Globally Optimal Parameter Estimation of Nonlinear Dynamical Models is an Eigenvalue Problem

43rd Benelux Meeting on Systems and Control Blankenberge, Belgium

> Sarthak De sarthak.de@esat.kuleuven.be

Bart De Moor bart.demoor@esat.kuleuven.be

> ESAT-STADIUS KU Leuven, Belgium

March 27,2024

[Problem Statement](#page-2-0)

- [Output Difference Equation](#page-14-0)
- [Parameter Estimation](#page-31-0)

Overview

[Problem Statement](#page-2-0)

- [Output Difference Equation](#page-14-0)
- [Parameter Estimation](#page-31-0)

[References](#page-46-0)

Model Class

■ Single output autonomous discrete–time polynomial state–space models of the form Σ

$$
\Sigma: \begin{cases} \hat{\mathbf{x}}_{k+1} = \mathbf{f}(\hat{\mathbf{x}}_k, \boldsymbol{\theta}) \\ \hat{y}_k = g(\hat{\mathbf{x}}_k, \boldsymbol{\theta}) \end{cases}
$$
 (1)

where $\hat{\pmb{x}}_k \in \mathbb{R}^n$ are the state variables at instant $k: k \in \mathbb{Z}^+,$ $\boldsymbol{\theta} \in \mathbb{R}^{\ell}$ are the model parameters. $\boldsymbol{f}:\mathbb{R}^n \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}^n$, $g:\mathbb{R}^n\times\mathbb{R}^\ell\to\mathbb{R}$ and $\bm{f},g\in\mathbb{R}[\hat{\bm{\mathsf{x}}}_k,\theta]$ where $\bm{f},g\in\mathbb{R}[\hat{\bm{\mathsf{x}}}_k,\theta]$ is a multivariate polynomial ring, $\hat{y} \in \mathbb{R}$ is the model output variable.

Model Class

■ Single output autonomous discrete–time polynomial state–space models of the form Σ

$$
\Sigma: \begin{cases} \hat{\mathbf{x}}_{k+1} = \mathbf{f}(\hat{\mathbf{x}}_k, \boldsymbol{\theta}) \\ \hat{y}_k = g(\hat{\mathbf{x}}_k, \boldsymbol{\theta}) \end{cases}
$$
 (1)

where $\hat{\pmb{x}}_k \in \mathbb{R}^n$ are the state variables at instant $k: k \in \mathbb{Z}^+,$ $\boldsymbol{\theta} \in \mathbb{R}^{\ell}$ are the model parameters. $\boldsymbol{f}:\mathbb{R}^n \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}^n$, $g:\mathbb{R}^n\times\mathbb{R}^\ell\to\mathbb{R}$ and $\bm{f},g\in\mathbb{R}[\hat{\bm{\mathsf{x}}}_k,\theta]$ where $\bm{f},g\in\mathbb{R}[\hat{\bm{\mathsf{x}}}_k,\theta]$ is a multivariate polynomial ring, $\hat{y} \in \mathbb{R}$ is the model output variable.

 \blacksquare Σ is identifiable, i.e., a model compliant trajectory $\hat{\textbf{y}} = \begin{bmatrix} \hat{y}_0 & \hat{y}_1 & \dots \hat{y}_{\mathsf{N}-1} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^\mathsf{N}$ is generated uniquely by some $\bm{\theta}^* \in \Theta \subset \mathbb{R}^\ell$, where $\vec{\Theta}$ is an open neighborhood of \mathbb{R}^ℓ

Parameter Estimation

Given observed output sequence $\bm{y} = \begin{bmatrix} y_0 & y_1 & \dots y_{\mathsf{N}-1} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^\mathsf{N}$, find a model compliant trajectory $\hat{\mathsf{y}}$ generated by some $\boldsymbol{\theta}^*$, such that the observed data is 'closely' approximated.

Parameter Estimation

Given observed output sequence $\bm{y} = \begin{bmatrix} y_0 & y_1 & \dots y_{\mathsf{N}-1} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^\mathsf{N}$, find a model compliant trajectory $\hat{\mathsf{y}}$ generated by some $\boldsymbol{\theta}^*$, such that the observed data is 'closely' approximated.

