Canonical Polyadic Decomposition and Sets of Polynomial Equations

Lieven De Lathauwer Joint work with Nithin Govindarajan and Raphaël Widdershoven

Back to the Roots seminar Leuven, December 12th, 2023

Overview

[Tensor decompositions and polynomial equations in different communities](#page-1-0)

[Motivation: noisy overdetermined polynomial systems](#page-7-0)

[Polynomial root solving: from an eigenvalue to a tensor decomposition problem](#page-11-0)

[Faster Macaulay null space computations](#page-35-0)

CPD in different communities

Signal processing/data analysis

- R small \sim dimensions
- Noise: measurement/model error: often significant
- **Approximation:**
	- decomposition: pencil-based computation [Evert, Vandecappelle, et al. [2022\]](#page-42-0)
	- **then optimization-based refinement** [Sorber, Van Barel, et al. [2013\]](#page-43-0)

- Well-posed (within ball around exact solution) [Evert and De Lathauwer [2022\]](#page-41-0)
- Use: uniqueness \rightarrow finding data components/signal separation (basic tool!)

CPD in different communities

(Numerical) mathematics/computing

- **Noise:** numerical quantization error: typically small
- R possibly large \sim generic rank
- Decomposition: NP-hard in general [Håstad [1990;](#page-42-1) Hillar and Lim [2013\]](#page-42-2)
- **Approximation: ill-posed in general [Kruskal, Harshman, et al. [1989;](#page-43-1)**

de Silva and Lim [2008\]](#page-41-1)

■ Use: numerical approximation (not orthogonal \rightarrow MLSVD, TT/hT)

Application: detection epileptic seizure in EEG

[Hunyadi, Camps, et al. [2014;](#page-42-3) De Vos, Vergult, et al. [2007;](#page-41-2) Acar, Aykut-Bingol, et al. [2007\]](#page-41-3)

Sets of polynomial equations in different communities Signal processing/data analysis

- Noise: measurement/model error: often significant
- R small
- **Possibly many equations (overdetermined system)**
- Use: extension of linear least-squares estimation

Sets of polynomial equations in different communities (Numerical) mathematics

- Noise: numerical quantization error: typically small
- $R \sim$ Bézout number
- **Typically number of equations** $=$ **number of unknowns (square system)**

[Tensor decompositions and polynomial equations in different communities](#page-1-0)

[Motivation: noisy overdetermined polynomial systems](#page-7-0)

[Polynomial root solving: from an eigenvalue to a tensor decomposition problem](#page-11-0)

[Faster Macaulay null space computations](#page-35-0)

Noisy overdetermined systems: looking for approximative roots

$$
\begin{cases}\n-3 - x - 2y + 4x^2 + 6xy + 7y^2 = 0 \\
-2 - x + y + 3x^2 - 7xy + 5y^2 = 0 \\
1 + 7x + y - 8x^2 + 3xy + y^2 = 0\n\end{cases}
$$

- $N = 2$ unknowns
- $S = 3$ equations \rightarrow overdetermined
- **D**egree $d = 2$

Adding noise to the red and blue equations destroys the single exact root at (1*,* 0)

A practical application: "blind" multi-source localization

Friis transmission equation (before conversion into a polynomial expression):

$$
P_i^r = \frac{A_i^r A_1^t}{\lambda^2} \frac{P_1^t}{(x_i^r - x_1^t)^2 + (y_i^r - y_1^t)^2} + \frac{A_i^r A_2^t}{\lambda^2} \frac{P_2^t}{(x_i^r - x_2^t)^2 + (y_i^r - y_2^t)^2}, \quad i = 1, ..., S.
$$

Noisy measured quantities!

 \rightarrow for $S \geq 5$, positions of transmitters can be *retrieved* up to permutation ambiguity!

