficients ch(l).
The elementary symmetric and power sum polynomials can

e related to each other. These relations are known as Newton’s
dentities (Boklan, 2018) and are defined recursively.

efinition 1 (Newton’s Identities). relate the elementary symmet-
ic polynomials el and power sum polynomials pl, over a set of
ariables (α1, . . . , αn), as

el (α1, . . . , αn)

=

l∑
i=1

(−1)i−1el−i (α1, . . . , αn) pi (α1, . . . , αn) .

Solving these recursive relations equates the elementary sym-
etric polynomials to combinations of power sum polynomials

dropping the variables (α1, . . . , αn) to improve readability):

1 = p1,

2 =
1
2

(
p21 − p2

)
,

...

el =
(−1)l

l!
Bl (−0!p1, . . . ,−(l− 1)!pl) ,

(8)

ith Bl (x1, . . . , xl) the complete exponential Bell polynomials
Mihoubi, 2008), a type of polynomials that arises in combina-
orics and encodes information on how a set can be partitioned.6

. Cepstral identification of AR systems

Using the results above, we can very efficiently identify the
ole polynomial of an AR model from its model cepstral coeffi-
ients.

6 For example, B3 (x1, x2, x3) = x31+3x1x2+x3 , as there is one way to partition
a set of 3 variables as 3 groups of 1 element each, three ways to partition 3
variables in 1 group of 1 element and 1 group of 2 elements, and one way to
partition 3 variables as 1 group of 3 elements.
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Algorithm 1 Cepstral identification of AR systems

1: procedure cepstral_sysid(ch(k),n)
2: Initialize a(n) = 1, with a ∈ Rn×1 the vector that will contain the n (= model order) coefficients of a(z).
3: For l = 1 : n do
4: a(n− l)← 1

l!Bl (−1!ch(1), . . . ,−l!ch(l))
5: End
6: return a
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Theorem 2. Given an nth order stable AR model, with pole
polynomial a(z) and model cepstral coefficients ch(k), we have

a(z) =
n∑

l=0

1
l!
Bl (−1!ch(1), . . . ,−l!ch(l)) zn−l, (9)

with Bl (x1, . . . , xl) the complete exponential Bell polynomials (Mi-
houbi, 2008).

Proof. We start from the monic pole polynomial

a(z) =
n∏

i=1

(
z − αj

)
,

with αj, j ∈ {1, . . . , n}, the poles of the AR model. Expanding
in terms of elementary symmetric polynomials, as in Vieta’s
theorem in Eq. (6), we get

a(z) =
n∑

l=0

(−1)lel (α1, . . . , αn) zn−l.

Using Eq. (8), we can rewrite this expression in terms of com-
lete exponential Bell polynomials over power sum polynomials:

(z) =
n∑

l=0

1
l!
Bl (−0!p1, . . . ,−(l− 1)!pl) zn−l.

Finally, the relation between the power sum polynomials and
he model cepstral coefficients in Eq. (7) gives us the result from
he theorem,

(z) =
n∑

l=0

1
l!
Bl (−1!ch(1), . . . ,−l!ch(l)) zn−l. □

Using Theorem 2, we now have a system identification al-
gorithm, as described in Algorithm 1, fulfilling the identification
objective set out in Section 2.2. As the model cepstrum (Eq. (5))
falls off exponentially, it concentrates the information contained
in the signal in the first few cepstral coefficients, hence we only
need the first n to identify the system. If the cepstral coefficients
are known, this algorithm is therefore of complexity O (n), with

the order of the AR model. In cases where the cepstrum is
nown, e.g., in cepstral clustering, which we discuss in detail
n Section 5, this algorithm is thus extremely efficient, with
computational complexity that is independent of the length
f the cepstrum! When the model cepstral coefficients are not
nown, their computation dominates the computational com-
lexity of the identification algorithm. However, the complexity
order O (N logN), with N the signal length) is still very reason-
ble, and will generally not overextend resources. We refer to
ppendix C for the details of the computation of the cepstral
oefficients.
The complete exponential Bell polynomials can be explicitly

ritten out in terms of their arguments (Mihoubi, 2008):

n(x1, . . . , xn) =
n∑

k=1

∑
ji

n!
j1! · · · jn−k+1!

(x1
1!

)j1
· · ·

(
xn−k+1

(n− k+ 1)!

)jn−k+1
,

t

4

here the second summation takes place over all sequences
1, . . . , jn−k+1, such that

j1 + j2 + · · · + jn−k+1 = k
j1 + 2j2 + · · · + (n− k+ 1)jn−k+1 = n .

