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Eigenvalues and vectors: For matrix A € R*X™:;
Az =zA,z € C" A eC,z #0
Characteristic equation - fundamental theorem of algebra:
p(A) =det(Aln —A) = A"+ A" L.+ an_1A+an =0
Since Galois, for n > 5: no solution in radicals !
Numerical linear algebra = iterative algorithms + finite precision machines
Cayley-Hamilton:
A" + a1 A"Vt an_1A+anl, =0
Eigenvalue decomposition - Jordan Canonical Form (JCF):
A=xJx""

Eigen-objects: Operator (object) = object X scalar
Continuous spectrum:

d(e(@£iBD) /gt = (e@XIBY) (o % jBt), (d ./dt + [ . dt)et = eot(22EL )

m Discrete spectrum: e.g. standing waves
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The PageRank problem
Tha PagsRank random srfer
1. Wit probbiy bets, ollow

Dimensionality Reduction
Principal Component Analysis

prabsbity (1-bete,
g oy - it v
Goal fnd th sttonary .
x=3AD"x+(1 - f)v
P —
(1= 5AD " = (1~ v

The it principal

Simmenc adiasency mati|
Dagoral degyes

PCA Can. Corr./Principal Angles [l e

Graph spectral analysis

'y 19 / / S
-_— @ m

oV dr’ PP T
Hear the shape of a drum?

Modal shapes Answer: No !

LSNARLL e ’:1:;&:} ]
2. V:B=0 K=K « -
3. vxg=-"B -
at
o L X -oL
4. VxH= Q*‘J 0= 2nfGad)
Maxwell’s laws at — mm:v:.,,u[%%]

Maxwell’s field equations

m RLC circuits-resonances 5/48
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H@Ol(0)) = ihg, 19 (1)

Schrédinger equation

Gravitational waves

Matter curves spacetime moves matter

Mapping between the s plane and the z plane Kalman Decomposition Theorem

Primary strip and Complementary strips (cont.) o e
State-space equation into the following canonical form:

‘open-loop plant

o] [Ae 0 40 o

o o Ay A

Mapping regions of the s-plane onto the =-plane where subscript.co indicates the controllable and
observable, and the bar over the subscript indicates not.

Pole placement
Controllability /observability

Stability
Observers | Kalman Filter | H oo-filter oo e =y
Riccati Riccati
Hamil. EVP Sympl. EVP
Control LQR H o -control
Riccati Riccati
Hamil. EVP Sympl. EVP fatency o2 = ali} + B1lR + ~1eth

LS LTI System ID = EVP !
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If you want to find the secrets of the universe, think in terms of energy,
frequency and vibration. Nikola Tesla

biimad &+ o

Buildings  Humans  Honeybee Pinpoint  Protozoans  Molecules  Atoms  Atomic nuclei

Frequency gt L L L L n n
(H2)

Hydrogen Absorption Spectrum

i

Hydrogen Emission Spectrum

400nm aninm
o e |
1

Transiton -3 to -2 0 1l |

7/48



State realization
®00

Outline

© State realization

] /48



State realization
0®0

From Kepler to Newton: realization from data to (internal) state

Kepler’s Laws

All planets move around the Sun in elliptical A planet sweeps out equal areas
orbits with the Sun at ane of the foci in equal intervals of time
-——
Tanet 2 ~

g Perinclion \
Focus 1 = P ~ \
(S J Timo akento_ Time taken o )
Aphelion - Major axis Sun / ravel distance 1 travel distance 2 Vi

\ Focus2 / - . h
_ -~ -

- - o hent - weaz L
- LI =
G
Third Law
The square of the orbital period of a planet is proportional
o the cube of the orbit's semi-major axis
T
/ N
Kepler (1571-1630) { o—)
§ Waor axis @) a
ol peros (1)

m Newton (1642-1726) 9/48



D SI models

Einstein (1879-1955) Perihelion precession of Mercury’s orbit

Popper’s demarcation criterion :
A model/theory is scientific when refutable

Models forbid more than they allow

Popper (1902-1994)

o] 10/48
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Taylor / McLaurin series expansion

) 70 ™

f) = fO)+ =z + 52 +...+Wz’f+...

= % + mz+ oy 224+ w

When rational in 271 ?