Minimize

$$
\min_{\theta, \hat{\mathbf{y}}} \quad \|\mathbf{y} - \hat{\mathbf{y}}\|^2
$$

s.t. $\mathbf{\Phi}(\theta, \hat{\mathbf{y}}) = \mathbf{0}$ (2)

where $\Phi(\theta, \hat{y}) = 0$, is a system of polynomial equations, such that $\mathcal{V}(\mathbf{\Phi})$, forms a manifold in $\mathbb{R}^{\ell}\times\mathbb{R}^{\mathsf{N}}$ on which the model-compliant trajectory \hat{y} and the corresponding model parameters θ lie.

 \Box Opt. problem in [\(2\)](#page-5-0) is non-convex

- \blacksquare In continuous-time models
	- polynomial state-space model \rightarrow output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution) [\[Denis-Vidal et al., 2003,](#page-48-0) [Verdiere, 2005\]](#page-49-0)

- \blacksquare In continuous-time models
	- polynomial state-space model \rightarrow output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution) [\[Denis-Vidal et al., 2003,](#page-48-0) [Verdiere, 2005\]](#page-49-0)
- \blacksquare In discrete-time models

- \blacksquare In continuous-time models
	- polynomial state-space model \rightarrow output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution) [\[Denis-Vidal et al., 2003,](#page-48-0) [Verdiere, 2005\]](#page-49-0)
- \blacksquare In discrete-time models
	- output equation \rightarrow prediction error model \rightarrow recursive least squares \rightarrow biased estimates (sub-optimal approach)

[\[Billings and Voon, 1984\]](#page-47-0)

- \blacksquare In continuous-time models
	- polynomial state-space model \rightarrow output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution) [\[Denis-Vidal et al., 2003,](#page-48-0) [Verdiere, 2005\]](#page-49-0)
- \blacksquare In discrete-time models
	- output equation \rightarrow prediction error model \rightarrow recursive least squares \rightarrow biased estimates (sub-optimal approach)

[\[Billings and Voon, 1984\]](#page-47-0)

■ output equation \rightarrow equation error cost function \rightarrow total least squares \rightarrow ignores non linear relations (sub-optimal approach) [\[Lu and Chon, 2003\]](#page-48-1)

- \blacksquare In continuous-time models
	- polynomial state-space model \rightarrow output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution) [\[Denis-Vidal et al., 2003,](#page-48-0) [Verdiere, 2005\]](#page-49-0)
- \blacksquare In discrete-time models
	- output equation \rightarrow prediction error model \rightarrow recursive least squares \rightarrow biased estimates (sub-optimal approach)

[\[Billings and Voon, 1984\]](#page-47-0)

- output equation \rightarrow equation error cost function \rightarrow total least squares \rightarrow ignores non linear relations (sub-optimal approach) [\[Lu and Chon, 2003\]](#page-48-1)
- output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution)

[\[Lu and Chon, 2003,](#page-48-1) [Chon and Cohen, 1997\]](#page-47-1)

- \blacksquare In continuous-time models
	- polynomial state-space model \rightarrow output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution) [\[Denis-Vidal et al., 2003,](#page-48-0) [Verdiere, 2005\]](#page-49-0)
- \blacksquare In discrete-time models
	- output equation \rightarrow prediction error model \rightarrow recursive least squares \rightarrow biased estimates (sub-optimal approach)

[\[Billings and Voon, 1984\]](#page-47-0)

- output equation \rightarrow equation error cost function \rightarrow total least squares \rightarrow ignores non linear relations (sub-optimal approach) [\[Lu and Chon, 2003\]](#page-48-1)
- output equation \rightarrow least squares cost function \rightarrow iterative gradient based solver (sub-optimal solution)

[\[Lu and Chon, 2003,](#page-48-1) [Chon and Cohen, 1997\]](#page-47-1)

Globally Optimal Parameter Estimation

polynomial state-space model \rightarrow output equation \rightarrow least-squares cost function \rightarrow system of polynomial equations \rightarrow eigenvalue problem

[Problem Statement](#page-2-0)

[Output Difference Equation](#page-14-0)

[References](#page-46-0)