With this representation, Eq. (9) is similar to the results
f Schroeder (1981), who arrived at explicit expressions linking
inear predictive coding (LPC) model parameters and cepstral
oefficients in a different way. This builds on a body of literature
n speech processing, where recursive relations for this problem
ave been known for quite some time. In Huang, Acero, and Hon
2001), the authors mentioned that these recursions should not
e used to calculate model parameters from cepstral coefficients,
owever, as this might result in unstable systems. Employing the
ower cepstrum, rather than the complex or real cepstrum, allevi-
tes this particular problem. The power spectral density in Eq. (3)
oes not take into account the phase information of the transfer
unction. Two systems H(z) and H(z−1) have the same power
epstrum. In the expansion of the power cepstral coefficients in
erms of poles (see Eq. (5)), we always get contributions as if
he poles are stable (see Appendix B), and a fortiori the resulting
odel is stable.

. Cepstral clustering

We can now use this novel cepstral system identification tech-
ique to give an interpretation to time series clustering results,
here we have a natural framework in which we only have access
o a model cepstrum of a system that we would like to explicitly
dentify. We start in Section 5.1 with a short introduction to time
eries clustering. We show how the cepstrum can be used to
efine a distance measure between signals (Section 5.2) and de-
cribe a clustering approach using this cepstral distance measure
Section 5.3). Then, in Section 5.4, we interpret the center of the
esulting clusters in terms of the geometric average of the power
pectral densities of all signals present in these clusters.

.1. Time series clustering

Time series clustering is the unsupervised machine learning
roblem of partitioning a set of time series in groups of signals
hat belong together in some sense. This belonging together is for-
alized in a distance measure, which quantifies how dissimilar

wo time series are.
As time series naturally are high-dimensional data objects,

hey suffer from the curse of dimensionality. The choice of dis-
ance measure is, therefore, extremely important and non-trivial,
s high-dimensional spaces have some counter-intuitive geo-
etrical properties that make defining a useful distance mea-
ure challenging. For a thorough discussion, see Verleysen and
rançois (2005). Traditionally, shape-based distance measures,
.g., the Euclidean distance or the dynamic time warping (DTW)
istance (Keogh, 2002; Lauwers & De Moor, 2017; Pereira &
e Mello, 2013), are used, which more or less treat the time series
s a vector, ignoring the natural correlation structure across its
ime dimension. Alternatively, some features are selected, and



O. Lauwers, C. Vermeersch and B. De Moor Automatica 139 (2022) 110214

a
i
a

t
b
M
i
s
T
i
f
D
d
b
w

5

m
w

d

c

d

E

F

w
d

w

Φ

r
e

f

distance measure based on these features is devised, ignor-
ng all other information. An overview of time series clustering
pproaches can be found in Liao (2005).
In many engineering applications, the underlying dynamics of

he time series are of interest. Hence, the shape-based or feature-
ased measures are seldom sufficient (Pereira & de Mello, 2013).
odeling each time series separately, on the other hand, is often

mpractical and computationally infeasible, especially in large-
cale applications that involve several thousands or more signals.
he model cepstrum, and its interpretation in model parameters
n Eq. (5), allows for a model norm that can be calculated directly
rom the data: the weighted cepstral distance (see De Cock &
e Moor, 2002; Lauwers & De Moor, 2017 for a more in-depth
iscussion). In this sense, it guarantees to quantify dissimilarity
etween two time series based on their generative dynamics,
ithout the need to explicitly model these dynamics.

.2. Weighted cepstral distance

Given two model cepstra, ch1 (k) and ch2 (k), belonging to AR
odels with transfer functions H1 (z) and H2 (z), we define the
eighted cepstral distance d

(
ch1 (k), ch2 (k)

)2 as

(
ch1 (k), ch2 (k)

)2
=

∞∑
k=1

k
(
ch1 (k)− ch2 (k)

)2
.

Denoting the simple poles of H1 (z) as αi and H2 (z) as βj, we
an interpret this distance in terms of model parameters:

(
ch1 (k), ch2 (k)

)2
= log

p∏
i=1

q∏
j=1

⏐⏐1− αiβ̄j
⏐⏐2

p∏
i,j=1

(
1− αiᾱj

) q∏
i,j=1

(
1− βiβ̄j

) ,

with p and q the order of H1 (z) and H2 (z), respectively. We can
thus compare differences between the generative dynamics of
the two time series by simply calculating the weighted cepstral
distance. For proofs of the above statements and a more thor-
ough discussion, see De Cock and De Moor (2002), Lauwers and
De Moor (2017).