Similar to least-squares: adding more equations (i.e., antennas) yield better estimates

Median relative error of estimated transmitter positions over 200 experiments [Widdershoven, Govindarajan, et al. [2023\]](#page-44-0)

-50 dB error \approx 5 digits of precision

[Tensor decompositions and polynomial equations in different communities](#page-1-0)

[Motivation: noisy overdetermined polynomial systems](#page-7-0)

[Polynomial root solving: from an eigenvalue to a tensor decomposition problem](#page-11-0)

[Faster Macaulay null space computations](#page-35-0)

Algebraic methods: "classical" vs. recent numerical (multi)-linear algebra approaches Find all (projective) roots of the system of the multivariate polynomials:

$$
\Sigma: \begin{cases}\n p_1 = p_1(x_1, x_2, \ldots, x_N) \\
 \vdots \\
 p_S = p_S(x_1, x_2, \ldots, x_N)\n\end{cases}, \quad S \ge N, \quad \deg(p_s) = d_s.
$$

DISCLAIMER: The above is a very selected overview and only shows "ancestors" of our own work. It is by no means a summary of all the contributions done on this topic.

The Macaulay-based method for polynomial root solving

The rows of the Macaulay matrix **M**(d) span the set

$$
\mathcal{M}_d := \left\{ \sum_{s=1}^S g_s \cdot p_s : \quad \deg(g_s) = d - d_s \right\}.
$$

For example, $M(3)$ for the system in slide [9:](#page-8-0)

If $d \geq d^*$ (degree of regularity), dim null $\mathbf{M}(d) =$ no. of projective roots of the system.

Our system from slide [9:](#page-8-0) Macaulay method is suitable in the noisy setting

Add noise to the nonzero coefficients:

The Macaulay-based method for polynomial root solving

The rows of the Macaulay matrix **M**(d) span the set

$$
\mathcal{M}_d := \left\{ \sum_{s=1}^S g_s \cdot p_s : \quad \deg(g_s) = d - d_s \right\}.
$$

For example, $M(3)$ for the system in slide [9:](#page-8-0)

If $d \geq d^*$ (degree of regularity), dim null $\mathbf{M}(d) =$ no. of projective roots of the system.

Exponentials as rank-1 matrices and tensors

Consider a univariate exponential signal $f(k)=ax^k$, sampled uniformly:

$$
\begin{bmatrix} a & ax & ax^2 & ax^3 & \cdots \end{bmatrix}
$$

■ Let's arrange it in a Hankel matrix **H**

$$
\mathbf{H} = \begin{bmatrix} a & ax & ax^2 & \cdots \\ ax & ax^2 & ax^3 & \cdots \\ ax^2 & ax^3 & ax^4 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} = a \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \end{bmatrix} \begin{bmatrix} 1 \\ x & x^2 \\ \cdots \end{bmatrix}
$$

H has rank 1 ! $(2 \times 2 \times \ldots \times 2)$ tensor ${\mathcal H}$ of order k has rank 1: a $\left\lceil \frac{1}{2} \right\rceil$ x $\begin{bmatrix} \end{bmatrix}$ ® $\begin{bmatrix} 1 \end{bmatrix}$ x 1 **[⊗]** *. . .* **[⊗]** $\left\lceil \frac{1}{2} \right\rceil$ x 1 Multivariate exponential: a $\lceil 1 \rceil$ x 1 **[⊗]** *. . .* **[⊗]** $\left\lceil \frac{1}{2} \right\rceil$ x $\begin{bmatrix} \end{bmatrix}$ ® $\begin{bmatrix} 1 \end{bmatrix}$ $\overline{}$ y 1 **[⊗]** *. . .* **[⊗]** $\left\lceil \frac{1}{2} \right\rceil$ y $\begin{bmatrix} 1 \\ 8 \end{bmatrix}$ $\overline{}$ z 1 **[⊗]** *. . .* **[⊗]** $\left\lceil \frac{1}{2} \right\rceil$ z 1 $\overline{}$

Macaulay and CPD (1)

Macaulay and CPD (2)

Reformulation of the root recovery as a tensor decomposition problem

Theorem (Vanderstukken and De Lathauwer [2021\)](#page-43-2)

Let G have frontal slices \mathbf{G}_t , $\mathbf{G}_{x_1}, \ldots, \mathbf{G}_{x_N}$, and assume Σ has only simple roots. If G is constructed from null $M(d)$ with $d \geq d^* + 1$, then G has the essentially unique CPD

If the polynomial system has roots of multiplicity greater than one, the theorem can be generalized with the introduction of block-term decompositions [Vanderstukken, Kürschner, et al. [2021\]](#page-44-1)

- Exploit more of the structure for higher accuracy (noisy)
- Compute fewer null space vectors (speed up)