Output difference equation

The output difference equation

$$
\Phi(\theta, \hat{y}_{k+n}, \dots, \hat{y}_k) = 0 \tag{3}
$$

relates the consecutive samples of a model compatible output sequence, and is a multivariate polynomial equation, such that

$$
\Phi \in I_{\Sigma} \cap \mathbb{R} \left[\boldsymbol{\theta}, \hat{y}_{k+n}, \ldots, \hat{y}_{k} \right] \tag{4}
$$

where

$$
I_{\Sigma} = \langle \hat{y}_k - g(\hat{x}_k, \theta),
$$

\n
$$
\hat{y}_{k+1} - g(\mathbf{f}(\hat{x}_k, \theta), \theta),
$$

\n
$$
\vdots
$$

\n
$$
\hat{y}_{k+n} - g(\mathbf{f}^n(\hat{x}_k, \theta), \theta) > .
$$
\n(5)

note that $\textit{I}_{\Sigma} \in \mathbb{R}\left[\hat{\textbf{x}}_{k}, \boldsymbol{\theta}, \hat{y}_{k}, \ldots, \hat{y}_{k+n}\right]$

Output difference equation

Construction of Φ

Given a single-output autonomous discrete-time (DT) polynomial state-space model Σ of order n (as in [\(1\)](#page-3-0)), there exists a unique polynomial output difference equation of minimal degree, denoted by $\Phi(\theta, \hat{y}_{k+n}, \ldots, \hat{y}_k) = 0$, which is the generator of the elimination ideal $I_{\Sigma}|_{n} \in \mathbb{R}[\theta, \hat{y}_{k+n}, \ldots, \hat{y}_{k}]$ where

$$
\Phi \in \underbrace{I_{\Sigma} \cap \mathbb{R} \left[\theta, \hat{y}_{k+n}, \ldots, \hat{y}_{k}\right]}_{I_{\Sigma}|_{n}}
$$

Moreover, Φ is of the same model order *n* and encapsulates the dynamical behavior of Σ in a single equation.

Output difference equation Example

Consider the discretized Lotka–Volterra model

$$
\Sigma_{LV}: \begin{cases} \hat{x}_{k+1}^{(1)} = \hat{x}_{k}^{(1)}(1+b-p\hat{x}_{k}^{(2)})\\ \hat{x}_{k+1}^{(2)} = \hat{x}_{k}^{(2)}(1-d+p\hat{x}_{k}^{(1)})\\ \hat{y}_{k} = \hat{x}_{k}^{(2)} \end{cases}
$$
(6)

where the superscript over $\hat{x}_{k}^{(.)}$ $\kappa_k^{(0)}$ indicates the component of the state-variable.

Output difference equation Example

Consider the discretized Lotka–Volterra model

$$
\Sigma_{LV}: \begin{cases} \hat{x}_{k+1}^{(1)} = \hat{x}_k^{(1)}(1+b-p\hat{x}_k^{(2)})\\ \hat{x}_{k+1}^{(2)} = \hat{x}_k^{(2)}(1-d+p\hat{x}_k^{(1)})\\ \hat{y}_k = \hat{x}_k^{(2)} \end{cases}
$$
(6)

where the superscript over $\hat{x}_{k}^{(.)}$ $\kappa_k^{(0)}$ indicates the component of the state-variable. Here, $I_{\Sigma_{1}V}$ can be generated using,

$$
I_{\Sigma_{1\!V}}=\begin{matrix} \hat{y}_k-\hat{x}_k^{(2)},\\ \hat{y}_{k+1}-\hat{x}_k^{(2)}(1-d+\rho\hat{x}_k^{(1)}),\\ \hat{y}_{k+2}-\hat{x}_k^{(2)}(1-d+\rho\hat{x}_k^{(1)})(1-d+\rho\hat{x}_k^{(1)}(1+b-\rho\hat{x}_k^{(2)}))>\\ \end{matrix} \tag{7}
$$

In order to eliminate x_k we will use consecutive Sylvester resultants

Sylvester Matrix and Resultants

Consider the system,

$$
\begin{cases}\nf_1(x) = a_r x^r + a_{r-1} x^{r-1} + \ldots + a_0 = 0, \\
f_2(x) = b_s x^s + b_{s-1} x^{s-1} + \ldots + b_0 = 0\n\end{cases}
$$

which has common roots. Construct $Mk = 0$ by multiplying $f_1(x)$ and $f_2(x)$ with powers of x s.t.,