5.3. Clustering techniques

Starting from a weighted cepstral distance matrix (i.e., a ma-
trix, D, containing the distance between the ith and jth cepstrum
at position D[i, j]), we can cluster the time series by using, for
example, an agglomerative hierarchical method. Here, each time
series initially represents a cluster of its own. These clusters are
then merged iteratively, based on the shortest distance between
different clusters, until the desired number of clusters is obtained.
Note that the weighted cepstral distance measure is not restricted
to this particular clustering technique: any clustering technique
that accepts a distance matrix is viable. Clustering methods that
use the Euclidean distance implicitly (e.g., k-means), could also
be adapted to work on weighted versions of the cepstra. For a
more in-depth description of clustering techniques, see Rokach
and Maimon (2005). Cepstral clustering using hierarchical clus-
tering was explored by some of the authors in Lauwers and
De Moor (2017), but other cepstral clustering techniques can be
found in Afsari, Chaudhry, Ravichandran, and Vidal (2012), Boets,
De Cock, Espinoza, and De Moor (2005), Vishwanathan, Smola,
and Vidal (2007) and Wolf and Shashua (2003).
 o

5

5.4. Dynamical interpretation of the cluster centers

Given m cepstra, ĉh,j(k), with j ∈ {1, . . . ,m}, in a cluster,
and assuming that they are different realizations (i.e., coming
from different input and output signals) of the same system with
transfer function H (z), we can calculate the average of these
cepstra as

c̃h(k) =
1
m

m∑
j=1

ĉh,j(k). (10)

Taking the Fourier transform of both sides, we find, from
q. (4),{
c̃h(k)

}
=

1
m

m∑
j=1

log
(
Φ̂h,j

(
eiω

))

= log

⎛⎝ m

√ m∏
j=1

Φ̂h,j
(
eiω

)⎞⎠
= log

(
Φ̃h

(
eiω

))
,

(11)

here Φ̃h
(
eiω

)
is the geometric mean over the power spectral

ensities.
Given m estimates of such a power spectral density, Φ̂h,j

(
eiω

)
,

ith j ∈ {1, . . . ,m}, this geometric mean represents an estimator

˜ h
(
eiω

)
= m

√ m∏
j=1

Φ̂h,j
(
eiω

)
.

This estimator has been shown (Attivissimo, Savino, & Trotta,
2000; Pintelon, Schoukens, & Renneboog, 1988) to be less biased
than the Euclidean average over the different Φ̂h,j

(
eiω

)
. The aver-

age of the cepstra c̃h(k) in Eq. (10) then represents the dynamics
of the geometric mean of the different estimates of the power
spectral density and characterizes the dynamics with the same
low-biased estimator properties as noted for Φ̃h

(
eiω

)
in Pintelon

et al. (1988).
Algorithm 1 allows us to estimate an AR model from the aver-

age cepstrum (i.e., cluster center) and use this as representative
dynamics of the cluster. Eq. (11) states that this is equivalent
to estimating dynamical models for all signals in the cluster
separately and geometrically averaging them afterwards, which
is computationally more complex, showing that using cepstral
techniques allows us to very efficiently identify representative
dynamics.

6. Numerical examples

In this section, we illustrate the theoretical results obtained
in this paper. The numerical illustration in Section 6.1 serves as
a proof of concept, while the numerical examples in Section 6.2,
with synthetic data, investigate the properties of the novel cep-
stral system identification approach and show that the mean of a
cepstral cluster is a good estimate of the average dynamics. We
then repeat the historical identification of Yule’s sunspot numbers
in Section 6.3 and use the cepstrum to estimate AR models that
monitor structural health in Section 6.4.

We work only on the system outputs, and thus we assume that
the output cepstra correspond to the relevant model cepstra.7 We
epeat once more that all the code used during the numerical
xamples is available on GitHub1.

7 The (power) cepstrum of a white noise signal is zero everywhere except
or in its 0th coefficient. In this case cy(k) = ch(k), ∀k ̸= 0. Therefore, we work
nly on the output signals (see Appendix A).
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.1. Numerical illustration

As a first practical acquaintance with cepstral system identifi-
ation, we consider a simple 3rd order AR system

(z) =
1

z3 − 0.5z2 + 0.25z − 0.125
, (12)

hich has three poles (α1 = 0.5, α2 = 0.5i, α3 = −0.5i).
To identify this system, we simulate the response, y(t), to a

aussian white noise input signal6, u(t), of length N = 5 ×
105. We calculate the model cepstrum, ch(k), according to the
omputational details in Appendix C. Algorithm 1 then yields a
rd order AR model8

Ĥ(z) =
1

z3 − 0.497z2 + 0.249z − 0.126
.

The poles and the transfer function of the identified model
ˆ (z) closely resemble those of the original system H(z), as is also
isualized in Fig. 2.
We assume in this paper that the order of the model is a user-

nput to the algorithm. Since Algorithm 1 is computationally very
heap once the cepstrum is known (and we only have to compute
he cepstrum once, independent of the model order), in practice,
e could use a simple grid search in combination with an error
stimator (e.g., the Akaike information criterion Akaike, 1974) to
ind an appropriate value for the model order n.

.2. Synthetic data

We explore examples with synthetic data, where the underly-
ng systems generating the data are known.

