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Model Class

m Single output autonomous discrete—time polynomial
state—space models of the form ¥

X1 = F(Xk, 0)
PR N N 1
{ Vi = (X, 0) S

where X, € R" are the state variables at instant k: k € Z™T,
0 € R! are the model parameters. f : R" x RY — R”,

g:R" xR =R and f, g € R[Xy, 0] where f, g € R[Xy, 0] is
a multivariate polynomial ring, y € R is the model output
variable.
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g:R" xR =R and f, g € R[Xy, 0] where f, g € R[Xy, 0] is
a multivariate polynomial ring, y € R is the model output
variable.

m Y is identifiable, i.e., a model compliant trajectory
y = [f/o 1 ...)A/N_l]T € RN is generated uniquely by some
0* € © C RY, where © is an open neighborhood of R*
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Parameter Estimation

m Given observed output sequence
y = [yo Vi ...yN_l]T € RN, find a model compliant
trajectory y generated by some 0%, such that the observed
data is ‘closely’ approximated.
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Parameter Estimation

m Given observed output sequence
y = [yo V1 ...yN_l]T € RN, find a model compliant
trajectory y generated by some 0%, such that the observed
data is ‘closely’ approximated.
m Minimize _ )
min [ly — 9|
3y (2)
st. ®(0,y)=0

where ®(0,y) = 0, is a system of polynomial equations, such
that V(®), forms a manifold in R® x RN on which the
model-compliant trajectory ¥ and the corresponding model
parameters @ lie.

m Opt. problem in (2) is non-convex
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Parameter Estimation some ristory

® In continuous-time models
m polynomial state-space model — output equation — least
squares cost function — iterative gradient based solver
(sub-optimal solution) [penis-vidal et al., 2003, Verdiere, 2005]
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Globally Optimal Parameter Estimation

polynomial state-space model — output equation —
least-squares cost function — system of polynomial equations
— eigenvalue problem
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Output difference equation
The output difference equation

q)(a))/}k-l-nv"‘?)l}k)zo (3)

relates the consecutive samples of a model compatible output
sequence, and is a multivariate polynomial equation, such that

d e IzﬂR[H,)?kJr,,,...,)?k] (4)

where

I = (9 — g(Xk, 0),
yk+1 _g(f()?/ﬁe)ae)v

}A/k—&-n _g(fn(j\(kua)ao) >

note that Iy € R [%4, 0, k..., Jktn]
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Output difference equation

Construction of ¢

Given a single-output autonomous discrete-time (DT) polynomial
state-space model X of order n (as in (1)), there exists a unique
polynomial output difference equation of minimal degree, denoted
by ®(0, Jk+n,---, k) =0, which is the generator of the
elimination ideal Is|, € R[O, Jk1n, - - -, Jk] where

®els NR[O, Phrn - 94

Is|n

Moreover, ® is of the same model order n and encapsulates the
dynamical behavior of ¥ in a single equation.
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Output difference equation
Example

Consider the discretized Lotka—Volterra model

2 =214 b— pgP)

NIV x,((+1 = >“<£2 (1-d+ p“(l)) (6)
k= X;E2)
where the superscript over )?,((')
state-variable.

indicates the component of the
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Output difference equation
Example

Consider the discretized Lotka—Volterra model

2 =214 b— pgP)

NIV x,((+1 = >“<£2 (1 d+ p“(l)) (6)

()

where the superscript over X, indicates the component of the
state-variable. Here, /s, can be generated using,

< Vi — XIE ),
o = , Pern — 21— d + pr), )
ez — 5201~ d + D)1~ -+ pED(1+ b i) >

(7)

In order to eliminate x, we will use consecutive Sylvester resultants
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Sylvester Matrix and Resultants
Consider the system,
f(x) = ax"+ ar1x"'4+ ... 4+a =0,
fr(x) = bsx® + bs_1x* 1+ ...+ b =0
which has common roots. Construct Mk = 0 by multiplying f;(x)
and f>(x) with powers of x s.t.,

a a ... ar 0
aQ a ... a . 0
S rows : X :
aQ a ... ar X! 10
bo b1 ... bs . 0
bp b1 ... bs : 0
r rows : Xr+s—1
bp b1 ... bs 0