 $\textbf{\textit{M}}\in\mathbb{R}^{(r+s)\times (r+s)}$ is the Sylvester matrix [\[Cox et al., 2015\]](#page-48-2)

Sylvester Matrix and Resultants

Consider the system,

$$
\begin{cases}\nf_1(x) = a_r x^r + a_{r-1} x^{r-1} + \ldots + a_0 = 0, \\
f_2(x) = b_s x^s + b_{s-1} x^{s-1} + \ldots + b_0 = 0\n\end{cases}
$$

which has common roots. Construct $Mk = 0$ by multiplying $f_1(x)$ and $f_2(x)$ with powers of x s.t.,

 $\textbf{\textit{M}}\in\mathbb{R}^{(r+s)\times (r+s)}$ is the Sylvester matrix [\[Cox et al., 2015\]](#page-48-2)

Sylvester Resultant

if
$$
f_1(x)
$$
 and $f_2(x)$ have a common root, then det $M = 0$
Res $(f_1, f_2, x) = det(Syl(f_1, f_2, x))$

Output difference equation Example

Let us first eliminate the state variable $\hat{x}^{(2)}_k$ $\kappa_k^{(2)}$, First, lets consider

$$
\text{Res}: \begin{cases} f_1(\hat{x}_k^{(2)}) = \hat{y}_k - \hat{x}_k^{(2)} \\ f_2(\hat{x}_k^{(2)}) = \hat{y}_{k+1} - (1 - d + p\hat{x}_k^{(1)})\hat{x}_k^{(2)} \end{cases}
$$

we can construct the Sylvester matrix as,

$$
\underbrace{\begin{bmatrix} \hat{y}_k & -1 \\ \hat{y}_{k+1} & -(1-d+\rho \hat{x}_k^{(1)}) \end{bmatrix}}_{\text{Syl}(f_1, f_2, \hat{x}_k^{(2)})} \begin{bmatrix} 1 \\ \hat{x}_k^{(2)} \end{bmatrix} = \mathbf{0}
$$

 $Res(f_1, f_2, \hat{x}_{k}^{(2)})$ $\zeta_k^{(2)}) = \mathsf{det}(\mathsf{Syl}(f_1, f_2, \hat{\chi}_k^{(2)}))$ $(\hat{y}_{k}^{(2)})) = \hat{y}_{k}(1-d+p\hat{x}_{k}^{1}) - \hat{y}_{k+1}$

Output difference equation Example

Now, lets consider

$$
\text{Res}: \begin{cases} \quad f_2(\hat{x}_k^{(2)}) = \hat{y}_{k+1} - (1-d+\rho \hat{x}_k^{(1)}) \hat{x}_k^{(2)} \\ f_3(\hat{x}_k^{(2)}) = \hat{y}_{k+2} + f_{31}(b,d,\rho,\hat{x}_k^{(1)}) \hat{x}_k^{(2)} + f_{32}(b,d,\rho,\hat{x}_k^{(1)}) (x^{(2)}_k)^2 \end{cases}
$$

we can construct the Sylvester matrix as,

$$
\underbrace{\begin{bmatrix} \hat{y}_{k+1} & -(1-d+p\hat{x}_k^{(1)}) & 0 \\ 0 & \hat{y}_{k+1} & -(1-d+p\hat{x}_k^{(1)}) \\ \hat{y}_{k+2} & f_{31}(b,d,p,\hat{x}_k^{(1)}) & f_{32}(b,d,p,\hat{x}_k^{(1)}) \end{bmatrix}}_{\text{Syl}(f_2,f_3,\hat{x}_k^{(2)})}\left[\begin{matrix} 1 \\ \hat{x}_k^{(2)} \\ (\hat{x}_k^{(2)})^2 \end{matrix}\right]=\mathbf{0}
$$

 $Res(f_2, f_3, \hat{x}_{k}^{(2)})$ $\zeta_k^{(2)}) = \mathsf{det}(\mathsf{Syl}(f_2, f_3, \hat{\chi}_k^{(2)})$ $\binom{k^{(2)}}{k}$

