Least Squares Projection Onto the Behavior for SISO LTI Models 20th IFAC Symposium on System Identification (SYSID) - Boston (MA), USA

> Sibren Lagauw^{*}, Bart De Moor {sibren.lagauw, bart.demoor}@esat.kuleuven.be

Center for Dynamical Systems, Signal Processing, and Data Analytics (STADIUS), Department of Electrical Engineering (ESAT), KU Leuven, Belgium

July 17, 2024

Table of contents

SISO LTI model dynamics

Orthogonal projection problem

Structured misfits

State-space equivalent

Context & future work

Table of contents

SISO LTI model dynamics

Orthogonal projection problem

Structured misfits

State-space equivalent

Context & future work

SISO LTI recurrence relation

• LTI dynamics of $(\widehat{\boldsymbol{u}}, \widehat{\boldsymbol{y}}) \in \mathbb{R}^{2 \times N}$:

$$\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} = 0, \ \forall k \in \{n, \ldots, N-1\},$$

SISO LTI recurrence relation

• LTI dynamics of $(\widehat{\boldsymbol{u}}, \widehat{\boldsymbol{y}}) \in \mathbb{R}^{2 \times N}$:

$$\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} = 0, \ \forall k \in \{n, \ldots, N-1\},$$

• Transfer function:

$$\widehat{H}(z) = \frac{b(z)}{a(z)} = \frac{b_0 z^n + \dots + b_{n-1} z + b_n}{a_0 z^n + \dots + a_{n-1} z + a_n}$$

SISO LTI recurrence relation

• LTI dynamics of $(\widehat{\pmb{u}}, \widehat{\pmb{y}}) \in \mathbb{R}^{2 \times N}$:

$$\sum_{i=0}^{n}a_{i}\widehat{y}_{k-i}-\sum_{i=0}^{n}b_{i}\widehat{u}_{k-i}=0,\;\forall k\in\{n,\ldots,N-1\},$$

• Transfer function:

$$\widehat{H}(z) = \frac{b(z)}{a(z)} = \frac{b_0 z^n + \dots + b_{n-1} z + b_n}{a_0 z^n + \dots + a_{n-1} z + a_n}$$

• Model params:
$$oldsymbol{a} \in \mathbb{R}^{n+1}$$
, $oldsymbol{b} \in \mathbb{R}^{n+1}$

• Normalization $(a_0 = 1)$

$$\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} = 0, \ \forall k \in \{n, \ldots, N-1\},$$

where $\widehat{\boldsymbol{w}} \in \mathbb{R}^{2N}$ is the *model-compliant* data trajectory:

$$\widehat{\boldsymbol{w}} = \begin{bmatrix} \widehat{\boldsymbol{w}}_0^\mathsf{T} \ \dots \ \widehat{\boldsymbol{w}}_{N-1}^\mathsf{T} \end{bmatrix}^\mathsf{T} = \begin{bmatrix} \widehat{y_0} \ \widehat{u_0} \ \dots \ \widehat{y}_{N-1} \ \widehat{u}_{N-1} \end{bmatrix}^\mathsf{T}.$$

$$\sum_{i=0}^{n} a_i \widehat{y}_{k-i} - \sum_{i=0}^{n} b_i \widehat{u}_{k-i} = 0, \ \forall k \in \{n, \dots, N-1\},$$

$$\iff \begin{bmatrix} a_n - b_n & a_{n-1} - b_{n-1} & \dots & a_0 & -b_0 \\ & a_n & -b_n & \dots & a_1 & -b_1 & a_0 & -b_0 \\ & & \ddots \\ & & & a_n & -b_n & \dots & a_1 & -b_1 & a_0 & -b_0 \end{bmatrix} \begin{bmatrix} \widehat{y}_0 \\ \widehat{u}_0 \\ \vdots \\ \widehat{y}_{N-1} \\ \widehat{u}_{N-1} \end{bmatrix} = \widetilde{T}^{\mathsf{T}} \widehat{w} = \mathbf{0}.$$

where $\widehat{\boldsymbol{w}} \in \mathbb{R}^{2N}$ is the *model-compliant* data trajectory:

$$\widehat{\boldsymbol{w}} = \begin{bmatrix} \widehat{\boldsymbol{w}}_0^{\mathsf{T}} \ \dots \ \widehat{\boldsymbol{w}}_{\boldsymbol{N}-1}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \widehat{y_0} \ \widehat{u_0} \ \dots \ \widehat{y}_{\boldsymbol{N}-1} \ \widehat{u}_{\boldsymbol{N}-1} \end{bmatrix}^{\mathsf{T}}.$$

