
Direct Numerical Computation of
Polynomial Multiplication Maps

Lukas Vanpoucke, Benôıt Legat, Bart De Moor
lukas.vanpoucke@esat.kuleuven.be

May 14, 2024

1 / 17

Table of Contents

1. Linear Algebra-Based rootfinding

2. Combining Insights

3. Conclusion and future work

2 / 17

Macaulay framework

▶ Consider a system of polynomials

f (x , y) = 1 + x + y = 0

g(x , y) = 2x2 − 2y − 6 = 0

▶ The null space of a ‘Macaulay matrix’ M2 is then spanned by generalized
Vandermonde vectors associated with the common roots (1,−2), (−2, 1) [2]


1 x y x2 xy y 2

f (x , y) 1 1 1
xf (x , y) 1 1 1
yf (x , y) 1 1 1
g(x , y) −6 −2 2


︸ ︷︷ ︸

M2



1 1 1
1 −2 x

−2 1 y
1 4 x2

−2 −2 xy
4 1 y 2

 = 0

3 / 17

Macaulay framework: Multiplication maps

▶ From the null space, the multiplication maps Dx ,Dy can be computed:

N =



1 1 1
1 −2 x

−2 1 y
1 4 x2

−2 −2 xy
4 1 y 2

 =⇒

1 1 1
x 1 −2
y −2 1

[
1 0
0 −2

]
︸ ︷︷ ︸

Dx

=

 1 −2 x
1 4 x2

−2 −2 xy



1 1 1
x 1 −2
y −2 1

[
−2 0
0 1

]
︸ ︷︷ ︸

Dy

=

−2 1 y
−2 −2 xy
4 1 y 2


▶ In practice: eigenvalue problem to obtain the roots from a numerical null space

basis Z = NK :

S1N KDxiK
−1︸ ︷︷ ︸

Axi

= SxiN .

4 / 17

Macaulay framework: general case

Macaulay matrix Md =⇒ Null space basis Nd =⇒ Multiplication maps Axi =⇒ Eigenvalues

▶ Details:
▶ Gap: linearly dependent degree block (d large enough)
▶ Rank checks and system solving using SVD
▶ Ways to avoid explicit construction of Md

11 x1 x2
1

y

y2
independent
dependent

▶ Drawbacks:
▶ Large sizes of matrices involved: # monomials =

(
n+d−1
n−1

)
▶ Computation of ’unnecessary objects’ Md ,Nd

▶ Zero dimensional solution set required

5 / 17

Symbolic methods

▶ Not all monomials are required to set up multiplication maps [1]

▶ We can substitute monomials: e.g. reconsider f (x , y), g(x , y)

y = −1− x

x2 = y + 3
=⇒

y = −1− x

x2 = −1− x + 3

xy = −x − x2
=⇒

y = −1− x

x2 = 2− x

xy = −2

▶ In vector representation: B = {1, x} as basis polynomials

N =



1 x
1 0 1
0 1 x

−1 −1 y
2 −1 x2

−2 0 xy


11 x1 x2

1

y

y2
independent
dependent

6 / 17

Symbolic methods

▶ Since y = −1− x , y2 is a linear combination of y · B = {y , xy}

N =



1 x
1 0 1
0 1 x

−1 −1 y
2 −1 x2

−2 0 xy


▶ Multiplication maps carry out this substitution:

11 x1 x2
1

y

y2
independent
dependent

[1 x
1 1 0
x 0 1

]
Ax =

[1 x
0 1 x
2 −1 x2

] }
x · B

[1 x
1 1 0
x 0 1

]
Ay =

[1 x
−1 −1 y
−2 0 xy

] }
y · B

7 / 17

Symbolic methods: some details

▶ Example:
▶ Actively try to discover only border monomials [1]
▶ Reduction of multiples of border elements onto basis elements using row echelon form

=⇒ fewer monomials



1 x y x2 xy y 2 x3 x2y xy 2

f (x) 5 4 3 2 1
g(x) 5 4 3 2 1
xf (x) 5 4 3 2 1
yf (x) 5 4 3 2 1
xg(x) 5 4 3 2 1

 rref−−→


1 x y x2 xy y 2 x3 x2y

f (x) 5 4 3 2 1
g(x) 5 4 3 2 1
h(x) −10

6
7
6

−11
6

8
6

1
b(x) −35

3
−28
3

−16
3

−14
3

1



▶ Drawbacks:
▶ Limited adaptability in choice of polynomial basis [4]
▶ Row-echelon form to check linear (in)dependence

11 x1 x2 x3
1

y

y2

y3

?

?

independent
dependent

? unknown

8 / 17

Table of Contents

1. Linear Algebra-Based rootfinding

2. Combining Insights

3. Conclusion and future work

9 / 17

Rethinking the symbolic-style algorithm

▶ Goal: numerical-style approach with monomial substitution
1. Rewrite the symbolic-style algorithm in the null space
2. Add insights from the numerical methods

11 x1 x2 x3
1

y

y2

y3

?