.2.1. Cepstral system identification
We consider again the 3rd order AR system in Eq. (12), H(z),

nd numerically examine the convergence behavior, noise ro-
ustness, and influence of a wrong model order. Moreover, we
ompare the estimation results of the cepstral system identifi-
ation technique with those of the well-known ordinary least-
quares regression approach, obtained by solving the normal
quations directly in time domain, Burg’s lattice-based method,
hich solves the lattice filter equations using the harmonic mean
f forward and backward squared prediction errors (Brockwell &
avis, 2016; de Hoon, van der Hagen, Schoonewelle, & van Dam,
996), and the maximum entropy method (Enqvist, 2004).

onvergence behavior. A first experiment compares the H2-error
f the identified models for different signal lengths N . The H2-
rror is the H2-norm (Antoulas, 2005) of the error system E(z) =
(z)− Ĥ(z), which represents the mismatch between the original

system H(z) and the identified model Ĥ(z). The cepstral, least-
squares, and Burg estimation approach are applied 100 times to
different responses of the same signal length N of the system
in Eq. (12). Furthermore, in this particular experiment, we com-
pare the results with the maximum entropy method (Enqvist,
2004), also called the linear predictive coding (LPC) method,
which interpolates a set of covariances with an AR model. Fig. 3
shows how the mean (over the 100 experiments) of the H2-error
decreases, as expected, for longer signal lengths. The obtained re-
sults for the maximum entropy method are similar to the results
obtained via the Burg estimation approach. Therefore, we do not
include the maximum entropy method in the numerical results
that follow in the next sections. As this convergence experiment
suggests, the cepstral estimation approach seems to cope better
with shorter time series than the other estimation techniques

8 The cepstral coefficients and exact model parameters depend on the exact
oise realization (i.e., the random seed).
6

Fig. 2. The model identified via the cepstral system identification algorithm
closely resembles the original system H(z). The original poles are α1 = 0.5,
α2 = 0.5i, and α3 = −0.5i.

(i.e., the results for the other methods fall outside of one standard
deviation of the error in this experiment, though the cepstral
estimation lies inside one standard deviation of the error of the
other methods; further research on this topic is required).

Noise robustness. In Fig. 4, we investigate the influence of noise
on the identification results. The response y(t) simulated by the
system in Eq. (12) is contaminated with additive white Gaussian
noise of different magnitudes σ : ỹ(t) = y(t) + σn(t). For high
signal-to-noise ratios (SNRs), the identified transfer functions
behave almost exactly as the original one. Down to 10 dB, the
results remain quite satisfactory. When the SNR drops below 10
dB, the model estimated by the cepstral identification procedure
deviates significantly from the original. The least-squares and
Burg estimation approach yield similar results.

Wrong model order. Now, we add a conjugate pair of poles to the
3rd order AR system in Eq. (12), H(z), to obtain a 5th order AR
system

G(z) =
H(z)

z2 + 0.5z + 0.125

=
1

.

(z − 0.5)(z2 + 0.25)(z2 + 0.5z + 0.125)
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Fig. 3. The cepstral, least-squares, Burg, and maximum entropy estimation
approach are applied 100 times to different output signals of the same length N
oming from H(z) in Eq. (12). The solid line shows how the mean of the H2-error
ecreases for longer data lengths, while the dashed lines represent the standard
eviation. The cepstral system identification procedure seems to cope better
ith shorter time series than the other estimation techniques (i.e., the results

or the other methods fall outside of one standard deviation of the error in this
xperiment, though the cepstral estimation lies inside one standard deviation of
he error of the other methods; further research on this topic is required).

Fig. 4. A visualization of the influence of the signal-to-noise ratio (SNR) on the
identification results. For high SNRs, the identified transfer functions behave
almost exactly as the original one. Down to 10 dB, the results remain quite
satisfactory. However, when the SNR drops below 10 dB, the model estimated
by the cepstral identification procedure deviates significantly from the original
system. The least-squares and Burg estimation approach yield similar results.

When we try to identify this 5th order system with models
f different order, we notice a clear decrease in the identification
erformance, which is of course to be expected. Fig. 5 compares
he resulting poles and transfer functions for a 7th, 6th, 5th, 4th,
nd 3rd order model. The correct model order (n = 5) clearly
esults in decent identification results, while lower model orders
n = 4 and n = 3) fail to capture all the system dynamics. Higher
rder models (n = 7 and n = 6) result visually in close magnitude
lots, although they do give similar H2-errors as the lower order
odels in Fig. 6. Fig. 6 also demonstrates that a longer signal

ength N does not alleviate the model mismatch problem.

.2.2. Mean of a cepstral cluster
We now turn our attention to the interpretation of the average

epstrum in Eq. (11), in the context of cepstral clustering.
Consider two systems,

1(z) = H(z) =
1

,

z3 − 0.5z2 + 0.25z − 0.125

7

Fig. 5. The 5th order model identified via the cepstral estimation procedure
closely resembles the original system G(z), while the other models deviate from
the original system. The original poles are α1 = 0.5, α2 = 0.5i, α3 = −0.5i,
α4 = −0.25+ 0.25i, and α5 = −0.25− 0.25i.

