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Model Class

Single output autonomous discrete–time polynomial
state–space models of the form Σ

Σ :

{
x̂k+1 = f (x̂k ,θ)
ŷk = g(x̂k ,θ)

(1)

where x̂k ∈ Rn are the state variables at instant k : k ∈ Z+,
θ ∈ Rℓ are the model parameters. f : Rn × Rℓ → Rn,
g : Rn ×Rℓ → R and f , g ∈ R[x̂k ,θ] where f , g ∈ R[x̂k ,θ] is
a multivariate polynomial ring, ŷ ∈ R is the model output
variable.

Σ is identifiable, i.e., a model compliant trajectory

ŷ =
[
ŷ0 ŷ1 . . . ŷN−1

]T ∈ RN is generated uniquely by some
θ∗ ∈ Θ ⊂ Rℓ, where Θ is an open neighborhood of Rℓ
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Parameter Estimation

Given observed output sequence

y =
[
y0 y1 . . . yN−1

]T ∈ RN, find a model compliant
trajectory ŷ generated by some θ∗, such that the observed
data is ‘closely’ approximated.

Minimize
min
θ,ŷ

∥y − ŷ∥2

s.t. Φ(θ, ŷ) = 0
(2)

where Φ(θ, ŷ) = 0, is a system of polynomial equations, such
that V(Φ), forms a manifold in Rℓ × RN on which the
model-compliant trajectory ŷ and the corresponding model
parameters θ lie.

Opt. problem in (2) is non-convex
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Parameter Estimation some history

In continuous-time models
polynomial state-space model → output equation → least
squares cost function → iterative gradient based solver
(sub-optimal solution) [Denis-Vidal et al., 2003, Verdiere, 2005]

In discrete-time models
output equation → prediction error model → recursive least
squares → biased estimates (sub-optimal approach)
[Billings and Voon, 1984]

output equation → equation error cost function → total least
squares → ignores non linear relations (sub-optimal approach)
[Lu and Chon, 2003]

output equation → least squares cost function → iterative
gradient based solver (sub-optimal solution)
[Lu and Chon, 2003, Chon and Cohen, 1997]

Globally Optimal Parameter Estimation

polynomial state-space model → output equation →
least-squares cost function → system of polynomial equations
→ eigenvalue problem
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Output difference equation
The output difference equation

Φ(θ, ŷk+n, . . . , ŷk) = 0 (3)

relates the consecutive samples of a model compatible output
sequence, and is a multivariate polynomial equation, such that

Φ ∈ IΣ ∩ R
[
θ, ŷk+n, . . . , ŷk

]
(4)

where

IΣ = ⟨ŷk − g(x̂k ,θ),

ŷk+1 − g(f (x̂k ,θ),θ),

...

ŷk+n − g(f n(x̂k ,θ),θ) > .

(5)

note that IΣ ∈ R
[
x̂k ,θ, ŷk , . . . , ŷk+n

]
8/30



Output difference equation

Construction of Φ

Given a single-output autonomous discrete-time (DT) polynomial
state-space model Σ of order n (as in (1)), there exists a unique
polynomial output difference equation of minimal degree, denoted
by Φ(θ, ŷk+n, . . . , ŷk) = 0, which is the generator of the
elimination ideal IΣ|n ∈ R[θ, ŷk+n, . . . , ŷk ] where

Φ ∈ IΣ ∩ R
[
θ, ŷk+n, . . . , ŷk

]︸ ︷︷ ︸
IΣ|n

Moreover, Φ is of the same model order n and encapsulates the
dynamical behavior of Σ in a single equation.

9/30



Output difference equation
Example

Consider the discretized Lotka–Volterra model

ΣLV :


x̂
(1)
k+1 = x̂

(1)
k (1 + b − px̂

(2)
k )

x̂
(2)
k+1 = x̂

(2)
k (1− d + px̂

(1)
k )

ŷk = x̂
(2)
k

(6)

where the superscript over x̂
(.)
k indicates the component of the

state-variable.

Here, IΣLV
can be generated using,

IΣLV
=

< ŷk − x̂
(2)
k ,

ŷk+1 − x̂
(2)
k (1− d + px̂

(1)
k ),

ŷk+2 − x̂
(2)
k (1− d + px̂

(1)
k )(1− d + px̂

(1)
k (1 + b − px̂

(2)
k )) >

(7)
In order to eliminate xk we will use consecutive Sylvester resultants
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Sylvester Matrix and Resultants
Consider the system,{

f1(x) = arx
r + ar−1x

r−1 + . . .+ a0 = 0,
f2(x) = bsx

s + bs−1x
s−1 + . . .+ b0 = 0

which has common roots. Construct Mk = 0 by multiplying f1(x)
and f2(x) with powers of x s.t.,

s rows :


a
a
a
a

r rows :


a
a
a
a



a0 a1 . . . ar
a0 a1 . . . ar

. . .
. . .

