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Abstract
It has been shown before that the globally optimal least-squares misfit identification of single output, autonomous difference equations with constant coefficients can be formulated as a polynomial
optimization problem, due to the polynomial nature of these models. The stationary points of such optimization problems comprise the solution set of a system of multivariate polynomials.
Moreover, for this identification problem, the resulting system of equations can be written as a particular class of polynomial systems: a so-called multiparameter eigenvalue problem (MEP). In
the case of a finite solution set, such polynomial systems can be solved using the linear algebra-based block Macaulay method. This poster extends this methodology to the misfit identification
of autonomous m-dimensional (mD) difference equations. A parametrization is first proposed based on a generalization of the Cayley-Hamilton theorem. Additionally, we outline the MEP
formulation for the globally optimal identification problem, for which a numerical example is provided.

Multidimensional autonomous systems

•Multidimensional difference equations: Let yk,l : Z2 7→ R be a signal of a single-
output, real, autonomous, linear, multishift invariant system. yk,l can then be characterized
as the kernel of a polynomial matrix R(σ1, σ2) in the shift operators σ1, σ2 [7, 5].

σ1 · yk,l = yk+1,l
σ2 · yk,l = yk,l+1

µi ∈ R[σ1, σ2]

0−R(σ1, σ2) · yk,l →


µ1(σ1, σ2) · yk,l = 0

...
µq(σ1, σ2) · yk,l = 0

•State-space model: An n-th order linear, autonomous, multishift invariant system can
also be described as a state-space model of the form below [1]:

xk+1,l = A1 · xk,l

xk,l+1 = A2 · xk,l

yk,l = C · xk,l

where A1,A2 ∈ Rn and A1A2 = A2A1.

Since any family of commuting matrices is simultaneously triangularizable [3] and the state
space model is invariant under a simultaneous similarity transform, we can assume A1,A2

to be upper triangular, an eigenvalue-revealing format, without loss of generality.

•Generalized Cayley-Hamilton [4]: Let χA denote the characteristic polynomial of
matrix A. Substituting in c1 · x + c2 · y, the expression can be rewritten as a polynomial
in c1, c2, with polynomial coefficients µp(x, y).

A = c1A1 + c2A2

χA(c1 · x + c2 · y) =
∑

α+β=n

µp(x, y) · cα1 c
β
2

Let (λ1, λ2) be a pair of eigenvalues, that is, entries at the same diagonal index, of A1

and A2, respectively. Clearly, c1 · λ1+ c2 · λ2 is an eigenvalue of A, implying the following
relation, irrespective of the values of c1, c2.

χA(c1 · λ1 + c2 · λ2) =
∑

α+β=n

µp(λ1, λ2) · cα1 c
β
2 = 0

As this polynomial in c1, c2 is identically zero ∀c1, c2 ∈ C, it holds that µp(λ1, λ2) =
0, ∀p ∈ {1, ...,

(
2+n−1
2−1

)
}. Since the solutions of these polynomials describe the system

modes, they are valid difference equations, under light assumptions.

Misfit identification

•Using the parameterization above, we apply the least squares misfit identification framework
to identify models from the given data [2]:

1. Split the given output sequence y into an exact data sequence ŷ and a misfit data
sequence ỹ :

yk,l = ŷk,l + ỹk,l.

2. Constrain the exact data sequence to adhere to the predefined model parameterization.

3. Optimize to find the model parameters describing the exact data sequence closest to the
given data, in a least squares sense.

min
ŷ

||ỹ||22

s.t.

{
y = ỹ + ŷ

µp(σ1, σ2) · ŷk,l = 0, ∀k, l, p

yỹ

ŷ

The polynomial nature of both the constraints and the objective function leads to a poly-
nomial optimization problem, the stationary points of which can be formulated as a
system of multivariate polynomials.

Multiparameter eigenvalue problem

•Multiparameter eigenvalue problem: The second set of constraints can be expressed
in terms of a Macaulay Matrix, illustrated below for the simple case of µ(σ1, σ2) = λ−σ1.

M (λ) · ŷ =


(0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2)

µ λ −1

σ1 · µ λ −1

σ2 · µ λ −1




ŷ0,0
ŷ1,0
ŷ0,1
ŷ2,0
ŷ1,1
ŷ0,2


= 0

Let the superscript λi denote the partial derivative operation w.r.t. λi. Using auxiliary vari-
ables f , the stationary points are then the solutions of the following system of polynomials.MλiM T +MMλi

T
MM T Mλiy

yTMλi
T

yTM T 0
MM T 0 My


 f
fλi

−1

 = 0 ∀i ∈ {1, ..., 2n}

This system is an MEP, as illustrated below for a first-order model, where the polynomial
matrix is split up in terms of the monomials involved. ∑

α+β≤2

Mα,β · λα
1λ

β
2

 · v = 0 with ||v|| = 1

Numerical example

We start from three data points from the signal yk,l = 0.98k · 0.9l and fit a first-order model.
Solving the MEP as a system of polynomials using a symbolic solver from this noiseless data
yields the correct modes as global optimum.

λ1 = 0.98

λ2 = 0.9

The system of equations has an affine,
positive dimensional solution set of max-
imizing stationary points, such that the
MEP-specific block-Macaulay method [6]
cannot solve it.

Applications and further research

Further research:

•Different solvers, e.g. homotopy continuation.
•Reformulate the problem to eliminate the infinite number of affine solutions.

Applications:

•Benchmarking existing heuristic methods, as it is a computationally expensive approach.

• Studying the properties of the globally optimal solutions can be studied, potentially leading
to faster algorithms.
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