Fig. 6. The cepstral estimation approach for different model orders is applied
100 times to data coming from the original system G(z) with different (same-
length) realizations of the white Gaussian input. The solid line shows the mean
of the H2-error for the 5th order estimation, decreasing with longer data lengths.
However, when the model order is different from 5, longer signals do not
improve the H2-error.
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Fig. 7. Two output signals, which are realizations of systems H1(z) in Eq. (12)
nd H2(z) in Eq. (13), respectively, with Gaussian white noise as input.

Fig. 8. Results of agglomerative hierarchical clustering, using the weighted
cepstral distance. The first 100 signals (0–99) are outputs of H1(z) in Eq. (12), the
ast 100 belong to system H2(z) in Eq. (13). Cepstral clustering separates them
erfectly in two clusters, each representing one of the two systems. Examples
f signals belonging to both clusters are shown in Fig. 7.

s in Eq. (12), and

2(z) =
1

z3 − 0.4z2 + 0.3025z − 0.121
, (13)

ith poles α1 = 0.4, α2 = 0.55i, and α3 = −0.55i.
We simulate each system 100 times with Gaussian white noise

nput signals and denote the output signals of H1(z) as y1,i(t),
for i ∈ {1, . . . , 100}, with cepstra c1,i(k), and those of H2(z) as
y2,j(t), for j ∈ {1, . . . , 100}, with cepstra c2,j(k). Two such output
ignals, one for each system, are shown in Fig. 7. The poles of
hese two systems are purposely chosen close together, so that
he output signals are similar and the clustering challenge is non-
rivial. Performing cepstral agglomerative hierarchical clustering
see Section 5.3) on this data set, cutting off at two clusters,
xactly separates the signals coming from each system. The first
luster, C1, contains all cepstra c1,i(k), while the second cluster,
2, contains all cepstra c2,j(k). Fig. 8 shows the resulting labels.
Given a model cepstrum, we can identify, via Algorithm 1,

the corresponding pole polynomial and obtain the power spectral
density (PSD) of the identified model very efficiently. Fig. 9 shows
PSDs obtained in this way for various elements of cluster C1,
to show the variance on the dynamics present in the data set.
In Fig. 10, we show, for cluster C1, the true PSD (i.e., the PSD
associated with the system H1(z)), the geometric mean of all PSDs
(i.e., first identify the PSD for each signal in C1, by using the
system identification technique from this paper to estimate the

pole polynomial, and then compute the frequency response; the

8

Fig. 9. Power spectral density (PSD) estimates of some of the signals in y1,i(t),
the output signals of system H1(z) in Eq. (12). The PSD estimates clearly exhibit
some variance.

geometric average over all PSDs obtained in this way is shown),
and the PSD associated with the cluster center (i.e., the system
identification technique applied to the cluster center, which itself
is the average over all the cepstra present in the cluster). We
compare this with the PSD of the Euclidean average over all the
signals in the cluster. It is clear that the cluster center provides
a good estimate for the average dynamics of the cluster, and
certainly a better one than the Euclidean average. We can thus
interpret the cluster centers obtained by cepstral clustering as
good estimates of the average dynamics present in their clusters.
Instead of having to find a model for each realization of the
system and taking the geometric mean, it suffices to model the
cluster center.

6.3. Yule’s sunspot numbers

Already in 1927, Yule (Yule, 1927) proposed the structure that
we know today as an AR model. He introduced this statistical
technique to describe the historical series of recorded yearly
sunspot numbers, a time series of visual sunspot counts initiated
in 1848 by the Swiss astronomer Johann Rudolf Wolf (Werner,
2012). Yule, however, called this series Wolfer’s sunspot numbers,
in honor of Wolf’s successor at the Zürich observatory, Alfred
Wolfer. These sunspot numbers are an important indicator for
solar activity and the only direct information available to retrace
the long-term evolution of the solar cycle, but also play a role
in more recent discussions, like climate change, space flights, or
telecommunication (Clette, Svalgaard, Vaquero, & Cliver, 2014;
Werner, 2012).

Although the quality of the original data is questionable
(Werner, 2012), especially the oldest observations, we repeat this
historical identification experiment on the same data as Yule,
including the initial detrending9 (see Fig. 11), with yearly sunspot
numbers between 1749 and 1924, resulting in a time series of 176
sunspot numbers.