M c RU+9)x(r+9) is the Sylvester matrix [Cox et al., 2015]
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S rows : X :
aQ a ... ar X! 0

bo b1 ... bs . 0

bp b1 ... bs : 0

r rows : Xr+s—1
bp b1 ... bs 0

M c RU+9)x(r+9) is the Sylvester matrix [Cox et al., 2015]

Sylvester Resultant

if fi(x) and f(x) have a common root, then det M =0
Res(f1, f2, x) = det(Syl(f, £, x))

11/30



Output difference equation
Example

(2

Let us first eliminate the state variable R, 7, First, lets consider

Res : 5 fl()?l(f)) =Yk — )A(l(<2) 1y (2
BP) = pr — (1 — d + p{)2?

we can construct the Sylvester matrix as,

Ik -1 I 0
k1 (1—d+PA(1)) ;(< "N

-~

Syl(f1,5,5?)

Res(ﬂ, f2a)?£2)) _ det(SyI(fl, f2’ (2 ))) (1 —d+ P)?,%)

— Ykt1
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Output difference equation
Example

Now, lets consider

Res BED) = Jier — (1- d + pr{)%?
B = Yo+ Fa(b, d, p, £ + Fo(b, d, p, V) (x(2))2

we can construct the Sylvester matrix as,

V1 —(1—d+ pA(l)) 0 12
0 k41 —(1-d+p ()) >A<1£) =0

. . 2
Vi+2 7%1(b>d,P,X,£1)) f2(b,d, p, X (1)) (XIE

Syl(f,£3,5?)

~

>

)2

Res(f, 3, %)) = det(Syl(%, £, %))
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Output difference equation

Observe
Res(fL, fo, %)), Res(fy, £, 7)) € RIb, . p, x{", k. Jir1, 2]
eliminate >A<,((1) by computing,
® = Res(Res(f1, f2,>A<,(<2)), Res(f2, f3,>?;£2))>>?151)) =0

which s,

Ve k+1(pd—p)+ 99 1P~ Ik+1(bd—b)— 97 1 (b+1)+ Pk P42 = O
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Summary: Output difference equation
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Manifold of the Model Compliant Data

Given model compliant data,

9: [yov"'ayN—l]T eRN

the output equation ®(0, Yx1n, ..., k) = 0 is satisfied by all yi
where k € Z7.
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Manifold of the Model Compliant Data

Given model compliant data,

9: [}707"'5.)7N—1}T GRN

the output equation ®(0, Yx1n, ..., k) = 0 is satisfied by all yi
where k € Z". Consider the system of equations,

¢(075}07 e 7.)7”)
N ¢(03}717"'7}?n+1)
®(0,9) = : ) ®)
¢(975}N7H*17 s 7.)/}N71)

where ® € R[6,§] ® : RN — RN=". Y(®) describes the
positive dimensional variety over which the model compatible data
and the associated model parameter lie.
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Pa I’a meter EStI matlon as system of polynomial equations
Minimize the misfit as

o1 0 1 o112
min 5 ||yH2 = 5 ”y - y||27
st. ®(0,y)=0
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. 1 N
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Pa I'a meter EStI matlon as system of polynomial equations
Minimize the misfit as

o1 0 1 o112
min 5“)’”2 = E”y_y||27
The Lagrangian is,

N 1 "
£O.9)=5lly-9lz+1"® (9)
The associated FONCs are, .
ocjos—--9)+ (55) A=0. (o)
o\ T
0L/08 = <(‘39> A=0 (11)
OL/OA=d =0 (12)

Here, A € RN=", and (10)- (12) is a square system of polynomial
equations with (N) + ¢ + (N — n) equations.
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Pa I’a meter EStI matlon as system of polynomial equations
Consider the FONC in (11),

o\ "
(59) 2=

here, g—z € R(N=-n)x¢
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Pa I'a meter EStI matlon as system of polynomial equations
Consider the FONC in (11),

oo\
) A=
(5a) 2=¢
here, %’3 € RIN=m*¢ we know from [Ndmm and Moog, 2016], if
the model X is identifiable then,

rank (‘g‘;’) y (13)