•
$$\widetilde{\boldsymbol{\mathcal{T}}} \in \mathbb{R}^{2N imes (N-n)}$$
 has full-column rank $(a_0 = 1)$

$$\sum_{i=0}^{n} a_i \widehat{y}_{k-i} - \sum_{i=0}^{n} b_i \widehat{u}_{k-i} = 0, \ \forall k \in \{n, \dots, N-1\},$$

$$\iff \begin{bmatrix} a_n & -b_n & a_{n-1} & -b_{n-1} & \dots & a_0 & -b_0 \\ & a_n & -b_n & \dots & a_1 & -b_1 & a_0 & -b_0 \\ & & \ddots \\ & & & a_n & -b_n & \dots & a_1 & -b_1 & a_0 & -b_0 \end{bmatrix} \begin{bmatrix} \widehat{y}_0 \\ \widehat{u}_0 \\ \vdots \\ \widehat{y}_{N-1} \\ \widehat{u}_{N-1} \end{bmatrix} = \widetilde{T}^{\mathsf{T}} \widehat{w} = \mathbf{0}.$$

where $\widehat{\boldsymbol{w}} \in \mathbb{R}^{2N}$ is the *model-compliant* data trajectory:

$$\widehat{\boldsymbol{w}} = \begin{bmatrix} \widehat{\boldsymbol{w}}_0^{\mathsf{T}} \ \dots \ \widehat{\boldsymbol{w}}_{N-1}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \widehat{y_0} \ \widehat{u_0} \ \dots \ \widehat{y}_{N-1} \ \widehat{u}_{N-1} \end{bmatrix}^{\mathsf{T}}.$$

• $\widetilde{\mathbf{\mathcal{T}}} \in \mathbb{R}^{2N \times (N-n)}$ has full-column rank $(a_0 = 1)$

• Behavior: (*N*+*n*)-dim. subspace null $\left(\widetilde{\boldsymbol{\mathcal{T}}}^{\mathsf{T}}
ight)$

where $\widehat{\boldsymbol{w}} \in \mathbb{R}^{2N}$ is the *model-compliant* data trajectory:

$$\widehat{\boldsymbol{w}} = \begin{bmatrix} \widehat{\boldsymbol{w}}_0^\mathsf{T} \ \dots \ \widehat{\boldsymbol{w}}_{N-1}^\mathsf{T} \end{bmatrix}^\mathsf{T} = \begin{bmatrix} \widehat{y_0} \ \widehat{u_0} \ \dots \ \widehat{y}_{N-1} \ \widehat{u}_{N-1} \end{bmatrix}^\mathsf{T}.$$

• $\widetilde{\mathbf{T}} \in \mathbb{R}^{2N \times (N-n)}$ has full-column rank $(a_0 = 1)$

• Behavior: (N+n)-dim. subspace null $(\widetilde{\boldsymbol{\tau}}^{\mathsf{T}}) \longrightarrow \#$ dofs: inputs (N) + init. state (n)

 $\iff \widetilde{\boldsymbol{T}}^{\mathsf{T}} \widehat{\boldsymbol{T}} = \boldsymbol{0}$

$$\iff \widetilde{\boldsymbol{T}}^{\mathsf{T}} \widehat{\boldsymbol{T}} = \boldsymbol{0}$$

$$\iff \widetilde{\boldsymbol{\tau}}^{\mathsf{T}}\widetilde{\boldsymbol{\tau}} = \boldsymbol{0}$$

• for a(z), b(z) coprime $\Rightarrow \hat{T}$ full column rank (Legat et al., 2023)

6 / 20

$$\iff \widetilde{\boldsymbol{\tau}}^{\mathsf{T}}\widetilde{\boldsymbol{\tau}} = \boldsymbol{0}$$

• for a(z), b(z) coprime $\Rightarrow \hat{T}$ full column rank (Legat et al., 2023)

• Model *behavior*:
$$\widehat{oldsymbol{arkappa}}\in \mathsf{null}\Big(\,\widetilde{oldsymbol{\mathcal{T}}}^{\,\mathsf{T}}\Big)=\mathsf{range}\Big(\,\widehat{oldsymbol{\mathcal{T}}}\Big)$$

$$\iff \widetilde{\boldsymbol{\tau}}^{\mathsf{T}}\widetilde{\boldsymbol{\tau}} = \boldsymbol{0}$$

• for a(z), b(z) coprime $\Rightarrow \hat{T}$ full column rank (Legat et al., 2023)

- Model *behavior*: $\widehat{\boldsymbol{w}} \in \operatorname{null}(\widetilde{\boldsymbol{T}}^{\mathsf{T}}) = \operatorname{range}(\widehat{\boldsymbol{T}})$
- Orthogonal decomposition of ambient space: $\mathbb{R}^{2N} = \mathsf{range}(\widehat{\boldsymbol{\tau}}) \oplus \mathsf{range}(\widetilde{\boldsymbol{\tau}})$.