Boz™ + B12" .+ Busiz + Bn

1 .
1) 2" F a2 a2 oy,
B
Do iz
o0
= qot+nz it =) pz
i=0
n ) n ) 00 ) Kronecker (1823-1891)
= QBT = (e )} v
i=0 i=0 i=0
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Example: n = 2:

Boz? + Prz+ Po = (a022 +arz+a2)(Y0 +fylz*1 + 9272 +")/3273 +...)

Equate likewise powers of z:

2 Bo =
2t B =
2 B2 =
27l 0 =
272 0 =
k0 =

070

Qo1 + a1

Qo2 + a1y1 + a2
oy + a1y + aem
QY4 + a1y3 + a2

QOYk+2 T Q1Vk+1 + Q2Yk

Coefficients i, k > 2 satisfy 3-term linear recurrence

0 Vk+2 + 01 Ve+1 +aoye = 0,k > 2,

m with initial conditions g, y1,v2 from set of linear equations.

13/48
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Kronecker and Hankel

Y1 Y2 Y3 M4
as o ap O 0 0

Y2 Y3 T4
0 ay a1 a9 O . .

Y3 v Vs : =0
0 O [6%) a1 (7)) 0 .

Y4 V5 Ve

Rational function series expansion <= Hankel matrix rank deficient

Banded Toeplitz x rank deficient Hankel = 0
Rank Hankel = degree of rational function
Recurrence relation coefficients = denominator

Hankel (1839-1873)
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State x, € R”, output y, € R%:

Tyl = Axg X(2) = (21, — A)~tag
=T+ Az7 + Az72 4+ .. )

yr = Cxy, Y(z) = C(zI, — A)lxg
= CAFx = Cxo + (CAxg)z~1 + (CA%z0)z"2 + ...
= v+ yi P+ oy 4

Resolvent is rational:
(21, — A)~! = adj(A)/ det(z1,, — A)

Kronecker/Hankel: Factorize (SVD) to go from data to state space model

Y1 Y2 Ys Ya ... C

: CA
Y2 Ys Ys Y5 _ gﬁ; ( zo Az Az ... )
Ys Y4 Ys Ye :

o LEwvEN 16/48



1D LTI regular
00®000

With characteristic equation and Cayley-Hamilton

p(A) =det(M, —A) = \"+ N '+ dap At a, =0

an Qp—1 Qp—2 ... Q1 OQ 0 0 C
0 an ap-1 - a a1 a O CAz
CA Il —7.r=0
' ’ CcA3 o
0 0 Qn T L2 a1 Qg

Left null space (I') = banded Toeplitz T'.
Right null space (T") = shift-invariant:

FTA=T <= rank(L T)=n=rank(l) (PRC) = A=T'T

] 17 /48
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Enter Paul Van den Hof

DEPARTMENT OF ELECTRICAL ENGINEERING
EINDHOVEN UNIVERSITY OF TECHNOLOGY
Group Measurement and Control

APPROXIMATE REALIZATION OF NOISY LINEAR
SYSTEMS: THE HANKEL AND PAGE MATRIX

APPROACH

by Paul Van den Hof

This report is submitted in fulfillment of the
requirenents for the degree of electrical engineer
(M.Sc.) at the Eindhoven University of Technology.
The vork was carried out from Jan. until Dec. 1982
in charge of Prof. dr. ir. P. Eykhoff
under supervision of dr. ir. A.A.H. Damen
and dr. ir. AK. Hajdasinski
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CONTENTS

Introduction

Chapter 1: Hankel matrix approach to the realization problem
1.1 Preliminaries
1. Introduction
2. Definitions and theorems
1.2 Ho-Kalman and related algorithms
1. Ho-Kalman algorithm
2. Silverman's algorithm
3. Rung's method
1.3 Deterministic versus noisy situation
1. Deterainistic case
2. Noisy case
1.4 Singular value decomposition as a tool in the Ho-Xalman
algorttim
1. Stngular value decomposition
2. Noise filtering
3. Order determination
4. Realization

1.5 Concluding remarks

Chapter 2: Introduction of the Page matrix

2.1 Introduction

2.2 Deterministic and noisy situation

2.3 Choice of the dimensions of the Page matrix
1. Introduction
2. Restrictions given by the structure of P
3. Optimal dimensions with respect to the noise
4. Remarks

2.4 Influence of noise on singular values
1. Introduction
2. Analysis of the Grammian matrices of P

Page
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SUMMARY

The Ho-Kalman algorithm creates a minimum realization of a linear,
time invariant system, when given a sufficiently long series of
deterministic Markov parameters. However if such a “truncated”
series of Markov parameters has been disturbed with noise, an ap~
proximating Hankel matrix has to be constructed for applying the
realization algorithm. This approximating Hankel matrix has either
the improper rank, or it lacks the Hankel structure. Furthermore
the Markov parameters are not processed with a constant weighting
factor, which implies that the noise filtering is inadequate.

