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It has been shown before that the globally optimal least-squares misfit identification of single output, autonomous difference equations with constant coefficients can be formulated as a polynomial

Abstract
optimization problem, due to the polynomial nature of these models. The stationary points of such optimization problems comprise the solution set of a system of multivariate polynomials.
Moreover, for this identification problem, the resulting system of equations can be written as a particular class of polynomial systems: a so-called multiparameter eigenvalue problem (MEP). |

the case of a finite solution set, such polynomial systems can be solved using the linear algebra-based block Macaulay method. This poster extends this methodology to the misfit identification
of autonomous m-dimensional (mD) difference equations. A parametrization is first proposed based on a generalization of the Cayley-Hamilton theorem. Additionally, we outline the MEP

formulation for the globally optimal identification problem, for which a numerical example is provided.

Multiparameter eigenvalue problem

e Multiparameter eigenvalue problem: The second set of constraints can be expressed

Multidimensional autonomous systems
e Multidimensional difference equations: Let y;; : Z* — R be a signal of a single-
output, real, autonomous, linear, multishift invariant system. y;.; can then be characterized in terms of a Macaulay Matrix, illustrated below for the simple case of j(oy, 09) = A — o7.
as the kernel of a polynomial matrix R (o1, 03) in the shift operators oy, o5 [7, 5].
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Let the superscript * denote the partial derivative operation w.r.t. \;. Using auxiliary vari-

L - R[O’l, 0'2]
e State-space model: An n-th order linear, autonomous, multishift invariant system can
also be described as a state-space model of the form below [1]:
Thr1l = Ay B ables f, the stationary points are then the solutions of the following system of polynomials.
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This system is an MEP, as illustrated below for a first-order model, where the polynomial
matrix is split up in terms of the monomials involved.

-v=0 with ||v|| =1

Since any family of commuting matrices is simultaneously triangularizable [3] and the state
> Mas- X

space model is invariant under a simultaneous similarity transform, we can assume A;, A;
a+[£<2

to be upper triangular, an eigenvalue-revealing format, without loss of generality.
e Generalized Cayley-Hamilton [4]: Let y 4 denote the characteristic polynomial of
matrix A. Substituting in ¢; - x + ¢ - y, the expression can be rewritten as a polynomial
in ¢y, co, with polynomial coefficients p,(x, y).
Numerical example
A = 61A1 + CQAQ ? ]
_ a3 We start from three data points from the signal y;,; = 0.98" - 0.9 and fit a first-order model.
xaler-z+ey) =Y mlay) - o . S1gna’ U, . seor
o don Solving the MEP as a system of polynomials using a symbolic solver from this noiseless data
lelds the correct modes as global optimum.
Let (A1, Ao) be a pair of eigenvalues, that is, entries at the same diagonal index, of A; Y 5 P
and Ay, respectively. Clearly, c¢; - A{ + ¢5 - Ay is an eigenvalue of A, implying the following Ve,
relation, irrespective of the values of ¢, c». A = 0.08 .
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As this polynomle;L?lrllcl,CQ s identically zero Ve, co € C, it holds tha‘F Up(A1, Ao) = sositive dimensional solution set of max. |

0, Vp € {1, ..., ( - )} Since the .solutlons of.these polyno.mlals describe the system mizing stationary points, such that the 02 .

modes, they are valid difference equations, under light assumptions. MEP-specific block-Macaulay method [6] SN

cannot solve it. 10N === .
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Applications and further research

Misfit identification

e Using the parameterization above, we apply the least squares misfit identification framework
Further research:

e Different solvers, e.g. homotopy continuation.
e Reformulate the problem to eliminate the infinite number of affine solutions.

N

to identify models from the given data [2]:
1.Split the given output sequence y into an exact data sequence y and a misfit data

Applications:
e Benchmarking existing heuristic methods, as it is a computationally expensive approach.

sequence Y :
Yil = Yrl + Yk
2. Constrain the exact data sequence to adhere to the predefined model parameterization.
3. Optimize to find the model parameters describing the exact data sequence closest to the
given data, in a least squares sense. e Studying the properties of the globally optimal solutions can be studied, potentially leading
y Y to faster algorithms.
: -2
min ||y |[;
’ Yy
< t Yy=y-+ty
(o1, 09) - ges =0, Vk, 1, p ) References
1] E. Fornasini, P. Rocha, and S. Zampieri. “State Space Realization of 2-D Finite-Dimensional Behaviours". In: SIAM Journal on
Control and Optimization 31.6 (1993), pp. 1502-1517.
Philippe Lemmerling and Bart De Moor. “Misfit versus latency”. In: Automatica 37.12 (2001), pp. 2057-2067.
N. H. McCoy. “On the characteristic roots of matric polynomials”. In: Bulletin of the American Mathematical Society 42.8

“On the Generalized Cayley-Hamilton Theorem". In: IEEE Transactions on Automatic Control 31 (2 1986), pp. 156-157.

The polynomial nature of both the constraints and the objective function leads to a poly-
1936), pp. 592-600.
P Rocha and J C Willems. “State for 2-D systems". In: Linear Algebra and Its Applications 122-124 (1989), pp. 1003-1038.

nomial optimization problem, the stationary points of which can be formulated as a

N S CORLS)

Christof Vermeersch and Bart De Moor. “Two complementary block Macaulay matrix algorithms to solve multiparameter

éigenvalue problems”. In: Linear Algebra and its Applications 654 (2022), pp. 177-209.
[7] J.C. Willems. “From time series to linear system - Part |. Finite dimensional linear time invariant systems”. In: Automatica 22

system of multivariate polynomials.

(5 1986), pp. 561-580.

This work was supported in part by the KU Leuven: Research Fund (C16/15/059, C3/19/053, C24/18/022, C3/20/117, C3I-21-00316,

iBOF /23/064), Industrial Research Fund (13-0260, IOFm/16/004, IOFm/20/002), and LRD bilateral industrial projects; in part by Flemish
Government agencies: FWO (5005319, 1013218N, T001919N), EWI, and VLAIO (HBC.2019.2204, HBC.2021.0076); and in part by the

..'..'.:.:.o.
==326FC
European Commission (ERC Adv. Grant under grant 885682).