Table of contents

SISO LTI model dynamics

Orthogonal projection problem

Structured misfits

State-space equivalent

Context & future work

For a given model (**a**, **b**):

• In practice: e.g., measurement inaccuracies, missing data, and model mismatch

For a given model (**a**, **b**):

- In practice: e.g., measurement inaccuracies, missing data, and model mismatch
- \rightarrow observed data (y, u) as such are almost never *model-compliant*:

$$oldsymbol{w} \notin \mathsf{range}\Big(\,\widehat{oldsymbol{ au}}\Big)$$

For a given model (**a**, **b**):

- In practice: e.g., measurement inaccuracies, missing data, and model mismatch
- \rightarrow observed data (y, u) as such are almost never *model-compliant*:

$$oldsymbol{w} \notin \mathsf{range}\Big(\,\widehat{oldsymbol{ au}}\Big)$$

• Modify observed data using misfits (\tilde{y}, \tilde{u})

$$\widehat{\mathbf{y}} = \mathbf{y} - \widetilde{\mathbf{y}}, \quad \widehat{\mathbf{u}} = \mathbf{u} - \widetilde{\mathbf{u}}$$

For a given model (**a**, **b**):

- In practice: e.g., measurement inaccuracies, missing data, and model mismatch
- \rightarrow observed data (y, u) as such are almost never *model-compliant*:

$$oldsymbol{w}
otin \operatorname{range}\left(\widehat{oldsymbol{ au}}
ight)$$

• Modify observed data using misfits $(\widetilde{\mathbf{y}}, \widetilde{\mathbf{u}})$

$$\widehat{\mathbf{y}} = \mathbf{y} - \widetilde{\mathbf{y}}, \quad \widehat{\mathbf{u}} = \mathbf{u} - \widetilde{\mathbf{u}}$$

With $\boldsymbol{I} = [I_0, \dots, I_{N-n-1}]^\mathsf{T} \in \mathbb{R}^{N-n}$ Lagrange multipliers, define

$$\mathcal{L}(\widehat{\boldsymbol{w}},\boldsymbol{l}) = \sum_{k=0}^{N-1} \|\boldsymbol{w}_k - \widehat{\boldsymbol{w}}_k\|_2^2 + \sum_{k=n}^{N-1} I_{k-n} \left(\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} \right).$$

With $\boldsymbol{I} = [I_0, \dots, I_{N-n-1}]^\mathsf{T} \in \mathbb{R}^{N-n}$ Lagrange multipliers, define

$$\mathcal{L}(\widehat{\boldsymbol{w}},\boldsymbol{l}) = \sum_{k=0}^{N-1} \|\boldsymbol{w}_k - \widehat{\boldsymbol{w}}_k\|_2^2 + \sum_{k=n}^{N-1} l_{k-n} \left(\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} \right).$$

First-order necessary conditions for optimality:

•
$$\partial \mathcal{L}(\dots)/l_k = 0, \ \forall k \in \{0, \dots, N-1\} \Rightarrow \widehat{\boldsymbol{w}} \in \mathsf{null}\left(\widetilde{\boldsymbol{\mathcal{T}}}^\mathsf{T}\right)$$

With $\boldsymbol{I} = [I_0, \dots, I_{N-n-1}]^\mathsf{T} \in \mathbb{R}^{N-n}$ Lagrange multipliers, define

$$\mathcal{L}(\widehat{\boldsymbol{w}},\boldsymbol{l}) = \sum_{k=0}^{N-1} \|\boldsymbol{w}_k - \widehat{\boldsymbol{w}}_k\|_2^2 + \sum_{k=n}^{N-1} l_{k-n} \left(\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} \right).$$

First-order necessary conditions for optimality:

•
$$\partial \mathcal{L}(\ldots)/I_k = 0, \ \forall k \in \{0, \ldots, N-1\} \Rightarrow \widehat{\boldsymbol{w}} \in \operatorname{null}\left(\widetilde{\boldsymbol{T}}^{\mathsf{T}}\right)$$

•
$$\partial \mathcal{L}(\ldots)/\widehat{\boldsymbol{w}}_k = 0, \ \forall k \in \{0, \ldots, N-1\} \Rightarrow \widetilde{\boldsymbol{w}} = \widetilde{\boldsymbol{T}}\boldsymbol{I} \Rightarrow \widetilde{\boldsymbol{w}} \in \operatorname{range}\left(\widetilde{\boldsymbol{T}}\right),$$