In this report an alternative matrix is introduced and investiga-
ted: the Page matrix. This wmatrix is much smaller than the Hankel
matrix, which offers the advantage of a considerable reduction in
computation. It is shown that the method using this Page matrix
might be better suited for handling noisy Markov parameters. The
Page matrix approach however still does not provide an optimal
solution to the approximate realization problem.

The two approaches are compared theoretically and their practical

performance is tested in a set of simulationms.
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Application: Impulse response and stochastic realization

Accelerometer y

(b Vo115 - (o) chame 12 - e 4 2

O
tsec]

W 0
~ a
Impulse response Stochastic realization

 useuven o
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Application: Direction of Arrival: Uniform linear array, narrow
band sources, far field

w(iA) cosf
c

yi(t) = sin(wt + ) = sin(wt + ;)

. 3 1 i t
= sin(wt) cos ; + cos(wt) sinp; = ( cosp;  sing; ) ( Z)I;Zt )

] 2848
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Calculate moments of ‘pdf’ and show that
T k k . .

ps(t,0)t*dt = ") cosFI(0) sind (0) e ;
_pPr(6:0) Jgo(]) (0) sin? (0) ;.

Hpg = T
n . ;
T = Z ajz; ;
=1 |
‘ - Realization theory !

o] s
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Application: Cepstrum realization

Power cepstrum = power spectrum of log of power spectrum

spectrum  cepstrum

; frequency quefrency

. Cepstral coefficients c,=c_,,Vk; phase saphe |

? magnitude gamnitude °
filtering liftering 1

harmonic  rahmonic

period repiod
i-th cepstral coefficient
%% = sum of i-th powers
”& } of poles and zeros - Realization theory!—‘

] 2548
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Application: Electrical circuit power spectrum by R L.C, T, G

A transfer function Z(p)is realizable as
a passive electrical circuit

< there exists an interconnection of a

finite number of R’s, L's, C's, T's and G's

such that )
_U(p) — L
Z(p) = () U(p)} R c TG

< Z(p) is positive real
< pcE (:‘F = 23(])) € (:‘F

26/48
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mD shift invariant systems (m = 2)
T € R™, Yk, € R:

Trpt11 = A1 xpy
Tpit1 = Az xpy A1Ay = A Ay
Yk = C Tkl

Y00 | Y10 Yol | Y20 Y11 Y02 | Y30
Y10 | Y20 Y11 | Y30 Y21 Y12 | Y40
Y01 | Y11 Y02 | Y21 Y12 Y03 | Y31
Y20 | Y30 Y21 | Y40 Y31 Y22 | Y50
Y11 | Y21 Y12 | Y31 Y22 Y13 | Y41
Y02 | Y12 Y13 | Y22 Y13  Yo4 | Y32
Y = Y30 Y40 Y31 Y50 s s s
Y21 | Y31 Y22 | Y41
Y12 | Y22 Y13 | Y32
Y03 | Y13  Yo4 | Y23
Y40 e . -

rank(Y) =n

CAL
CAs
A3
CA? 5
= T A=| caa, | (0| Atzo  Azazg | Afzo ... )

CA22

] ; 2848
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The column space of I' is a multi-shift-invariant subspace:

e} CAy
CA; cA?
CAsy CA1 Ay
CA? CAY
CA11242 CA2 A,
C A3 CA1 A2
T A =ST= : A = : and I Ay = SoT
CAij cAP~1
CAYT Ay CAPT2 A,
cAE—2 CA A2

@ Selector matrix Sp selects the block rows (2,4,5,7,8,9,...).
@ Selector matrix Sa selects the block rows (3,5,6,8,9,10,...).
@ Find Ay, Ay by solving set of linear equations (PRC: rank(I') = n)

A; =T8T and Ay =ITS,T.