Output difference equation

Observe

$$
Res(f_1, f_2, \hat{x}_k^{(2)}), Res(f_2, f_3, \hat{x}_k^{(2)}) \in \mathbb{R}[b, d, p, x_k^{(1)}, \hat{y}_k, \hat{y}_{k+1}, \hat{y}_{k+2}]
$$

eliminate $\hat{x}_k^{(1)}$ by computing,

$$
\Phi = \text{Res}(\text{Res}(f_1, f_2, \hat{x}_k^{(2)}), \text{Res}(f_2, f_3, \hat{x}_k^{(2)}), \hat{x}_k^{(1)}) = 0
$$

which is,

$$
\hat{y}_{k}^{2}\hat{y}_{k+1}(pd-p)+\hat{y}_{k}\hat{y}_{k+1}^{2}p-\hat{y}_{k}\hat{y}_{k+1}(bd-b)-\hat{y}_{k+1}^{2}(b+1)+\hat{y}_{k}\hat{y}_{k+2}=0
$$

Eliminate $\hat{x}_{k}^{(n)}$

Manifold of the Model Compliant Data

Given model compliant data,

$$
\hat{\textbf{y}} = \begin{bmatrix} \hat{y}_0, \dots, \hat{y}_{\mathsf{N-1}} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^\mathsf{N}
$$

the output equation $\Phi(\theta, \hat{y}_{k+n}, \dots, \hat{y}_k) = 0$ is satisfied by all \hat{y}_k where $k \in \mathbb{Z}^+$.

Manifold of the Model Compliant Data

Given model compliant data,

$$
\hat{\textbf{y}} = \begin{bmatrix} \hat{y}_0, \dots, \hat{y}_{\mathsf{N-1}} \end{bmatrix}^\mathsf{T} \in \mathbb{R}^\mathsf{N}
$$

the output equation $\Phi(\theta, \hat{y}_{k+n}, \ldots, \hat{y}_k) = 0$ is satisfied by all \hat{y}_k where $k \in \mathbb{Z}^+$. Consider the system of equations,

$$
\Phi(\theta, \hat{\mathbf{y}}) = \begin{bmatrix} \phi(\theta, \hat{y}_0, \dots, \hat{y}_n) \\ \phi(\theta, \hat{y}_1, \dots, \hat{y}_{n+1}) \\ \vdots \\ \phi(\theta, \hat{y}_{N-n-1}, \dots, \hat{y}_{N-1}) \end{bmatrix} = \mathbf{0},
$$
 (8)

where $\mathbf{\Phi} \in \mathbb{R}\left[\bm{\theta},\hat{\mathbf{y}}\right]$ $\mathbf{\Phi}:\mathbb{R}^{\mathsf{N}+\ell} \to \mathbb{R}^{\mathsf{N}-n}.$ $\mathcal{V}(\mathbf{\Phi})$ describes the positive dimensional variety over which the model compatible data and the associated model parameter lie.

Overview

[Problem Statement](#page-2-0)

[Output Difference Equation](#page-14-0)

[Parameter Estimation](#page-31-0)

[References](#page-46-0)

Minimize the misfit as

$$
\min_{\theta, \hat{\mathbf{y}}} \quad \frac{1}{2} \left\| \tilde{\mathbf{y}} \right\|_2^2 = \frac{1}{2} \left\| \mathbf{y} - \hat{\mathbf{y}} \right\|_2^2, \text{s.t.} \quad \boldsymbol{\Phi}(\boldsymbol{\theta}, \hat{\mathbf{y}}) = 0
$$

Minimize the misfit as

$$
\min_{\theta, \hat{\mathbf{y}}} \quad \frac{1}{2} \|\tilde{\mathbf{y}}\|_2^2 = \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|_2^2,
$$

s.t.
$$
\mathbf{\Phi}(\theta, \hat{\mathbf{y}}) = 0
$$

The Lagrangian is,

$$
\mathcal{L}(\boldsymbol{\theta}, \hat{\mathbf{y}}) = \frac{1}{2} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 + \boldsymbol{\lambda}^\mathsf{T} \boldsymbol{\Phi}
$$
(9)

Minimize the misfit as

$$
\min_{\theta, \hat{\mathbf{y}}} \quad \frac{1}{2} \|\tilde{\mathbf{y}}\|_2^2 = \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|_2^2,
$$

s.t.
$$
\mathbf{\Phi}(\theta, \hat{\mathbf{y}}) = 0
$$

The Lagrangian is,

$$
\mathcal{L}(\boldsymbol{\theta}, \hat{\mathbf{y}}) = \frac{1}{2} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2 + \boldsymbol{\lambda}^\mathsf{T} \boldsymbol{\Phi}
$$
(9)