With $\boldsymbol{I} = [I_0, \dots, I_{N-n-1}]^\mathsf{T} \in \mathbb{R}^{N-n}$ Lagrange multipliers, define

$$\mathcal{L}(\widehat{\boldsymbol{w}},\boldsymbol{l}) = \sum_{k=0}^{N-1} \|\boldsymbol{w}_k - \widehat{\boldsymbol{w}}_k\|_2^2 + \sum_{k=n}^{N-1} l_{k-n} \left(\sum_{i=0}^n a_i \widehat{y}_{k-i} - \sum_{i=0}^n b_i \widehat{u}_{k-i} \right).$$

First-order necessary conditions for optimality:

•
$$\partial \mathcal{L}(...)/l_k = 0, \ \forall k \in \{0, ..., N-1\} \Rightarrow \widehat{\boldsymbol{w}} \in \operatorname{null}\left(\widetilde{\boldsymbol{T}}^{\mathsf{T}}\right)$$

• $\partial \mathcal{L}(...)/\widehat{\boldsymbol{w}}_k = 0, \ \forall k \in \{0, ..., N-1\} \Rightarrow \widetilde{\boldsymbol{w}} = \widetilde{\boldsymbol{T}}\boldsymbol{I} \Rightarrow \widetilde{\boldsymbol{w}} \in \operatorname{range}\left(\widetilde{\boldsymbol{T}}\right),$
 $\longrightarrow \mathbb{R}^{2N} = \operatorname{range}\left(\widehat{\boldsymbol{T}}\right) \oplus \operatorname{range}\left(\widetilde{\boldsymbol{T}}\right).$
misfits

Optimal solution via orthogonal projection(s)

• The minimal norm misfits $\widetilde{m{w}}$: orth. projection of $m{w}$ onto range $\left(\widetilde{m{ au}}
ight)$,

$$\widetilde{\boldsymbol{w}} = (\widetilde{\boldsymbol{T}}^{\mathsf{T}})^{\dagger} \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w} = \widetilde{\boldsymbol{T}} (\widetilde{\boldsymbol{T}}^{\mathsf{T}} \widetilde{\boldsymbol{T}})^{-1} \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w},$$

Optimal solution via orthogonal projection(s)

• The minimal norm misfits $\widetilde{m{w}}$: orth. projection of $m{w}$ onto range $\left(\widetilde{m{ au}}
ight)$,

$$\widetilde{\boldsymbol{w}} = (\widetilde{\boldsymbol{T}}^{\mathsf{T}})^{\dagger} \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w} = \widetilde{\boldsymbol{T}} (\widetilde{\boldsymbol{T}}^{\mathsf{T}} \widetilde{\boldsymbol{T}})^{-1} \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w},$$

• or equivalently, the optimal model-compliant data \hat{w} : orth. projection of w onto range (\hat{T}) ,

$$\widehat{\boldsymbol{w}} = \widehat{\boldsymbol{T}}(\widehat{\boldsymbol{T}}^{\mathsf{T}}\widehat{\boldsymbol{T}})^{-1}\widehat{\boldsymbol{T}}^{\mathsf{T}}\boldsymbol{w},$$

= $(\boldsymbol{I} - (\widetilde{\boldsymbol{T}}^{\mathsf{T}})^{\dagger}\widetilde{\boldsymbol{T}}^{\mathsf{T}})\boldsymbol{w}.$

Optimal solution via orthogonal projection(s)

• The minimal norm misfits $\widetilde{m{w}}$: orth. projection of $m{w}$ onto range $\left(\,\widetilde{m{ au}}\,
ight)$,

$$\widetilde{\boldsymbol{w}} = (\widetilde{\boldsymbol{T}}^{\mathsf{T}})^{\dagger} \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w} = \widetilde{\boldsymbol{T}} (\widetilde{\boldsymbol{T}}^{\mathsf{T}} \widetilde{\boldsymbol{T}})^{-1} \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w},$$

• or equivalently, the optimal model-compliant data \widehat{w} : orth. projection of w onto range (\widehat{T}) ,

$$\widehat{\boldsymbol{w}} = \widehat{\boldsymbol{T}} (\widehat{\boldsymbol{T}}^{\mathsf{T}} \widehat{\boldsymbol{T}})^{-1} \widehat{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w},$$

= $(\boldsymbol{I} - (\widetilde{\boldsymbol{T}}^{\mathsf{T}})^{\dagger} \widetilde{\boldsymbol{T}}^{\mathsf{T}}) \boldsymbol{w}.$

• Generalizes results earlier results on autonomous models to the SISO case:

B. De Moor (2020). "Least squares optimal realisation of autonomous LTI systems is an eigenvalue problem". In: *Communications in Information and Systems* 20.2, pp. 163–207