. . .

a0 a1 . . . ar
b0 b1 . . . bs

b0 b1 . . . bs
. . .

. . .
. . .

b0 b1 . . . bs




x0

x1

...
x r+s−1

 =



0
0
...
0

0
0
...
0


.

M ∈ R(r+s)×(r+s) is the Sylvester matrix [Cox et al., 2015]

Sylvester Resultant

if f1(x) and f2(x) have a common root, then detM = 0
Res(f1, f2, x) = det(Syl(f1, f2, x))
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Output difference equation
Example

Let us first eliminate the state variable x̂
(2)
k , First, lets consider

Res :

{
f1(x̂

(2)
k ) = ŷk − x̂

(2)
k

f2(x̂
(2)
k ) = ŷk+1 − (1− d + px̂

(1)
k )x̂

(2)
k

we can construct the Sylvester matrix as,[
ŷk −1

ŷk+1 −(1− d + px̂
(1)
k )

]
︸ ︷︷ ︸

Syl(f1,f2,x̂
(2)
k )

[
1

x̂
(2)
k

]
= 0

Res(f1, f2, x̂
(2)
k ) = det(Syl(f1, f2, x̂

(2)
k )) = ŷk(1− d + px̂1k )− ŷk+1
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Output difference equation
Example

Now, lets consider

Res :

{
f2(x̂

(2)
k ) = ŷk+1 − (1− d + px̂

(1)
k )x̂

(2)
k

f3(x̂
(2)
k ) = ŷk+2 + f31(b, d , p, x̂

(1)
k )x̂

(2)
k + f32(b, d , p, x̂

(1)
k )( ˆx (2)k)

2

we can construct the Sylvester matrix as,ŷk+1 −(1− d + px̂
(1)
k ) 0

0 ŷk+1 −(1− d + px̂
(1)
k )

ŷk+2 f31(b, d , p, x̂
(1)
k ) f32(b, d , p, x̂

(1)
k )


︸ ︷︷ ︸

Syl(f2,f3,x̂
(2)
k )

 1

x̂
(2)
k

(x̂
(2)
k )2

 = 0

Res(f2, f3, x̂
(2)
k ) = det(Syl(f2, f3, x̂

(2)
k ))

13/30



Output difference equation

Observe

Res(f1, f2, x̂
(2)
k ),Res(f2, f3, x̂

(2)
k ) ∈ R[b, d , p, x (1)k , ŷk , ŷk+1, ŷk+2]

eliminate x̂
(1)
k by computing,

Φ = Res(Res(f1, f2, x̂
(2)
k ),Res(f2, f3, x̂

(2)
k ), x̂

(1)
k ) = 0

which is,

ŷ2k ŷk+1(pd−p)+ŷk ŷ
2
k+1p−ŷk ŷk+1(bd−b)−ŷ2k+1(b+1)+ŷk ŷk+2 = 0

14/30



Summary: Output difference equation
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Manifold of the Model Compliant Data

Given model compliant data,

ŷ =
[
ŷ0, . . . , ŷN-1

]T ∈ RN

the output equation Φ(θ, ŷk+n, . . . , ŷk) = 0 is satisfied by all ŷk
where k ∈ Z+.

Consider the system of equations,

Φ(θ, ŷ) =


ϕ(θ, ŷ0, . . . , ŷn)
ϕ(θ, ŷ1, . . . , ŷn+1)

...
ϕ(θ, ŷN−n−1, . . . , ŷN−1)

 = 0, (8)

where Φ ∈ R
[
θ, ŷ

]
Φ : RN+ℓ → RN−n. V(Φ) describes the

positive dimensional variety over which the model compatible data
and the associated model parameter lie.
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ŷ0, . . . , ŷN-1
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Parameter Estimation as system of polynomial equations

Minimize the misfit as

min
θ,ŷ

1

2
∥ỹ∥22 =

1

2
∥y − ŷ∥22 ,

s.t. Φ(θ, ŷ) = 0

The Lagrangian is,

L(θ, ŷ) = 1

2
||y − ŷ||22 + λTΦ (9)

The associated FONCs are,

∂L/∂ŷ = −(y − ŷ) +

(
∂Φ

∂ŷ

)T

λ = 0, (10)

∂L/∂θ =

(
∂Φ

∂θ

)T

λ = 0 (11)

∂L/∂λ = Φ = 0 (12)

Here, λ ∈ RN−n, and (10)- (12) is a square system of polynomial
equations with (N) + ℓ+ (N− n) equations.
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Parameter Estimation as system of polynomial equations