-
and since A € null (g—g’) , We can write,
A= V(6,9)c

where, V € R(N*”)X(N_r*”*e) and ¢ € RV="=f, V is the basis of
the nullspace of (%‘g) and the components of V, v;; € R[0,§]
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Pa I'a meter EStI matlon as system of polynomial equations

The FONCs can be re-written as,

]
~w-9+ (%) ve=o (14)
® =0 (15)

Here, (14)- (15) is a square system with N + (N — n) equations

20/30



Parameter Estimation: Example n =1

Let's first consider a first order model with one model parameter

° _ n¢3
PIERE {kal _Aexk (16)
Yk = Xk

The output difference equation is given as,
&Pk Ihr1,0) = Jp1 — 092 =0 (17)

The parameter in 6 is globally
identifiable [N6Gmm and Moog, 2016], thus we can expect it to a
find a unique minimizer
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Parameter Estimation: Example n =1

Given y = [1.00685 0.59511 0.02801]T we can write (10)- (12)
for X1 as,

I 1.00685 -3092 0 \
g1l — 059511 | +| 1 = —3697 [Al] =
I 0.02801 0 1 2
. a1 [\ 0
[_yg _yﬂ [)\J = [0]

-1
L 9o — 0y} 0

o O O
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Parameter Estimation: Example n =1

Given y = [1.00685 0.59511 0.02801]T we can write (10)- (12)
for X1 as,
I 1.00685 -3092 0 \ 0
g1l — 059511 | +| 1 = —3697 [Al] =10
A 0.02801 0 1 2 0
A 0
_ 3 _ 43 1| _
st - []
2ol
L 9o — 093 0

Solving (25) using

HomotopyContinuation. j1l [Breiding and Timme, 2018], we find
the globally optimal solution

(0, 90, y1,¥2) = (0.5194,1.0228, 0.5558,0.0891)
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Parmeter Estimation: Example n =1

There exists a partial linear structure in the system (25), such that
the system can be written as a multiparameter eigenvalue problem
(MEVP) of the form

[ Vo—1.00685 —30)73 0
y1—0.59511 1 —30)712 1
¥»—0.02801 0 1
~3 ~3 M| =0

0 =) -V Ao

o —098 0 0

(9> —097 0 0

M(0.9)

here, (23) is 4-parameter 4th degree MEVP. Using
MacaulayLab [Vermeersch and De Moor, 2022] we find the same
globally optimal solution.
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Parameter Estimation: Example n=1

We can incorporate the identifiability rank condition which allows
. T A 37T .

us to write [)\1 )\2] = [y13 —yg‘] ¢ such that the resulting

system of equation is,

( /T 1.00685 —3052 0 - 0
Ji| — (059511 |+ | 1 —3097 [_13]c: 0
I 0.02801 0 1 Yo 0
-
\ j%z - 695%3 0

HomotopyContinuation. jl yields the same globally optimal
solution, however the equivalent MEVP is of degree 6 which makes
solving the EP using MacaulayLab inefficient
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Parameter Estimation: Example n=1

We will now consider a special case where N = 2n + /. Since we
can write y = fomp(X0, ), satisfies (15), we can substitute it

in (14), resulting in a smaller system of equations 2n + ¢ equations
in 2n 4 £ variables. For the cubic model we are already in the
situation where N = 2n 4 ¢ = 3, the FONCs reduce to,

o 1.00685 —3082 0 0349 0
0% | — |0.89511 | +| 1 —36°%8 [_)A(g]c: 0
0*%5 0.02801 0 1 0 0

The solution is (0.5194,1.0228). Note, that the resulting system of
equations is of degree 16. The final question is a Numerical one, is
it better to work with more equations of lower degree OR less
equations of higher degree.
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Parameter Estimation: Lotka—Volterra (n = 2)

Consider we are given N = 6 measured sequence from the
Lotka—Volterra model (6).

Observed and Estimated Trajectories

5 L L L L L L L L L ,
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
k—

Figure: Estimation of N = 6 datapoints where £ = 3 requires a maximum
13 equations, which are of degree 5.
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