Table of contents

SISO LTI model dynamics

Orthogonal projection problem

Structured misfits

State-space equivalent

Context & future work

The optimal misfits $\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{y}}$, are heavily structured:

$$\widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}}\widetilde{\boldsymbol{\mathcal{T}}}=\boldsymbol{0}\iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}}\widetilde{\boldsymbol{\mathcal{T}}}\boldsymbol{\boldsymbol{\mathcal{I}}}=\boldsymbol{0}\iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}}\widetilde{\boldsymbol{\boldsymbol{\mathcal{W}}}}=\boldsymbol{0}$$

The optimal misfits $\widetilde{u}, \widetilde{y}$, are heavily structured:

$$\widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{\mathcal{T}}} = \boldsymbol{0} \iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{\mathcal{T}}} \boldsymbol{I} = \boldsymbol{0} \iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{w}} = \boldsymbol{0}$$

• the (n+1)th equation up until the Nth equation in $\widehat{\boldsymbol{\mathcal{T}}}^{\top}\widetilde{\boldsymbol{w}} = \boldsymbol{0}$ show that

$$\sum_{i=0}^n b_{n-i}\widetilde{y}_{k-i} + \sum_{i=0}^n a_{n-i}\widetilde{u}_{k-i} = 0, \ \forall k \in \{n,\ldots,N-1\}.$$

The optimal misfits $\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{y}}$, are heavily structured:

$$\widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{\mathcal{T}}} = \boldsymbol{0} \iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{\mathcal{T}}} \boldsymbol{I} = \boldsymbol{0} \iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{w}} = \boldsymbol{0}$$

• the (n+1)th equation up until the *N*th equation in $\widehat{T}^{\top}\widetilde{w} = \mathbf{0}$ show that

$$\sum_{i=0}^n b_{n-i}\widetilde{y}_{k-i} + \sum_{i=0}^n a_{n-i}\widetilde{u}_{k-i} = 0 \ \Rightarrow \ \widetilde{H}(z) = -\frac{a_r(z)}{b_r(z)} = \frac{a_n z^n + \cdots + a_1 z + a_0}{b_n z^n + \cdots + b_1 z + b_0}.$$

with the 'reversed-coefficients'-polynomials: $a_r(z) = z^n a(z^{-1})$ and $b_r(z) = z^n b(z^{-1})$.

The optimal misfits $\widetilde{\boldsymbol{u}}, \widetilde{\boldsymbol{y}}$, are heavily structured:

$$\widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{\mathcal{T}}} = \boldsymbol{0} \iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{\mathcal{T}}} \boldsymbol{I} = \boldsymbol{0} \iff \widehat{\boldsymbol{\mathcal{T}}}^{\mathsf{T}} \widetilde{\boldsymbol{w}} = \boldsymbol{0}$$

• the (n+1)th equation up until the Nth equation in $\widehat{\boldsymbol{\mathcal{T}}}^{\top}\widetilde{\boldsymbol{w}} = \boldsymbol{0}$ show that

$$\sum_{i=0}^n b_{n-i}\widetilde{y}_{k-i} + \sum_{i=0}^n a_{n-i}\widetilde{u}_{k-i} = 0 \implies \widetilde{H}(z) = -\frac{a_n(z)}{b_n(z)} = \frac{a_nz^n + \cdots + a_1z + a_0}{b_nz^n + \cdots + b_1z + b_0}.$$

with the 'reversed-coefficients'-polynomials: $a_r(z) = z^n a(z^{-1})$ and $b_r(z) = z^n b(z^{-1})$.

• alternatively, express $\widehat{oldsymbol{w}}\perp \widetilde{oldsymbol{w}}$ in the z-domain,

$$\langle \frac{b(z)}{a(z)}\widehat{U}(z),\widetilde{Y}(z)\rangle + \langle \widehat{U}(z),\widetilde{U}(z)\rangle = \frac{1}{2\pi i} \oint_{|z|=1} \left[\widetilde{Y}(z)\frac{b(z^{-1})}{a(z^{-1})} + \widetilde{U}(z)\right]\widehat{U}(z^{-1})\mathrm{d}z = 0$$

$$\iff \widetilde{Y}(z) = -\frac{a(z^{-1})}{b(z^{-1})}\widetilde{U}(z) = -\frac{a_r(z)}{b_r(z)}\widetilde{U}(z) = \widetilde{H}(z)\widetilde{U}(z).$$

Table of contents

SISO LTI model dynamics

Orthogonal projection problem

Structured misfits

State-space equivalent

Context & future work

• Behavioral state-space recurrence relations,

$$egin{aligned} \widehat{oldsymbol{x}}_{k+1} &= oldsymbol{A} \widehat{oldsymbol{x}}_k + oldsymbol{B} \widehat{oldsymbol{v}}_k \ \widehat{oldsymbol{w}}_k &= oldsymbol{C} \widehat{oldsymbol{x}}_k + oldsymbol{D} \widehat{oldsymbol{v}}_k, \end{aligned}$$
 for $k=0,\ldots,N-1,$

with $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, $\boldsymbol{B} \in \mathbb{R}^{n}$, $\boldsymbol{C} \in \mathbb{R}^{2 \times n}$, $\boldsymbol{D} \in \mathbb{R}^{2}$.