As expected, the cepstral, least-squares, and Burg approach
(for n = 2) closely match Yule’s historical model after the initial
detrending (see numerical results in Table 1). Fig. 12 compares
the results visually. Moreover, the cepstrum seems to cope very
well with the trend in the original data. Fig. 13 shows how
the identification results change when we do not detrend the
time series. The least-squares and Burg approach completely fail,
while the cepstral estimation results in a more or less satis-
factory model that captures most of the system dynamics. This

9 The detrending removes the best straight-line fit linear trend from the data.
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Fig. 10. Power spectral density (PSD) estimates for various quantities, compared to the actual PSD. All of these results are for the output signals of system H1(z),
in Eq. (12). The geometric average PSD is the geometric average over the PSDs belonging to all the output signals of system H1(z) (i.e., we identified a model for
each signal, computed all their PSDs, and took the geometric average). The cluster center PSD is the one belonging to the cepstral cluster center. Note that this PSD
is equal to the geometric average, illustrating Eq. (11), and they are both good estimators of the actual PSD. The Euclidean average PSD is the PSD belonging to the
Euclidean average over all signals in cluster C1 . It deviates from the actual PSD, showing the merit of cepstral clustering over traditional approaches for the purpose
of finding the average dynamics.
Fig. 11. This figure visualizes Yule’s sunspot numbers before and after
detrending.

Table 1
Numerical results of the identification of Yule’s historical sunspot data. The pole
polynomials a(z) = z2 + a1z + a2 are obtained via cepstral, least-squares, and
urg estimation on the detrended and trended (indicated with *) time series.
Approach a1 a2
Yule’s historical model −1.3425 0.6550
Cepstral estimation −1.3317 0.6587
Cepstral estimation * −1.4678 0.7412
Least-squares estimation −1.3345 0.6517
Least-squares estimation * −1.4319 0.5444
Burg estimation −1.3368 0.6516
Burg estimation * −1.4381 0.5475

stems from the fact that the cepstrum stores information on the
scale of the problem in its 0th coefficient, which is not used in
the identification technique. Part of the detrending is thus done
automatically.
9

Fig. 12. The identification of Yule’s historic sunspot numbers via the cepstral,
least-squares, and Burg approach. All methods yield a close match to Yule’s
model.

6.4. Structural health monitoring via AR models

Many civil and mechanical systems require close structural
health monitoring (SHM) systems, both from an economic and
a safety perspective (Sohn, Czarnecki, & Farrar, 2000). Damage
identification based on changes in dynamic response to vibrations
is one of the few methods to monitor structural health in a
non-destructive way. One approach is the use of AR models to
identify damage in given structures. The residuals (Bornn, Farrar,
Park, & Farinholt, 2009; Fugate, Sohn, & Farrar, 2001) and the
coefficients (Sohn et al., 2000) of the AR models fitted on motion
measurements of vibrating structures serve as important features
to detect structural damage.

We apply this AR approach on the measured response of a
vibrating three-story frame structure (sketched in Fig. 14) and use
the coefficients of the fitted models to identify structural damage.
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Fig. 13. When we do not detrend the sunspot number data before identification,
the least-squares and Burg approach fail completely to identify the system.
However, the cepstral estimation results in a rather satisfactory result that
captures most of the system dynamics.

Fig. 14. The three-story test setup of which we monitor the structural health
consists of an aluminum frame and four aluminum floor plates, connected
through bolted connections. In undamaged state, all bolted connections are
tightened properly. However, to simulate structural damage, we loosen or
remove some bolts. At its bottom, a shaker vibrates the structure and several
accelerometers measure the resulting movements of the different aluminum
parts.

The structure consists of an aluminum frame with floor plates,
connected through bolted connections. In undamaged state, all
bolts are tightened properly. By loosening or removing some
bolts, structural damage is simulated. The frame is excited by a
shaker at its bottom. Several accelerometers measure the move-
ments of the different aluminum parts.10

We follow the approach as described in the paper of Sohn
et al. (2000), where similar experiments are done on a bridge
structure. We identify the AR coefficients (order n = 3) of non-
verlapping windows (window length M = 50) of the output
f an accelerometer close to the defect, using the cepstral iden-
ification approach in Algorithm 1. The interested reader finds

10 More information about the test setup or the data set can be found on
he website of Los Alamos National Laboratory (https://www.lanl.gov/projects/
ational-security-education-center/engineering/software/shm-data-sets-and-
oftware.php). The data set used in this example is ‘‘Bookshelf Frame Structure
DSS 2000’’.
10
information about the influence of these design parameters on
the structural damage detection in Figueiredo, Figueiras, Park,
Farrar, and Worden (2011).

Input data on the movement of the shaker was not available.
We thus, again, have to make the assumption that the dynamics
contained in the output signal constitute the dynamics of the rel-
evant model. In the cepstral domain, this translates to assuming
that cy(k) = ch(k). Results are shown in Fig. 15. The experiment
was done twice without damage, for different levels of excitation.
The first experiment drives 2 volts through the shaker (undam-
aged 2V), the second one applies 5 volts (undamaged 5V). We
notice that the AR coefficients remain within the same range, for
different levels of excitation of the shaker. We then repeat the
experiment with structural damage (removal of the bolt named
L1C). The damaged AR coefficients in Fig. 15 clearly differ from
those in the undamaged situation, especially for the second and
third coefficient (the first coefficient seems to be less sensitive to
damage, an observation that has also been made by Sohn et al.,
2000). These differences in AR coefficients allow us to distinguish
undamaged and damaged structures.