@ A multi-shift invariant subspace is determined by the eigenvalues of its shifts A
and A

] 29/48
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- All mD generalizations of DOA,
shape-from-moments, power spectra, etc.

- Bilinear system identification
- Rooting multivariable polynomials
- Multi-parameter eigenvalue problems

- Global optimum of prediction-error-methods

31/48
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Application: Two polynomials in two variables

@ Consider
20 |
plz,y) = 224+3y2—-15=0 [
g(z,y) = y—323—-222+13x—-2=0 ///\\\ I
F e /
| \ |
: I
@ Fix a monomial order, e.g., 1 <z <y < z?2 <2y < / \ /
Y2 <ad <2y <. .. s S U A
I </
@ Construct quasi-Toeplitz Macaulay matrix M: }«‘
N -10
1 T Y z2 zy y? 23 2%y ay? 3 x
Y
p(z,y) —15 1 3 2
q(z,y) -2 13 1 =2 -3 —
z-p(x,y) -15 1 3 Ty
y - p(z,y) -15 1 3 :
zy?
3

] 52/48
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p(z,y) = 22+4+3y2-15=0
q(z,y) = y—323—-2224+13x—-2=0

Continue to enlarge M:

it # |fmﬂ| | e d 2wy v 2wty wy? et ety eyt yl| et atyetyietyiayt o }
|

d =3 %P
yp|

z?p

8 8
“in*’ﬂ

4
Soe LS

%

@ # rows grows faster than # cols = overdetermined system

@ If solution exists: rank deficient by construction!

 kusven o
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nD realization in the null space

Vandermonde nullspace K

@ Macaulay matrix M: . .
y built from s solutions (x;, y;):

x XTI 0 0 0
_ o x X %10 0 r 1

M= 0 0 x X X0 1 1 1

0 0 0 X X X 1 To Ts

@ Solutions generate vectors in kernel of M: Y1 Y2 | .- | Us
$2 Z‘Q CEQ

1 2 s

MK =0 Ty | T2y2 | .. | TsYs

2 2 2
. Y1 Ys s Y

@ Number of solutions s follows from rank 3 3 5
L o ) xy @3 | oo | @&
decisions ‘mind-the-gap’: 2 5 5

1Yl | T3Y2 s | X5Ys

Ty? | 2yd | ... | zsy?

3 3 3

Y1 Y s Ys

T @5 | oo | @4

x?yl (E%yg soa Ig’yg

2,2 | 2.2 2,2

TIY1 | Y3 | --- | TEYs

z1yd | w3 | ... | wsyd

4 4 4

i Yo .. Ys

m Francis Sowerby Macaulay = : . . : -34 /48
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Setting up an eigenvalue problem in z

@ Choose s linear independent rows in K

Si1K 1 1| .. 1]
@ This corresponds to finding linear “ 2 A
dependent columns in M y; y; y;
$1 CL'2 .o Tg
T1Y1 | T2Y2 s | TsYs
vi | 3 || ¥
o | 23 x}
22y | xdy2 | ... | 22ys
mly% nyg soo msyg
v | yd || vl
op | @ g
Cﬁ?yl CU%yQ coo Igys
oiyi | 2393 | ... | 23y]
:clyf x2yg . msyg’
vi | vy || ws
| ku LEUvEN i i, ..
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Shifting the selected rows gives (shown for 3 columns)

1 1 1 7

1 z2 z3

y; y% yg

1 T3 3
z1Y1 '732?52 Z3Y3

Y1 Y5 Y3

T1yy | w2z | T3y3 —> “shift with 2" —>

v3 v 3
Ty x% Ty
z%yl z§92 zgyS
ziy x5y, 3y
1Y x2Y T3y,
41 4‘2 43
Y1 Yo Y3
simplified:
1 1 1
] T2 T3
Y1 Y2 Y3
T1Y1 T2Y2 T3Y3
? @3 3

2 2 2
T1Y1 T3Y2 r3Y3

] o
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Finding the z-roots

Let D, = diag(z1,z2,...,2s), then

s xo. - [l

where S and S, select rows from K w.r.t. shift property We have

s .- [l

Generalized Vandermonde K is not known as such, instead a null space basis Z is
calculated, which is a linear transformation of K:

ZV =K
which leads to

(8zZ)V = (51Z)V Dy

Here, V' is the matrix with eigenvectors, D, contains the roots x as eigenvalues.