The associated FONCs are,

$$
\frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} = -(\mathbf{y} - \hat{\mathbf{y}}) + \left(\frac{\partial \mathbf{\Phi}}{\partial \hat{\mathbf{y}}}\right)^{\mathsf{T}} \mathbf{\lambda} = 0, \tag{10}
$$

$$
\partial \mathcal{L}/\partial \theta = \left(\frac{\partial \Phi}{\partial \theta}\right)^{\mathsf{T}} \lambda = 0 \tag{11}
$$

$$
\partial \mathcal{L}/\partial \lambda = \Phi = 0 \tag{12}
$$

Here, $\boldsymbol{\lambda} \in \mathbb{R}^{{\sf N}-n}$, and [\(10\)](#page-32-0)- [\(12\)](#page-32-1) is a square system of polynomial equations with $(N) + \ell + (N - n)$ equations.

Consider the FONC in [\(11\)](#page-32-2),

$$
\left(\frac{\partial \Phi}{\partial \theta}\right)^T \lambda = 0
$$

here,
$$
\frac{\partial \Phi}{\partial \theta} \in \mathbb{R}^{(N-n) \times \ell}
$$

Consider the FONC in [\(11\)](#page-32-2),

$$
\left(\frac{\partial \Phi}{\partial \theta}\right)^T \lambda = 0
$$

here, $\frac{\partial \Phi}{\partial \theta} \in \mathbb{R}^{(N-n)\times \ell}$ we know from [Nõmm and Moog, 2016], if the model Σ is identifiable then,

$$
rank\left(\frac{\partial \Phi}{\partial \theta}\right) = \ell \tag{13}
$$

Consider the FONC in [\(11\)](#page-32-2),

$$
\left(\frac{\partial \Phi}{\partial \theta}\right)^T \lambda = 0
$$

here, $\frac{\partial \Phi}{\partial \theta} \in \mathbb{R}^{(N-n)\times \ell}$ we know from [Nõmm and Moog, 2016], if the model Σ is identifiable then,

$$
rank\left(\frac{\partial \Phi}{\partial \theta}\right) = \ell \tag{13}
$$

and since $\boldsymbol\lambda \in$ null $\left(\frac{\partial \boldsymbol\phi}{\partial \boldsymbol\theta}\right)$ $\left(\frac{\partial \boldsymbol \phi}{\partial \boldsymbol \theta}\right)^\mathsf{T}$, we can write,

 $\lambda = V(\theta, \hat{\mathbf{v}})c$

where, $\bm{V}\in\mathbb{R}^{(\mathsf{N}-n)\times(\mathsf{N}-n-\ell)}$ and $\bm{c}\in\mathbb{R}^{\mathsf{N}-n-\ell}.$ \bm{V} is the basis of the nullspace of $\left(\frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{\theta}}\right)$ $\left(\frac{\partial \boldsymbol \phi}{\partial \boldsymbol \theta}\right)^\mathsf{T}$ and the components of $\boldsymbol V$, $\mathsf{v}_{ij} \in \mathbb{R}[\boldsymbol \theta, \hat{\bf y}]$ The FONCs can be re-written as,

$$
-(\mathbf{y} - \hat{\mathbf{y}}) + \left(\frac{\partial \Phi}{\partial \hat{\mathbf{y}}}\right)^{\mathsf{T}} \mathbf{V}\mathbf{c} = \mathbf{0}
$$
(14)

$$
\Phi = 0
$$
(15)

Here, [\(14\)](#page-38-0)- [\(15\)](#page-38-1) is a square system with $N + (N - n)$ equations

Parameter Estimation: Example $n = 1$

Let's first consider a first order model with one model parameter

$$
\Sigma_1 : \begin{cases} \hat{x}_{k+1} = \theta \hat{x}_k^3 \\ \hat{y}_k = \hat{x}_k \end{cases}
$$
 (16)

The output difference equation is given as,

$$
\phi(\hat{y}_k, \hat{y}_{k+1}, \theta) = \hat{y}_{k+1} - \theta \hat{y}_k^3 = 0 \tag{17}
$$