• **Isometric** behavioral state-space recurrence relations:

$$\begin{bmatrix} \widehat{\boldsymbol{x}}_{k+1} \\ \widehat{\boldsymbol{w}}_{k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{x}}_{k} \\ \widehat{\boldsymbol{v}}_{k} \end{bmatrix} \quad \text{for } k = 0, \dots, N-1, \text{ with } \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} = \boldsymbol{I}_{n+1},$$

and $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \ \boldsymbol{B} \in \mathbb{R}^{n}, \ \boldsymbol{C} \in \mathbb{R}^{2 \times n}, \ \boldsymbol{D} \in \mathbb{R}^{2}.$

• Isometric behavioral state-space recurrence relations:

$$\begin{bmatrix} \widehat{\boldsymbol{x}}_{k+1} \\ \widehat{\boldsymbol{w}}_{k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{x}}_{k} \\ \widehat{\boldsymbol{v}}_{k} \end{bmatrix} \quad \text{for } k = 0, \dots, N-1, \text{ with } \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} = \boldsymbol{I}_{n+1},$$
$$\boldsymbol{A} \in \mathbb{R}^{n \times n}, \ \boldsymbol{B} \in \mathbb{R}^{n}, \ \boldsymbol{C} \in \mathbb{R}^{2 \times n}, \ \boldsymbol{D} \in \mathbb{R}^{2}.$$

• (Isometric) misfit model:

$$\begin{bmatrix} \widetilde{\boldsymbol{x}}_{k+1} \\ \widetilde{\boldsymbol{w}}_{k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \widetilde{\boldsymbol{B}} \\ \boldsymbol{C} & \widetilde{\boldsymbol{D}} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{x}}_{k} \\ \widetilde{\boldsymbol{v}}_{k} \end{bmatrix} \quad \text{for } k = 0, \dots, N-1, \text{ with } \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} & \widetilde{\boldsymbol{B}} \\ \boldsymbol{C} & \boldsymbol{D} & \widetilde{\boldsymbol{D}} \end{bmatrix} \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} & \widetilde{\boldsymbol{B}} \\ \boldsymbol{C} & \boldsymbol{D} & \widetilde{\boldsymbol{D}} \end{bmatrix}^{\mathsf{T}} = \boldsymbol{I}_{n+2}.$$

and

• Isometric behavioral state-space recurrence relations:

$$\begin{bmatrix} \widehat{\boldsymbol{x}}_{k+1} \\ \widehat{\boldsymbol{w}}_{k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{x}}_{k} \\ \widehat{\boldsymbol{v}}_{k} \end{bmatrix} \text{ for } k = 0, \dots, N-1, \text{ with } \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{bmatrix} = \boldsymbol{I}_{n+1},$$
$$\boldsymbol{A} \in \mathbb{R}^{n \times n}, \ \boldsymbol{B} \in \mathbb{R}^{n}, \ \boldsymbol{C} \in \mathbb{R}^{2 \times n}, \ \boldsymbol{D} \in \mathbb{R}^{2}.$$

• (Isometric) misfit model:

$$\begin{bmatrix} \widetilde{\boldsymbol{x}}_{k+1} \\ \widetilde{\boldsymbol{w}}_{k} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \widetilde{\boldsymbol{B}} \\ \boldsymbol{C} & \widetilde{\boldsymbol{D}} \end{bmatrix} \begin{bmatrix} \widetilde{\boldsymbol{x}}_{k} \\ \widetilde{\boldsymbol{v}}_{k} \end{bmatrix} \quad \text{for } k = 0, \dots, N-1, \text{ with } \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} & \widetilde{\boldsymbol{B}} \\ \boldsymbol{C} & \boldsymbol{D} & \widetilde{\boldsymbol{D}} \end{bmatrix} \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} & \widetilde{\boldsymbol{B}} \\ \boldsymbol{C} & \boldsymbol{D} & \widetilde{\boldsymbol{D}} \end{bmatrix}^{\mathsf{T}} = \boldsymbol{I}_{n+2}.$$

• Isometry \longrightarrow orthogonality

and

Ambient space

Ambient space

• Behavior: (N + n)-dimensional subspace

$$\widehat{oldsymbol{w}} = \widehat{oldsymbol{H}} \widehat{oldsymbol{v}} + \Gamma \widehat{oldsymbol{x}}_0, \Rightarrow \widehat{oldsymbol{w}} \in \Big[ext{range} \Big(\widehat{oldsymbol{H}} \Big) \ \oplus \ ext{range} (\Gamma) \Big].$$