] s
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Setting up an eigenvalue problem in y

It is possible to shift with y as well. ..

We find
S1KDy = Sy K

with D, diagonal matrix of y-components of roots, leading to
(SyZ)V = (S1Z)V Dy
Some interesting observations:
— same eigenvectors V!

- (S22)71(S12) and (SyZ)~'(S1Z) commute
—> ‘commutative algebra’

] /48
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"Mind the Gap' with roots at infinity !

affine roots column reduction

Vo

— — — —
— — — —
— — — —
- ~ ] oo
gap
s
= . vy
— <
=< nilpotency
— <
<

] a8
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Application: Multiparameter Eigenvalue Problem (MEVP)

Given Ag,..., A, € RP*? withp > ¢, find \; e C,i=1,...,m and
x # 0 € CY so that

Special cases:
@ Ordinary EVP: Ag e R"*"™, Ay =—-1,, A; =0,i>2
@ 'Generalized' EVP: Ag, A1 e R"*" A, =0,1> 2

] 00
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Basic idea to solve an MEVP (illustrated for m = 2)

(AO + A1) + AQ/\Q) =0

X
x1 Ay Ai A, 0 0 0 0 ﬁil
xA [0 A4 0 A A 0 0 v
x| 0 0 Ay 0 A A 0 L =0
2 112
X)\l 0 0 0 Ao 0 0 Al ZE)\%
A}

Block 'quasi’-Toeplitz structure + 'generalized’ Vandermonde structure

41/48
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Errors using inadequate data are much less
than those using no data at all.
Charles Babbage.

gATP
PME aATP
Pi
reference bATP

L L L L L L
30 20 10 o —-10 —-20 -30

pPm

m Data not model-compliant

43 /48
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Misfit case: Least squares realization (n,)

availabledata =—— vy Misfit:
LS realization

misfit - y

<>

] /4
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Misfit case: Least squares realization (ref: Kailath 80 !)

Data : y € RY. Model: Data = model-compliant data 4 misfit:

y=9+9y
Model-compliancy (Popper: models forbid more than allow) :
Image model:
g=T&o
Kernel model
Ya = T{ .9
Qan Q1 ap O 0 Yo
) . : i
= 0 an  ap—1 - o« - e . =0
gN-1

Least squares minimization:

min ||§]|3 subject to model — compliancy

Multi-parameter EVP ( TR_,v TG (T _T(TE_, )7 ) ( -1 ) =0

] a0
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T=> STLS Hankel cost function X
. 2 TarT ~—1 X sisvson
m = TMTD M Rt
1n T v v v STLSIRISVD/invit soln
STLSIRISVDIEIG global mi
15 X srsrisvoeis exvema

HXo

method TLS/SVD STLS inv. it. STLS eig
v .8003 4922 .8372
vo -.5479 -.7757 .3053
v3 2434 .3948 .4535
[ 4.8438 3.0518 2.3822
global solution? no no yes

46 /48
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SUMMARY

The Ho-Kalman algorithm creates a minimum realization of a linear,
time invariant system, when given a sufficiently long series of
deterministic Markov parameters. However if such a “truncated”
series of Markov parameters has been disturbed with noise, an ap~
proximating Hankel matrix has to be constructed for applying the
realization algorithm. This approximating Hankel matrix has either
the improper rank, or it lacks the Hankel structure. Furthermore
the Markov parameters are not processed with a constant weighting
factor, which implies that the noise filtering is inadequate.

In this report an alternative matrix is introduced and investiga-
ted: the Page matrix. This wmatrix is much smaller than the Hankel
matrix, which offers the advantage of a considerable reduction in
computation. It is shown that the method using this Page matrix
might be better suited for handling noisy Markov parameters. The
Page matrix approach however still does not provide an optimal
solution to the approximate realization problem.

The two approaches are compared theoretically and their practical

performance is tested in a set of simulationms.
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For the Valedictum of Paul Van den Hof:

An eigen-statement !

The optimal solution of the
least squares misfit

1D realization problem

the exact solution of an

mD realization problem
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