Finally, we replicate the results with the least-squares and
Burg estimation approach. However, the differences between the
damaged and undamaged AR coefficients are not as distinctive
(see for example the third coefficient in Fig. 16). Perhaps the
rather short window length is to blame here, in accordance with
the results in Fig. 3.

7. Conclusion and future research

In this paper, we developed a novel general framework to
identify the pole polynomial, a(z), of an unknown autoregres-
sive (AR) system, exploiting the link between the model power
cepstrum and the poles of the model, which resulted in analytic
solutions for the coefficients of a(z). The computation of the
power cepstrum is the main contributor to the computational
complexity of the system identification procedure presented in
Algorithm 1. This complexity is O(N logN), with N the signal
length, resulting in a fast system identification technique that can
be applied to large-scale problems. When the power cepstrum
is known, e.g., in cepstral clustering problems, the procedure
is independent of the length of the power cepstrum and is of
complexity O(n), with n the model order.

Via numerical examples with synthetic data, we investigated
the convergence speed and robustness (to measurement noise
and wrong model order selection) of the identification procedure.
The algorithm was applied to a clustering problem, to show how
the cepstral cluster center provides a good estimator for the
average dynamics of the cluster (and therefore of the generative
model of the cluster). The classical example of Yule’s sunspot
numbers and a contemporary challenge in structural health mon-
itoring corroborated the theoretical results. We also compared
our novel approach to the traditional least-squares and Burg
estimation approach.

In future work, we will explore several extensions of the
current framework, to include models with zeros as well as
poles (the zeros would enter with a minus sign in the power
sums in Eq. (7), which offers a way to separate the contribu-
tions of poles and zeros) and allow for multiple-input multiple-
output models (using the MIMO extension of the power cep-
strum from Lauwers, Agudelo, & De Moor, 2018). We will pursue
ways to employ the information in higher cepstral coefficients
to improve parameter estimation, model order selection, and
robustness. We will also further investigate theoretically the dif-
ferences with the traditional least squares and Burg approach,
to understand the differences in performance, for example for
shorter signals.

https://www.lanl.gov/projects/national-security-education-center/engineering/software/shm-data-sets-and-software.php
https://www.lanl.gov/projects/national-security-education-center/engineering/software/shm-data-sets-and-software.php
https://www.lanl.gov/projects/national-security-education-center/engineering/software/shm-data-sets-and-software.php
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Fig. 15. The AR coefficients of the 3rd order AR model fitted on the output of
an accelerometer clearly indicate whether the frame contains some structural
damage. Results of two experiments without and one experiment with structural
damage are shown. Especially the second and third damaged AR coefficients
differ from their undamaged equivalent.
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Appendix A. General inputs

All results in this paper hold for stationary inputs. However,
Theorem 2 is written in terms of the model (power) cepstrum.
As long as we have access to these cepstral coefficients, we
can use the theorem. In this appendix, we describe how to ob-
tain the model cepstrum in the case of non-white noise inputs
(i.e., ch(k) ̸= cy(k)).

This notion of the cepstrum stems from the field of homo-
orphic signal processing (Oppenheim & Schafer, 1975). Eq. (4)
urns the convolutional structure of the time domain, through
he Fourier transform and the logarithm, into an additive struc-
ure. The inverse Fourier transform then turns this back into
transformed version of the time domain. This is known as

uefrency alanysis and has given rise to a lot of similar terms,
uch as liftering instead of filtering and rhamonics instead of
armonics (Bogert, 1963).
Formally, in time domain, taking the inverse Fourier transform

f the transfer function returns the impulse response, h(t), and
he following relation holds:

(t) = h(t) ∗ u(t),

ith y(t) and u(t) the time domain output and input signals,
espectively, and ∗ the convolution operator. In light of this, it
s easy to see that

h(k) = cy(k)− cu(k). (A.1)

This model cepstrum can be interpreted as the cepstrum of
he impulse response, h(t). It can always be computed when the
ourier transforms of the signals are well-defined.
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Fig. A.1. The power spectral density (PSD) of the colored (non-white) noise used
in Fig. A.2.