Consider the FONC in (11),(
∂Φ

∂θ

)T

λ = 0

here, ∂Φ
∂θ ∈ R(N−n)×ℓ

we know from [Nõmm and Moog, 2016], if
the model Σ is identifiable then,

rank

(
∂Φ

∂θ

)
= ℓ (13)

and since λ ∈ null
(
∂ϕ
∂θ

)T
, we can write,

λ = V (θ, ŷ)c

where, V ∈ R(N−n)×(N−n−ℓ) and c ∈ RN−n−ℓ. V is the basis of

the nullspace of
(
∂ϕ
∂θ

)T
and the components of V , vij ∈ R[θ, ŷ]
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19/30



Parameter Estimation as system of polynomial equations

The FONCs can be re-written as,

−(y − ŷ) +

(
∂Φ

∂ŷ

)T

Vc = 0 (14)

Φ = 0 (15)

Here, (14)- (15) is a square system with N + (N− n) equations
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Parameter Estimation: Example n = 1

Let’s first consider a first order model with one model parameter

Σ1 :

{
x̂k+1 = θx̂3k
ŷk = x̂k

(16)

The output difference equation is given as,

ϕ(ŷk , ŷk+1, θ) = ŷk+1 − θŷ3k = 0 (17)

The parameter in θ is globally
identifiable [Nõmm and Moog, 2016], thus we can expect it to a
find a unique minimizer

21/30



Parameter Estimation: Example n = 1
Given y =

[
1.00685 0.59511 0.02801

]T
we can write (10)- (12)

for Σ1 as,

ŷ0ŷ1
ŷ2

−

1.006850.59511
0.02801

+

−3θŷ20 0
1 −3θŷ21
0 1

[
λ1

λ2

]
=

00
0


[
−ŷ30 −ŷ31

] [λ1

λ2

]
=

[
0
0

]
[
ŷ1 − θŷ30
ŷ2 − θŷ31

]
=

[
0
0

]

Solving (25) using
HomotopyContinuation.jl [Breiding and Timme, 2018], we find
the globally optimal solution
(θ, ŷ0, ŷ1, ŷ2) = (0.5194, 1.0228, 0.5558, 0.0891)
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Parmeter Estimation: Example n = 1

There exists a partial linear structure in the system (25), such that
the system can be written as a multiparameter eigenvalue problem
(MEVP) of the form

ŷ0
ŷ1
ŷ2
0
ŷ1
ŷ2

−1.00685
−0.59511
−0.02801

0
−θŷ30
−θŷ31

−3θŷ20 0
1 −3θŷ21
0 1

−ŷ30 −ŷ31
0 0
0 0


︸ ︷︷ ︸

M(θ,ŷ)

 1
λ1

λ2

 = 0

here, (23) is 4-parameter 4th degree MEVP. Using
MacaulayLab [Vermeersch and De Moor, 2022] we find the same
globally optimal solution.
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Parameter Estimation: Example n=1

We can incorporate the identifiability rank condition which allows

us to write
[
λ1 λ2

]T
=

[
ŷ31 −ŷ30

]T
c such that the resulting

system of equation is,



ŷ0ŷ1
ŷ2

−

1.006850.59511
0.02801

+

−3θŷ20 0
1 −3θŷ21
0 1

[
ŷ31
−ŷ30

]
c =

00
0


[
ŷ1 − θŷ30
ŷ2 − θŷ31

]
=

[
0
0

]
HomotopyContinuation.jl yields the same globally optimal
solution, however the equivalent MEVP is of degree 6 which makes
solving the EP using MacaulayLab inefficient
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Parameter Estimation: Example n=1

We will now consider a special case where N = 2n + l . Since we
can write ŷ = fcomp(x0,θ), satisfies (15), we can substitute it
in (14), resulting in a smaller system of equations 2n + ℓ equations
in 2n + ℓ variables. For the cubic model we are already in the
situation where N = 2n + ℓ = 3, the FONCs reduce to,
 x̂0

θx̂30
θ4x̂90

−

1.006850.59511
0.02801

+

−3θx̂20 0
1 −3θ2x̂60
0 1

[
θ3x̂90
−x̂30

]
c =

00
0


The solution is (0.5194, 1.0228). Note, that the resulting system of
equations is of degree 16. The final question is a Numerical one, is
it better to work with more equations of lower degree OR less
equations of higher degree.
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Parameter Estimation: Lotka–Volterra (n = 2)
Consider we are given N = 6 measured sequence from the
Lotka–Volterra model (6).

Figure: Estimation of N = 6 datapoints where ℓ = 3 requires a maximum
13 equations, which are of degree 5.
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