Direct Numerical Computation of Polynomial Multiplication Maps

Lukas Vanpoucke, Benoît Legat, Bart De Moor lukas.vanpoucke@esat.kuleuven.be

1. Linear Algebra-Based rootfinding

2. Combining Insights

3. Conclusion and future work

Consider a system of polynomials

$$f(x, y) = 1 + x + y = 0$$

g(x, y) = 2x² - 2y - 6 = 0

► The null space of a 'Macaulay matrix' M₂ is then spanned by generalized Vandermonde vectors associated with the common roots (1, -2), (-2, 1) [2]

Macaulay framework: Multiplication maps

From the null space, the multiplication maps D_x , D_y can be computed:

$$N = \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -2 & 1 \\ 1 & 4 \\ -2 & -2 \\ 4 & 1 \end{bmatrix} \begin{pmatrix} 1 & 1 \\ x \\ y \\ z^2 \\ z^2 \end{bmatrix} \stackrel{1}{\Rightarrow} \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -2 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}}_{D_x} = \begin{bmatrix} 1 & -2 \\ 1 & 4 \\ -2 & -2 \\ xy \\ y \\ z^2 \end{bmatrix} \stackrel{1}{\Rightarrow} \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -2 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}}_{D_x} = \begin{bmatrix} 1 & -2 \\ 1 & 4 \\ -2 & -2 \\ xy \\ y \\ z^2 \end{bmatrix} \stackrel{1}{\Rightarrow} \begin{bmatrix} 1 & 1 \\ 1 & -2 \\ -2 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} -2 & 0 \\ 0 & 1 \\ -2 & -2 \\ 4 & 1 \end{bmatrix}}_{D_y} = \begin{bmatrix} -2 & 1 \\ -2 & -2 \\ 4 & 1 \end{bmatrix} \stackrel{y}{y^2}$$

In practice: eigenvalue problem to obtain the roots from a numerical null space basis Z = NK:

$$S_1 N \underbrace{\mathcal{K} D_{x_i} \mathcal{K}^{-1}}_{\mathcal{A}_{x_i}} = S_{x_i} N.$$

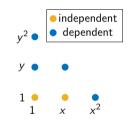
Macaulay matrix $M_d \Longrightarrow$ Null space basis $N_d \Longrightarrow$ Multiplication maps $A_{x_i} \Longrightarrow$ Eigenvalues

Details:

- ► Gap: linearly dependent degree block (*d* large enough)
- Rank checks and system solving using SVD
- Ways to avoid explicit construction of M_d

Drawbacks:

- Large sizes of matrices involved: # monomials = $\binom{n+d-1}{n-1}$
- Computation of 'unnecessary objects' M_d, N_d
- Zero dimensional solution set required



Symbolic methods

- ▶ Not all monomials are required to set up multiplication maps [1]
- We can substitute monomials: e.g. reconsider f(x, y), g(x, y)

$$y = -1 - x \qquad y = -1 - x \qquad y = -1 - x x^2 = y + 3 \qquad \Longrightarrow \qquad x^2 = -1 - x + 3 \qquad \Longrightarrow \qquad x^2 = 2 - x xy = -x - x^2 \qquad xy = -2$$

▶ In vector representation: $\mathcal{B} = \{1, x\}$ as basis polynomials

$$\mathbf{N} = \begin{bmatrix} 1 & x \\ 1 & 0 \\ 0 & 1 \\ -1 & -1 \\ 2 & -1 \\ -2 & 0 \end{bmatrix} \begin{array}{c} x \\ x^{2} \\ xy \end{array}$$

Symbolic methods

Since y = -1 - x, y^2 is a linear combination of $y \cdot B = \{y, xy\}$

...

$$\mathbf{N} = \begin{bmatrix} 1 & x \\ 1 & 0 \\ 0 & 1 \\ -1 & -1 \\ 2 & -1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x \\ x^2 \\ xy \end{bmatrix}$$