The parameter in θ is globally identifiable [Nõmm and Moog, 2016], thus we can expect it to a find a unique minimizer

Parameter Estimation: Example $n = 1$

Given $\mathbf{y} = \begin{bmatrix} 1.00685 & 0.59511 & 0.02801 \end{bmatrix}^T$ we can write [\(10\)](#page-32-0)- [\(12\)](#page-32-1) for Σ_1 as,

$$
\begin{cases}\n\left(\begin{bmatrix}\n\hat{y}_0 \\
\hat{y}_1 \\
\hat{y}_2\n\end{bmatrix} - \begin{bmatrix}\n1.00685 \\
0.59511 \\
0.02801\n\end{bmatrix}\right) + \begin{bmatrix}\n-3\theta \hat{y}_0^2 & 0 \\
1 & -3\theta \hat{y}_1^2 \\
0 & 1\n\end{bmatrix} \begin{bmatrix}\n\lambda_1 \\
\lambda_2\n\end{bmatrix} = \begin{bmatrix}\n0 \\
0 \\
0\n\end{bmatrix} \\
\left[-\hat{y}_0^3 - \hat{y}_1^3\right] \begin{bmatrix}\n\lambda_1 \\
\lambda_2\n\end{bmatrix} = \begin{bmatrix}\n0 \\
0\n\end{bmatrix} \\
\hat{y}_2 - \theta \hat{y}_1^3 = \begin{bmatrix}\n0 \\
0\n\end{bmatrix}\n\end{cases}
$$

Parameter Estimation: Example $n = 1$

Given $\mathbf{y} = \begin{bmatrix} 1.00685 & 0.59511 & 0.02801 \end{bmatrix}^T$ we can write [\(10\)](#page-32-0)- [\(12\)](#page-32-1) for Σ_1 as,

$$
\begin{cases}\n\left(\begin{bmatrix}\n\hat{y}_0 \\
\hat{y}_1 \\
\hat{y}_2\n\end{bmatrix} - \begin{bmatrix}\n1.00685 \\
0.59511 \\
0.02801\n\end{bmatrix}\right) + \begin{bmatrix}\n-3\theta \hat{y}_0^2 & 0 \\
1 & -3\theta \hat{y}_1^2 \\
0 & 1\n\end{bmatrix} \begin{bmatrix}\n\lambda_1 \\
\lambda_2\n\end{bmatrix} = \begin{bmatrix}\n0 \\
0 \\
0\n\end{bmatrix} \\
\left[-\hat{y}_0^3 - \hat{y}_1^3\right] \begin{bmatrix}\n\lambda_1 \\
\lambda_2\n\end{bmatrix} = \begin{bmatrix}\n0 \\
0\n\end{bmatrix} \\
\hat{y}_2 - \theta \hat{y}_1^3 = \begin{bmatrix}\n0 \\
0\n\end{bmatrix}\n\end{cases}
$$

Solving [\(25\)](#page-40-0) using HomotopyContinuation.jl [\[Breiding and Timme, 2018\]](#page-47-2), we find the globally optimal solution $(\theta, \hat{y}_0, \hat{y}_1, \hat{y}_2)$ = (0.5194, 1.0228, 0.5558, 0.0891)

Parmeter Estimation: Example $n = 1$

There exists a partial linear structure in the system [\(25\)](#page-40-0), such that the system can be written as a multiparameter eigenvalue problem (MEVP) of the form

here, [\(23\)](#page-42-0) is 4-parameter 4th degree MEVP. Using MacaulayLab [\[Vermeersch and De Moor, 2022\]](#page-49-2) we find the same globally optimal solution.

Parameter Estimation: Example $n=1$

We can incorporate the identifiability rank condition which allows us to write $\begin{bmatrix} \lambda_1 & \lambda_2 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} \hat{y}^3_1 & -\hat{y}^3_0 \end{bmatrix}^\mathsf{T}$ c such that the resulting system of equation is,

$$
\begin{cases}\n\left(\begin{bmatrix}\n\hat{y}_0 \\
\hat{y}_1 \\
\hat{y}_2\n\end{bmatrix} - \begin{bmatrix}\n1.00685 \\
0.59511 \\
0.02801\n\end{bmatrix}\right) + \begin{bmatrix}\n-3\theta \hat{y}_0^2 & 0 \\
1 & -3\theta \hat{y}_1^2 \\
0 & 1\n\end{bmatrix} \begin{bmatrix}\n\hat{y}_1^3 \\
-\hat{y}_0^3\n\end{bmatrix} c = \begin{bmatrix}\n0 \\
0 \\
0\n\end{bmatrix} \\
\begin{bmatrix}\n\hat{y}_1 - \theta \hat{y}_0^3 \\
\hat{y}_2 - \theta \hat{y}_1^3\n\end{bmatrix} = \begin{bmatrix}\n0 \\
0\n\end{bmatrix}\n\end{cases}
$$