Ambient space

$$\underbrace{\begin{bmatrix} \boldsymbol{D} & \boldsymbol{0} & \cdots & \cdots & \boldsymbol{0} \\ \boldsymbol{C}\boldsymbol{B} & \boldsymbol{D} & \boldsymbol{0} & \cdots & \cdots & \boldsymbol{0} \\ \boldsymbol{C}\boldsymbol{A}\boldsymbol{B} & \boldsymbol{C}\boldsymbol{B} & \boldsymbol{D} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \boldsymbol{0} \\ \boldsymbol{C}\boldsymbol{A^{N-2}\boldsymbol{B}} & \boldsymbol{C}\boldsymbol{A^{N-3}\boldsymbol{B}} & \cdots & \cdots & \boldsymbol{C}\boldsymbol{B} & \boldsymbol{D} \end{bmatrix}}_{\hat{\boldsymbol{H}} \in \mathbb{R}^{2M \times N}} \text{ and } \underbrace{\begin{bmatrix} \boldsymbol{C}^{\mathsf{T}} & (\boldsymbol{C}\boldsymbol{A})^{\mathsf{T}} & \cdots & (\boldsymbol{C}\boldsymbol{A}^{N-1})^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}}_{\Gamma \in \mathbb{R}^{2M \times n}}$$

• Behavior: (N + n)-dimensional subspace

$$\widehat{\boldsymbol{\textit{w}}} = \widehat{\boldsymbol{\textit{H}}} \widehat{\boldsymbol{\textit{v}}} + \Gamma \widehat{\boldsymbol{\textit{x}}}_0, \Rightarrow \widehat{\boldsymbol{\textit{w}}} \in \Big[\mathsf{range} \Big(\widehat{\boldsymbol{\textit{H}}} \Big) \ \oplus \ \mathsf{range} (\Gamma) \Big].$$

• (N - n)-dimensional subspace:

$$\mathbb{R}^{2N} = \underbrace{(\mathsf{range}(\boldsymbol{H}) \oplus \mathsf{range}(\boldsymbol{\Gamma}))}_{\mathsf{behavior}} \oplus \underbrace{\mathsf{range}\left(\widetilde{\boldsymbol{H}}\boldsymbol{Z}\right)}_{\mathsf{misfits}}.$$

 $(\mathsf{FONC} \longrightarrow \widetilde{x}_0 = \widetilde{x}_N = \mathbf{0})$

Table of contents

SISO LTI model dynamics

Orthogonal projection problem

Structured misfits

State-space equivalent

Context & future work

- LS-criterion induces orthogonal decomposition of ambient space
- Minimal misfits can be expressed in terms of the model parameters via an orth. projection
- Misfits are heavily structured
- Two alternative yet equivalent frameworks: state-space vs. input-output

Misfit modeling (SYSID!) is double optimization problem:

$$\min_{\widehat{\boldsymbol{u}}, \widehat{\boldsymbol{y}}, \boldsymbol{a}, \boldsymbol{b}} J = \left\| \begin{bmatrix} \boldsymbol{y} - \widehat{\boldsymbol{y}} \\ \boldsymbol{u} - \widehat{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2} = \left\| \begin{bmatrix} \widetilde{\boldsymbol{y}} \\ \widetilde{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2},$$
s.t. $\widetilde{\boldsymbol{T}}^{\mathsf{T}} \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1,$

Misfit modeling (SYSID!) is double optimization problem:

$$\min_{\widehat{\boldsymbol{u}},\widehat{\boldsymbol{y}},\mathbf{a},\boldsymbol{b}} J = \left\| \begin{bmatrix} \boldsymbol{y} - \widehat{\boldsymbol{y}} \\ \boldsymbol{u} - \widehat{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2} = \left\| \begin{bmatrix} \widetilde{\boldsymbol{y}} \\ \widetilde{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2}, \qquad \min_{\boldsymbol{a},\boldsymbol{b}} J = \boldsymbol{w} \, \widetilde{\boldsymbol{T}} \, (\widetilde{\boldsymbol{T}}^{\mathsf{T}} \, \widetilde{\boldsymbol{T}})^{-1} \, \widetilde{\boldsymbol{T}}^{\mathsf{T}} \boldsymbol{w},$$

s.t. $\widetilde{\boldsymbol{T}}^{\mathsf{T}} \, \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1, \qquad \text{s.t.} \quad \widetilde{\boldsymbol{T}}^{\mathsf{T}} \, \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1.$