For example, when we simulate the system in Eq. (12), H(z),
ith a non-white noise input signal (e.g., the colored noise in
ig. A.1), the model cepstral coefficients, ch(k), no longer corre-
pond to the output cepstral coefficients, cy(k), and an identifica-
ion using only the output fails to capture the system dynamics.
owever, if we know the input cepstrum, cu(k), Eq. (A.1) gives us
he correct model cepstral coefficients and allows us to properly
stimate the AR model (see Fig. A.2).

ppendix B. On the assumption of stability

Because of the use of the power spectral density in Eq. (4),
he power cepstrum does not take into account any information
bout stability of the systems (i.e., whether poles have mag-
itudes greater or smaller than 1). For any unstable pole γ

i.e., |γ | > 1), the contribution to the model power cepstral coef-
icient, ch(k), ∀k ̸= 0, will be γ−k

k (Oppenheim & Schafer, 1975). If
e would then perform the system identification procedure from
his paper, we will identify a pole γ−1, and always obtain a stable
ystem.
If we want to allow unstable systems, we can instead employ

he complex cepstrum,11 defined as

ˆh(k) = F−1
{
log

(
H

(
eiω

))}
,

and computed as

ĉy(k) = IFFT (log (FFT(y(t)))) .

Consider now a system

Y (z) =
1

b(z)c(z)
U(z), (B.1)

here b(z) contains the stable poles, |βi| < 1, and c(z) the
nstable poles,

⏐⏐γj
⏐⏐ > 1. The question that we want to answer

now is whether we can, based on input–output signal pairs only,
determine whether the system is stable or not and identify its
pole polynomial a(z) = b(z)c(z).

11 The term complex cepstrum is a bit confusing, as the complex cepstral
oefficients are real numbers. Rather, the phase information of the transfer
unction is retained in computing the complex cepstrum, giving rise to its name.
12
Fig. A.2. The model estimated via the cepstral system identification procedure
closely resembles the original system H(z) when the colored (non-white) noise
of Fig. A.1 is taken into account. However, when the non-white input is not taken
into account, the identification clearly misestimates the original poles (z1 = 0.5,
z2 = 0.5i, and z3 = −0.5i).

We can calculate its model complex cepstrum, ĉh(k) = ĉy(k)−
ĉu(k), and it is easily shown that

ĉh(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q∑
i=1

βk
i

k
∀k > 0

log(g ′) k = 0

−

s∑
j=1

γ k
j

k
∀k < 0.

In other words, the complex cepstrum stores the cepstral
coefficients belonging to the stable poles in positive values of k
and the coefficients belonging to the unstable poles in negative
values of k. We show an example of the complex cepstrum in
Fig. B.1. We can run Algorithm 1 on the positive and negative
sequences separately. This gives us the pole polynomials b(z) and
c(z−1) in Eq. (B.1). We then only have to substitute z → z−1 for
the unstable part, multiply the two polynomials, to find

a(z) = b(z)c(z).
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Fig. B.1. The first five positive and negative complex cepstral coefficients of a
stable system (poles at 0.9, 0.7, 0.4), an unstable system (poles at 1/0.9, 1/0.7,
/0.4) and a mixed system (poles at 1/0.9, 0.7, 1/0.4), respectively. The 0th
epstral coefficient has been artificially set to 0 in all three cases to improve
eadability of the graph. This coefficient can take on large (positive or negative)
alues, but is not important for the discussion here.

ppendix C. Computational aspects

The (power) cepstrum of a signal y(t) can be straightforwardly
computed as

cy(k) = IFFT
(
log

(
Φy

(
eiω

)))
,

with k = 1, . . . ,N , and N the length of the fast Fourier trans-
form (FFT). Both the implementation of the inverse fast Fourier
transform (IFFT) (Brigham, 1988) and the logarithm are straight-
forward in this case and are pre-implemented in many commonly
used scientific programming languages, like MATLAB and Python.
Computing a good estimate of the power spectral density (PSD)
Φy

(
eiω

)
is a little more involved. For long enough signals (from

about N = 210 and beyond), we can employ the well-known FFT
as an approximation of the Fourier transform and implement

Φy
(
eiω

)
=

1
N
|FFT(y(t))|2 .

The FFT has a computational complexity of O(N logN).
The accuracy of the PSD estimate is very important to our

echniques. For shorter time series, we employ Welch’s method
Welch, 1967), which divides the signal in overlapping windows,
stimates the PSD of each of the windows using the FFT, and aver-
ges them out. The result is a less noisy estimate. This technique
s again of O(N logN), and is what we use throughout this paper
see Algorithm 2). For shorter time series (i.e., N < 27), even
ore accurate estimation techniques exist (e.g., the Multitaper
ethod Percival & Walden, 1993), but these are computationally
ore expensive and are, therefore, to be avoided for longer
ignals.

Algorithm 2 Power cepstrum computation

1: procedure power_cepstrum(y(t))
2: Φy

(
eiω

)
← Welch(y(t))

3: Φ ′y
(
eiω

)
← log(Φy

(
eiω

)
)

4: cy(k)← IFFT(Φ ′y
(
eiω

)
)

5: return cy(k)
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