1

Multiplication maps carry out this substitution:

$$\begin{array}{ccc} 1 & x & 1 & x \\ 1 & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{A}_{x} = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{array}{c} x \\ x^{2} \end{array} \right\} x \cdot \mathcal{B}$$

$$\begin{array}{c} 1 & x \\ 1 & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \boldsymbol{A}_{y} = \begin{bmatrix} -1 & -1 \\ -2 & 0 \end{bmatrix} \begin{array}{c} y \\ xy \end{array} \right\} y \cdot \mathcal{B}$$

independent

dependent

 v^2

y (

Symbolic methods: some details

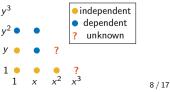
Example:

STADIUS

- Actively try to discover only border monomials [1]
- Reduction of multiples of border elements onto basis elements using row echelon form
 ⇒ fewer monomials

Drawbacks:

- Limited adaptability in choice of polynomial basis [4]
- ▶ Row-echelon form to check linear (in)dependence



1. Linear Algebra-Based rootfinding

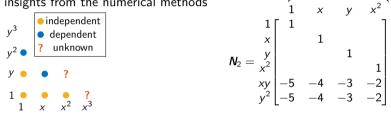
2. Combining Insights

3. Conclusion and future work

Rethinking the symbolic-style algorithm

- ► **Goal:** numerical-style approach with monomial substitution
 - 1. Rewrite the symbolic-style algorithm in the null space
 - 2. Add insights from the numerical methods

STADIUS



Example: Adding dimensions \rightarrow Adding monomials $\{x^3, x^2y\}$ to \mathcal{B}

$$\mathbf{0} = \begin{cases} 1 & x & y & x^2 & xy & y^2 & x^3 & x^2y \\ g(x) \begin{bmatrix} 5 & 4 & 3 & 2 & 1 & \\ 5 & 4 & 3 & 2 & 1 & \\ 5 & 4 & 3 & 2 & 1 & \\ \end{bmatrix} \begin{bmatrix} \mathbf{N}_2 & & \\ & 1 & \\ & & & 1 \end{bmatrix} \mathbf{x}_2^3$$

STADIUS

Partial multiplication maps

▶ The following maps then express multiplication: $B \mapsto x \cdot B$ and $B \mapsto y \cdot B$

- Images of $\mathcal{B}_1 = \{1, x, y\}$ are known: **perform substitution** where possible
- $\mathcal{B}_2 = \{x^2\}$ maps to new dimensions $\mathcal{B}_{new} = \{x^3, x^2y\}$
- \blacktriangleright Numerical insight: column basis can be unknown \rightarrow linear system

▶ New relations: $\mathcal{B}_{new} = \mathbf{R} \cdot \mathcal{B}$ (S-Polynomials [1])

$$\boldsymbol{C} = \boldsymbol{A}_{x}(:,1:4)\boldsymbol{A}_{y} - \boldsymbol{A}_{y}(:,1:4)\boldsymbol{A}_{x} = \begin{bmatrix} 1 & x & y & x^{2} & x^{3} & x^{2}y \\ -15 & -7 & -9 & -2 & 2 & 1 \\ 20 & 21 & 7 & 12 & 2 & -2 \end{bmatrix} \begin{bmatrix} x^{2} \cdot y - xy \cdot x = 0 \\ xy \cdot y - y^{2} \cdot x = 0 \end{bmatrix}$$

► Update underlying vector representations (null space **N**)

$$\begin{array}{c} \mathcal{B} \quad \mathcal{B}_{new} \\ \mathcal{B} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \\ \mathcal{B}_{new} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix} \xrightarrow{\text{Null } \mathbf{C}} \begin{bmatrix} \mathbf{I} \\ \mathbf{R} \end{bmatrix} \xrightarrow{\mathcal{B}}_{new} \xrightarrow{\text{numerical basis}} \begin{bmatrix} \mathbf{T}_1 \\ \mathbf{T}_2 \end{bmatrix} \xrightarrow{\mathcal{B}}_{new}$$

independent

dependent

 v^3

Updating maps numerically

• Construct new maps $A_x^{\mathcal{P}}, A_y^{\mathcal{P}}$ until they commute [3]: **linear system**

$$\boldsymbol{N}_{new} = \begin{array}{c} \mathcal{B} & \mathcal{B}_{new} \\ \mathcal{B} \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{A}_{x} \\ \boldsymbol{y} \cdot \mathcal{B} \end{bmatrix} \begin{bmatrix} \mathcal{P} \\ \boldsymbol{T}_{1} \\ \boldsymbol{T}_{2} \end{bmatrix} = \begin{bmatrix} \mathcal{P} \\ \boldsymbol{T}_{1} \\ \boldsymbol{A}_{x} \boldsymbol{T} \\ \boldsymbol{A}_{y} \boldsymbol{T} \end{bmatrix} \begin{array}{c} \mathcal{B} \\ \boldsymbol{x} \cdot \mathcal{B} \\ \boldsymbol{y} \cdot \mathcal{B} \end{array}$$

