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Multivariate polynomials
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A multivariate polynomial p(x), or p(x1, . . . , xn), in n variables is a finite linear
combination of monomials xα from Kn with coefficients cα from K:

p(x) =
∑
A

cαx
α,

where the summation runs over all the exponents in the set A.

• K can be any field: complex numbers C, real numbers R, or finite numbers Fq

• α = (α1, . . . , αn) indexes the monomials xα and coefficients cα
• example: p(x) = 3 +

√
5x1 + (1 + i)x2 +

3
2x

2
1x

8
2



Multivariate polynomial systems

4

• Typically, multivariate polynomials appear in systems of equations:

p1(x) =
∑
A(1)

c
(1)
α xα = 0,

...

ps(x) =
∑
A(s)

c
(s)
α xα = 0.

• Every polynomial has a total degree: di = max(|α|).



Two limit cases
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univariate polynomial
(n = 1)

p(x) =

d∑
i=0

cix
i

⇓

Cp =


0 0 · · · 0 −c0/cn
1 0 · · · 0 −c1/cn
0 1 · · · 0 −c2/cn
...

...
. . .

...
...

0 0 · · · 1 −cn−1/cn


Cpx = λx

linear systems
(di = 1)

p1(x) = b1 +

n∑
j=1

a1jxj

...

ps(x) = bs +

n∑
j=1

asjxj

⇓
Ax = b

These are well-known problems from linear algebra!



What does solving mean?
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Find all the values for x ∈ K̄n such that p1(x) = · · · = ps(x) = 0, i.e., the variety of
the polynomial system

V(p1, . . . , ps) =
{
a ∈ K̄n : pi(a) = 0, ∀i = 1, . . . s

}

• Typically, we consider polynomial
systems which are well-determined!
This can be for both square and
rectangular systems.

• Some solution approaches can deal
with over-determined and rectangular
polynomial systems.

• Under-determined polynomial systems
could be solved in a certain sense, but
what does it mean?
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What does solving mean?
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Everything depends on the ground field that you consider!
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This polynomial system has 9 solutions in C2, 1
solution in R2, and 0 solutions in Q2

Some examples:

• C: homotopy continuation, particle
physics

• R: optimization, chemical reaction
networks, robotics

• Q: discriminants/resultants,
Grassmannians, number theory

• Fq: cryptography

• C{{t}},Qp: tropical geometry



Number of solutions?
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• For univariate polynomials (i.e., n = 1), the fundamental theorem of algebra
states that a degree d polynomial has d roots.

• The theorem of Bézout is the multivariate extension of that theorem.

For any square system (i.e., s = n) of multivariate polynomial equations
p1(x), . . . , pn(x), the number of isolated solutions in the projective space Pn

when the solution set is zero-dimensional, i.e., the number of isolated points in
the zero-dimensional variety V(p1(x), . . . , pn(x)) ⊂ Pn, is exactly equal to

mb = d1 · · · dn =

n∏
i=1

di,

where di is the total degree of the polynomial pi(x).



Number of solutions?
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• The theorem of Bézout counts the
number of isolated solutions in the
projective space:

mb = ma +m∞

• For generic systems, mb = ma, but in
practice this is not the case

• There exist more refined bounds on
the number of affine solutions (e.g.,
Kushnirenko, BKK, etc.)
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Different solution approaches
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When we consider an algebraically closed field, there are two main methods to solve
systems of multivariate polynomial equations:

normal form methods

• reduce problem to a univariate
problem

• (numerical) linear algebra

• any field Kn

• rectangular systems: s ≥ n

• mb < ±10 000 solutions

homotopy continuation methods

• continuously deform a system with
known solutions

• ordinary differential equations

• field of complex numbers Cn

• square systems: s = n

• mb < ±1 000 000 solutions



“Back to the Roots” project
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• What: Advanced ERC grant of prof.
Bart De Moor

• Goal: find globally optimal models
for LTI systems

• Difficulty: large, non-convex
optimization problems

• Approach: go “back to the roots” of
mathematical modeling!

https://homes.esat.kuleuven.be/

~sistawww/bdm/backtotheroots/

https://homes.esat.kuleuven.be/~sistawww/bdm/backtotheroots/
https://homes.esat.kuleuven.be/~sistawww/bdm/backtotheroots/


“Back to the Roots” project
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applications algorithms

theory



A taste of this approach
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identification problem

b(z)
a(z)

 u1
...

uM


︸ ︷︷ ︸
input

 y1
...
yN


︸ ︷︷ ︸
output

globally optimal model

b̂nz
n+···+b̂1z+b̂0

ânzn+···+â1z+â0
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b(z)
a(z)

 u1
...

uM


︸ ︷︷ ︸
input

 y1
...
yN


︸ ︷︷ ︸
output

globally optimal model

b̂nz
n+···+b̂1z+b̂0

ânzn+···+â1z+â0


p1(a, b) = 0

...
ps(a, b) = 0

multivariate polynomial system quasi-Toeplitz matrix


QΛa1Q

−1 = Aa1
...

QΛbnQ
−1 = Abn

eigenvalue problems



Minisymposium – Part I of II
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• Solving Equations Using Khovanskii Bases
by Barbara Betti, Marta Panizzut, and Simon Telen
15h45 - 16h05

• Block Krylov Methods from the Perspective of Orthogonal Matrix Polynomials
by Michele Rinelli, Marc Van Barel, and Raf Vandebril
16h10 - 16h30

• Solving Polynomial Systems Using Determinantal Formulas
by Mat́ıas Bender
16h35 - 16h55



Minisymposium – Part II of II
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• Direct Numerical Computation of Polynomial Multiplication Maps
by Lukas Vanpoucke and Bart De Moor
17h10 - 16h30

• Tensor Decomposition Using Numerical (Non)Linear Algebra
by Fulvio Gesmundo, Leonie Kayser, and Simon Telen
17h35 - 17h55

• Solving Applications from Systems Theory via Efficient Numerical Linear Algebra
Root-Finding Algorithms
by Sibren Lagauw, Christof Vermeersch, and Bart De Moor
18h00 - 18h20



A minisymposium filled with fascinating topics!
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Solving Equations Using
Khovanskii Bases

Solving Polynomial
Systems Using

Determinantal Formulas

applications

Tensor Decomposition
Using Numerical

(Non)Linear Algebra

Solving Applications from
Systems Theory via

Efficient Numerical Linear
Algebra Root-Finding

Algorithms
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Block Krylov Methods
from the Perspective of

Orthogonal Matrix
Polynomials

Direct Numerical
Computation of

Polynomial Multiplication
Maps
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