HomotopyContinuation.jl yields the same globally optimal solution, however the equivalent MEVP is of degree 6 which makes solving the EP using MacaulayLab inefficient

Parameter Estimation: Example $n=1$

We will now consider a special case where $N = 2n + l$. Since we can write $\hat{\mathbf{y}} = \mathbf{f}_{\text{comp}}(\mathbf{x}_0, \theta)$, satisfies [\(15\)](#page-38-1), we can substitute it in [\(14\)](#page-38-0), resulting in a smaller system of equations $2n + \ell$ equations in $2n + \ell$ variables. For the cubic model we are already in the situation where $N = 2n + \ell = 3$, the FONCs reduce to,

$$
\left\{ \left(\begin{bmatrix} \hat{x}_0 \\ \hat{\theta} \hat{x}_0^3 \\ \hat{\theta}^4 \hat{x}_0^9 \end{bmatrix} - \begin{bmatrix} 1.00685 \\ 0.59511 \\ 0.02801 \end{bmatrix} \right) + \begin{bmatrix} -3\theta \hat{x}_0^2 & 0 \\ 1 & -3\theta^2 \hat{x}_0^6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \theta^3 \hat{x}_0^9 \\ -\hat{x}_0^3 \end{bmatrix} c = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}
$$

The solution is (0.5194, 1.0228). Note, that the resulting system of equations is of degree 16. The final question is a Numerical one, is it better to work with more equations of lower degree OR less equations of higher degree.

Parameter Estimation: Lotka–Volterra $(n = 2)$

Consider we are given $N = 6$ measured sequence from the Lotka–Volterra model [\(6\)](#page-17-0).

Figure: Estimation of N = 6 datapoints where $\ell = 3$ requires a maximum 13 equations, which are of degree 5.

Overview

[Problem Statement](#page-2-0)

- [Output Difference Equation](#page-14-0)
- [Parameter Estimation](#page-31-0)

References I

暈 Billings, S. A. and Voon, W. S. F. (1984).

Least squares parameter estimation algorithms for non-linear systems.

International Journal of Systems Science, 15(6):601–615.

F Breiding, P. and Timme, S. (2018). Homotopycontinuation. jl: A package for homotopy continuation in julia. In Mathematical Software–ICMS 2018: 6th International

Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings 6, pages 458–465. Springer.

Chon, K. and Cohen, R. (1997) .

Linear and nonlinear arma model parameter estimation using an artificial neural network.

IEEE Transactions on Biomedical Engineering, 44(3):168–174.

References II

 \Box Cox, D., Little, J., and O'Shea, D. (2015). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.

Undergraduate Texts in Mathematics. Springer International Publishing.

Denis-Vidal, L., Joly-Blanchard, G., and Noiret, C. (2003). F System identifiability (symbolic computation) and parameter estimation (numerical computation). Numerical Algorithms, 34:283–292.

 \Box Lu, S. and Chon, K. (2003).

Nonlinear autoregressive and nonlinear autoregressive moving average model parameter estimation by minimizing hypersurface distance.

IEEE Transactions on Signal Processing, 51(12):3020–3026.

References III

量

晶

Nõmm, S. and Moog, C. H. (2016).

Further results on identifiability of discrete-time nonlinear systems.

Automatica, 68:69–74.

Verdiere, Nathalie, D.-V. L. J.-B. G. D. D. (2005). 螶 Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor. International Journal of Applied Mathematics and Computer Science, 15(4):517–526.

Vermeersch, C. and De Moor, B. (2022).

Two complementary block macaulay matrix algorithms to solve multiparameter eigenvalue problems.

Linear Algebra and its Applications, 654:177–209.