▶ Problem: $N_{new}(x \cdot B) = A_x T$ is known, $N_{new}(x \cdot B_{new})$ is not!

▶ Row *T*₁: subspace polynomials with known images

▶ Null T_1 (K = basis): subspace for polynomials without known images

$$\begin{array}{c} \mathcal{P} & \mathcal{P} & x \cdot \mathcal{K} & y \cdot \mathcal{K} \\ \mathcal{B} \begin{bmatrix} \mathbf{T}_1 \\ \mathbf{K}^T \end{bmatrix} \mathbf{A}_x^{\mathcal{P}} = \begin{bmatrix} \mathbf{A}_x \mathbf{T} & & \\ & \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{array}{c} x \cdot \mathcal{B} \\ x \cdot \mathcal{K} \end{array}$$

Numerical experiments

- We compare the proposed algorithm with an SVD-based implementation (1) to MacaulayLab (2) [5]
 - n Polynomials of degree d in n variables with random coefficients
 - Seems to converge if rank decisions are correct

n	d	runtime (1) (s)	runtime (2) (s)	avg residual (1)	avg residual (2)
2	3	0.0014	0.0030	$4.15 imes10^{-13}$	$4.16 imes10^{-14}$
2	10	0.020	0.054	$5.37 imes10^{-13}$	$2.42 imes10^{-14}$
2	13	0.06	0.13	$4.33 imes10^{-6}$	$2.06 imes10^{-10}$
3	3	0.0053	0.017	$3.96 imes10^{-13}$	$4.40 imes10^{-14}$
3	5	0.042	0.16	$3.51 imes10^{-11}$	$1.24 imes10^{-12}$
3	8	1.63	2.42	$4.75 imes10^{-5}$	$5.55 imes10^{-8}$
4	3	0.035	0.21	$1.01 imes10^{-11}$	$4.29 imes10^{-13}$
4	5	4.66	10.34	$2.07 imes10^{-6}$	$6.83 imes10^{-11}$
5	3	0.70	4.55	3.91×10^{-13}	$1.05 imes10^{-14}$
6	3	23.58	498.72	$3.96 imes10^{-11}$	$8.03 imes10^{-13}$

1. Linear Algebra-Based rootfinding

2. Combining Insights

3. Conclusion and future work

Conclusion and future work

Conclusion:

- Different view on symbolic algorithms
 - ▶ Determining independent monomials with row echelon form → Linear system for multiplication maps in intermediate steps
 - ▶ S-polynomials \rightarrow Non-commutativity of multiplication maps
 - Adding a select set of additional dimensions
- Adaptable to SVD-based, basis-agnostic implementation

Future work:

- ▶ More stable computation to obtain new equations through *C*?
- Stability of obtaining multiplication maps in each iteration?
- More compression by fully exploiting polynomial structure?

- D. A. Cox, J. B. Little, and D. O'Shea. *Ideals, Varieties and Algorithms*. Third Edition. Springer-Verlag, 2007.
- [2] Philippe Dreesen. "Back to the Roots: Polynomial System Solving Using Linear Algebra". PhD thesis, KU Leuven, 2013.
- B Mourrain. "A new criterion for normal form algorithms". In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999 (1999), pp. 430–443.
- [4] Simon Telen, Bernard Mourrain, and Marc Van Barel. "Solving Polynomial Systems via Truncated Normal Forms". In: SIAM Journal on Matrix Analysis and Applications 39 (3 2018), pp. 1421–1447.
- [5] Christof Vermeersch and Bart De Moor. "Two complementary block Macaulay matrix algorithms to solve multiparameter eigenvalue problems". In: *Linear Algebra and its Applications* 654 (2022), pp. 177–209.