?

independent
dependent

? unknown

N2 =



1 x y x2

1 1
x 1
y 1
x2 1
xy −5 −4 −3 −2
y 2 −5 −4 −3 −2



B︷ ︸︸ ︷

▶ Example: Adding dimensions → Adding monomials {x3, x2y} to B

0 =

[1 x y x2 xy y2 x3 x2y
f (x) 5 4 3 2 1
g(x) 5 4 3 2 1

]
x3 x2y

N2

1 x3

1 x2y


10 / 17

Partial multiplication maps

▶ The following maps then express multiplication: B 7→ x · B and B 7→ y · B
▶ Images of B1 = {1, x , y} are known: perform substitution where possible
▶ B2 = {x2} maps to new dimensions Bnew = {x3, x2y}
▶ Numerical insight: column basis can be unknown → linear system


1 x y x2

1
1

1
B2

{
x2 1

B1


1
x
y

 Ax =


1 x y x2 x3 x2y

1
1

−5 −4 −3 −2

1 x3 } x · B2

y
xy
y 2

 x · B1



Bnew︷ ︸︸ ︷


1

1
1

B2

{
x2 1

B1


1
x
y

 Ay =


1

−5 −4 −3 −2
−5 −4 −3 −2

1 x2y } y · B2

y
xy
y 2

 y · B1


11 / 17

Deriving new equations

xy 2 = (y 2) · x =
[1 x y x2

−5 −4 −3 −2
]
Ax =

[1 x y x2 x3 x2y
15 7 9 2 −2 0

]
= (xy) · y =

[
−5 −4 −3 −2

]
Ay =

[
35 28 16 14 0 −2

]
▶ New relations: Bnew = R · B (S-Polynomials [1])

C = Ax (:,1:4)Ay − Ay (:,1:4)Ax =


1 x y x2 x3 x2y

−15 −7 −9 −2 2 1 x2 · y − xy · x = 0
20 21 7 12 2 −2 xy · y − y 2 · x = 0


▶ Update underlying vector representations (null space N)

[B Bnew

B I

Bnew I

]
Null C−−−−→

[B
I B
R Bnew

]
numerical basis−−−−−−−−−→

[P
T1 B
T2 Bnew

]
11 x1 x2 x3

1

y

y2

y3
independent
dependent

12 / 17

Updating maps numerically

▶ Construct new maps AP
x ,A

P
y until they commute [3]: linear system

Nnew =


B Bnew

B I 0
x · B
y · B

Ax

Ay

[PT1

T2

]
=


P
T1 B
AxT x · B
AyT y · B


▶ Problem: Nnew (x · B) = AxT is known, Nnew (x · Bnew) is not!

▶ Row T1: subspace polynomials with known images
▶ Null T1 (K = basis): subspace for polynomials without known images[P

B T1

K KT

]
A

P
x =

[P x · K y · K
AxT x · B

I 0 x · K

]
13 / 17

Numerical experiments

▶ We compare the proposed algorithm with an SVD-based implementation (1) to
MacaulayLab (2) [5]
▶ n Polynomials of degree d in n variables with random coefficients
▶ Seems to converge if rank decisions are correct

n d runtime (1) (s) runtime (2) (s) avg residual (1) avg residual (2)
2 3 0.0014 0.0030 4.15× 10−13 4.16× 10−14

2 10 0.020 0.054 5.37× 10−13 2.42× 10−14

2 13 0.06 0.13 4.33× 10−6 2.06× 10−10

3 3 0.0053 0.017 3.96× 10−13 4.40× 10−14

3 5 0.042 0.16 3.51× 10−11 1.24× 10−12

3 8 1.63 2.42 4.75× 10−5 5.55× 10−8

4 3 0.035 0.21 1.01× 10−11 4.29× 10−13

4 5 4.66 10.34 2.07× 10−6 6.83× 10−11

5 3 0.70 4.55 3.91× 10−13 1.05× 10−14

6 3 23.58 498.72 3.96× 10−11 8.03× 10−13

14 / 17

Table of Contents

1. Linear Algebra-Based rootfinding

2. Combining Insights

3. Conclusion and future work

15 / 17

Conclusion and future work

▶ Conclusion:
▶ Different view on symbolic algorithms

▶ Determining independent monomials with row echelon form → Linear system for
multiplication maps in intermediate steps

▶ S-polynomials → Non-commutativity of multiplication maps
▶ Adding a select set of additional dimensions

▶ Adaptable to SVD-based, basis-agnostic implementation

▶ Future work:
▶ More stable computation to obtain new equations through C?
▶ Stability of obtaining multiplication maps in each iteration?
▶ More compression by fully exploiting polynomial structure?

16 / 17

References

[1] D. A. Cox, J. B. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Third
Edition. Springer-Verlag, 2007.

[2] Philippe Dreesen. “Back to the Roots: Polynomial System Solving Using Linear
Algebra”. PhD thesis, KU Leuven, 2013.

[3] B Mourrain. “A new criterion for normal form algorithms”. In: Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes. AAECC 1999 (1999), pp. 430–443.

[4] Simon Telen, Bernard Mourrain, and Marc Van Barel. “Solving Polynomial Systems
via Truncated Normal Forms”. In: SIAM Journal on Matrix Analysis and Applications
39 (3 2018), pp. 1421–1447.

[5] Christof Vermeersch and Bart De Moor. “Two complementary block Macaulay
matrix algorithms to solve multiparameter eigenvalue problems”. In: Linear Algebra
and its Applications 654 (2022), pp. 177–209.

17 / 17

	Linear Algebra-Based rootfinding
	Combining Insights
	Conclusion and future work
	References