Misfit modeling (SYSID!) is double optimization problem:

$$\min_{\widehat{\boldsymbol{u}},\widehat{\boldsymbol{y}},\mathbf{a},\mathbf{b}} J = \left\| \begin{bmatrix} \boldsymbol{y} - \widehat{\boldsymbol{y}} \\ \boldsymbol{u} - \widehat{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2} = \left\| \begin{bmatrix} \widetilde{\boldsymbol{y}} \\ \widetilde{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2}, \qquad \min_{\boldsymbol{a},\boldsymbol{b}} J = \boldsymbol{w} \, \widetilde{\boldsymbol{T}} (\, \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \, \widetilde{\boldsymbol{T}}\,)^{-1} \, \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \boldsymbol{w},$$

s.t. $\, \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \, \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1, \qquad \qquad \text{s.t.} \quad \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \, \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1.$

Earlier work: globally optimal system identification

- B. De Moor (2020). "Least squares optimal realisation of autonomous LTI systems is an eigenvalue problem". In: *Communications in Information and Systems* 20.2, pp. 163–207
- S. Lagauw et al. (June 2024). "Exact Characterization of the Global Optima of Least Squares Realization of Autonomous LTI Models as a Multiparameter Eigenvalue Problem". In: *Proc. of the 22nd European Control Conference (ECC)*. Stockholm, Sweden, pp. 3439–3444

Misfit modeling (SYSID!) is double optimization problem:

$$\min_{\widehat{\boldsymbol{u}},\widehat{\boldsymbol{y}},\mathbf{a},\mathbf{b}} J = \left\| \begin{bmatrix} \boldsymbol{y} - \widehat{\boldsymbol{y}} \\ \boldsymbol{u} - \widehat{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2} = \left\| \begin{bmatrix} \widetilde{\boldsymbol{y}} \\ \widetilde{\boldsymbol{u}} \end{bmatrix} \right\|_{2}^{2}, \qquad \min_{\boldsymbol{a},\boldsymbol{b}} J = \boldsymbol{w} \, \widetilde{\boldsymbol{T}} (\, \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \, \widetilde{\boldsymbol{T}})^{-1} \, \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \boldsymbol{w},$$

s.t. $\widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \, \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1, \qquad \text{s.t.} \quad \widetilde{\boldsymbol{T}}^{\,\mathsf{T}} \, \widehat{\boldsymbol{w}} = \mathbf{0} \text{ and } a_{0} = 1.$

Earlier work: globally optimal system identification

18 / 20

- B. De Moor (2020). "Least squares optimal realisation of autonomous LTI systems is an eigenvalue problem". In: *Communications in Information and Systems* 20.2, pp. 163–207
- S. Lagauw et al. (June 2024). "Exact Characterization of the Global Optima of Least Squares Realization of Autonomous LTI Models as a Multiparameter Eigenvalue Problem". In: *Proc. of the 22nd European Control Conference (ECC)*. Stockholm, Sweden, pp. 3439–3444

How to generalize these globally optimal approaches from autonomous to SISO models?

Questions?

Context & future work

References I

- De Moor, B. (2020). "Least squares optimal realisation of autonomous LTI systems is an eigenvalue problem". In: Communications in Information and Systems 20.2, pp. 163–207.
- De Moor, B. and B. Roorda (1994). "L₂-optimal linear system identification: Structured Total Least Squares for SISO Systems". In: Proc. of the 33rd IEEE Conference on Decision and Control (CDC). Lake Buena Vista, Florida, USA, pp. 2874–2879.
- Golub, G. H. and V. Pereyra (2003). "Separable nonlinear least squares: the variable projection method and its applications". In: *Inverse Problems* 19.2, R1–R26.
- Lagauw, S., L. Vanpoucke, and B. De Moor (June 2024). "Exact Characterization of the Global Optima of Least Squares Realization of Autonomous LTI Models as a Multiparameter Eigenvalue Problem". In: Proc. of the 22nd European Control Conference (ECC). Stockholm, Sweden, pp. 3439–3444.
- Legat, B., C. Yuan, and P. Parrilo (2023). "Low-Rank Univariate Sum of Squares Has No Spurious Local Minima". In: SIAM Journal on Optimization 33.3, pp. 2041–2061.
- Lemmerling, P. and B. De Moor (2001). "Misfit versus latency". In: Automatica 37, pp. 2057–2067.
- Roorda, B. and C. Heij (1995). "Global Total Least Squares Modeling of Multivariable Time Series". In: IEEE Transactions on Automatic Control 40.1, pp. 50–63.
- Willems, J. C. (1986, 1987). "From time series to linear system, Part I: Finite dimensional linear time invariant systems; Part II: Exact modelling; Part III: Approximate modelling". In: Automatica 22/23.5,6,1, pp. 561–580, 675–694, 87–115.