Algorithm basics: CPD

CPD of a $9 \times 9 \times 9 \times 9 \times 9$ tensor of rank 11

- init: EVD, random
- global \leftrightarrow asymptotic
- asymptotic convergence: linear superlinear quadratic
- unconstrained decomposition \leftrightarrow numerical challenges

Algorithm 1: LS-CPD using Gauss–Newton with dogleg trust region

- **Input : A, b, and** $\{U^{(n)}\}_{n=1}^{N}$ **Output:** $\{U^{(n)}\}_{n=1}^N$
- **1 while** not converged **do**
- **2** Compute gradient **g**.
- **3** Use PCG to solve **Hp** = −**g**¯ for **p** using Gramian-vector products using a (block)-Jacobi preconditioner.
- **4** $\, \mid \,$ Update $\mathbf{U}^{(n)}$, for $1 \leq n \leq N$, using dogleg trust region from \mathbf{p} , \mathbf{g} , and function evaluation.
- **5 end**

[Boussé, Vervliet, et al. [2018\]](#page-41-4)

Pencil-based computation: two factor matrices have f.c.r

$$
CPD: \qquad \overbrace{\begin{array}{c} \overline{\begin{array{b} \overline
$$

Multi-pencil-based computation: two factor matrices have f.c.r

Equivalent of two slices (1 pencil)

Equivalent of several slices (multi-pencil)

Small eigenvalue gaps lead to inaccuracy \mathcal{G} eigenspaces to express the original tensor as a sum of \mathcal{G}

Gen. eigenvalues of $(\mathsf T_k, \mathsf T_\ell)$ are interpreted as points on the unit circle. The pencil (T_k, T_ℓ) has R generalized eigenvalues. ted as points on the unit circle. The pencil see as points on the anti-energy ring period reted as noints on the unit circle. The nencil secaries performed between the concrete time performance \mathbf{s}_i , we learn the eigenvalues removes on source of eigenvalues removes on source on source on source on

Illustration of generalized eigenvalues of $(\mathbf{T}_k, \mathbf{T}_\ell)$ $\boldsymbol{\mu}$ already sufficient to reveal on $\boldsymbol{\mu}$, $\boldsymbol{\mu}$, $\boldsymbol{\mu}$ uctration of generalized oigenvalues of (T, θ) abadient or gonoranzoa orgonizato or $(\pm \kappa)$

 \bullet = generalized eigenvalue of $(\mathbf{T}_k, \mathbf{T}_\ell)$.

The small gap between generalized eigenvalues 1 and 2 leads to instability in computing the generalized eigenvectors \mathbf{v}_1 and \mathbf{v}_2 .

Similar issues occur in the other clusters of generalized eigenvalues.

Generalized EigenSpace Decomp: Improve accuracy by computing eigenspaces corresponding to well separated eigenvalue clusters.

Clusters C_1 , C_2 , C_3 , C_4 are well separated so can improve accuracy by only computing the corresponding eigenspaces \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 , \mathcal{E}_4 .

Use a new pencil to split eigenspaces!

Consider a new subpencil (T_m, T_n) . The eigenvectors of this pencil are the same as those of (T_k, T_ℓ) , but the corresponding eigenvalues will lie in new positions on the unit circle.

The clusters $\mathcal{C}_1',\mathcal{C}_2',\mathcal{C}_3',\mathcal{C}_4'$ are well separated, so can compute the eigenspaces $\mathcal{E}_1', \mathcal{E}_2', \mathcal{E}_3', \mathcal{E}_4'.$

Observe $\mathcal{E}_1 = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{E}_1' = \text{span}\{\mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_6\}$. Thus $\mathbf{v}_1 = \mathcal{E}_1 \cap \mathcal{E}_1'$.

GESD recursively deflates tensor rank.

In our implementation, GESD recursively writes $\mathcal T$ as a sum of tensors of reduced rank.

In the example, GESD would use $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4$ to write the rank 10 tensor $\mathcal T$ as

 $\mathcal{T}=\mathcal{T}^1+\mathcal{T}^2+\mathcal{T}^3+\mathcal{T}^4$

where $\mathcal{T}^1,\mathcal{T}^2,\mathcal{T}^3$ and \mathcal{T}^4 have ranks 2, 3, 1 and 4, respectively. \mathcal{T}^1 can then be decomposed into a sum of rank 1 tensors using the pencil $(\mathcal{T}_m^1, \mathcal{T}_n^1),$ etc.

Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as described above rather than working recursively.

GESD vs synthetic data

Accuracy and speed against Rank 10 tensors of size $100 \times 100 \times 100$ with highly correlated factor matrix columns.

Observed numerical benefits of the tensor approach for noisy overdetermined systems Take $N = 10$ noisy copies of the square system:

$$
\Sigma: \left\{ \begin{array}{l} f_1(x_1,x_2)=x_1^3+x_2^3-9x_1^2x_2+20x_1x_2-3x_1-20=0\\ f_2(x_1,x_2)=x_1^2+4x_2^2-x_1x_2-80=0 \end{array} \right.
$$

median forward error over 200 trials

The tensor-based method that relies on simultaneous diagonalization is better capable of recovering roots in noisy conditions than a pure matrix-based method which relies solely on GEVD [Vanderstukken and De Lathauwer [2021\]](#page-43-2). 33 Different tensorization approaches: compute roots from fewer null space vectors!

Problem: Square quadratic bivariate system (4 roots)

Approach 1: Retrieve roots from full 4-dimensional null space

$$
\left[\n\begin{bmatrix}\n1 & 1 & 1 & 1 \\
x_1 & x_2 & x_3 & x_4 \\
y_1 & y_2 & y_3 & y_4 \\
x_1^2 & x_2^2 & x_3^2 & x_4^2 \\
x_1y_1 & x_2y_2 & x_3y_3 & x_4y_4 \\
y_1^2 & y_2^2 & y_3^2 & y_4^2\n\end{bmatrix},\n\begin{bmatrix}\n1 & 1 & 1 & 1 \\
x_1 & x_2 & x_3 & x_4 \\
y_1 & y_2 & y_3 & y_4\n\end{bmatrix},\n\begin{bmatrix}\nc_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34} \\
c_{41} & c_{42} & c_{43} & c_{44}\n\end{bmatrix}\n\right]
$$

Uniqueness properties:

First and third factor full column rank, second factor has no proportional columns

Different tensorization approaches: compute roots from fewer null space vectors!

Problem: Square quadratic bivariate system (4 roots)

Approach 2: Retrieve null space from just two null space vectors

$$
\left[\begin{bmatrix}1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1y_1 & x_2y_2 & x_3y_3 & x_4y_4 \\ y_1^2 & y_2^2 & y_3^2 & y_4^2\end{bmatrix}, \begin{bmatrix}1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2\end{bmatrix}, \begin{bmatrix}c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{21} & c_{22} & c_{23} & c_{24}\end{bmatrix}\right]
$$

Uniqueness properties:

First and second factor full column rank, third factor has no proportional columns.

[Tensor decompositions and polynomial equations in different communities](#page-1-0)

[Motivation: noisy overdetermined polynomial systems](#page-7-0)

[Polynomial root solving: from an eigenvalue to a tensor decomposition problem](#page-11-0)

[Faster Macaulay null space computations](#page-35-0)

Null space computation is the major computational bottleneck in *many* algorithms!

Exploit the Toeplitz structures in Macaulay matrices?

Overview of the fast algorithm

Both steps can be done fast! [Govindarajan, Widdershoven, et al. [2023\]](#page-42-4)

Overview

[Tensor decompositions and polynomial equations in different communities](#page-1-0)

[Motivation: noisy overdetermined polynomial systems](#page-7-0)

[Polynomial root solving: from an eigenvalue to a tensor decomposition problem](#page-11-0)

[Faster Macaulay null space computations](#page-35-0)

[Summary](#page-38-0)

What we have discussed in this talk

- Solving polynomial systems in the *noisy* overdetermined setting.
- Number of approximate roots \sim number of small singular values
- Algebraic and optimization-based algorithms
- Benefits of taking on a "*tensor*" view towards polynomial root solving.
- **Pencil and multi-pencil based CPD**
- **Progress and challenges towards (asymptotically)** faster Macaulay null space algorithms.

Canonical Polyadic Decomposition and Sets of Polynomial Equations

Lieven De Lathauwer Joint work with Nithin Govindarajan and Raphaël Widdershoven

Back to the Roots seminar Leuven, December 12th, 2023

References I

- Acar, E. et al. (2007). "Multiway analysis of epilepsy tensors". In: Bioinformatics F. 23.13, pp. i10–i18.
- Boussé, M. et al. (Aug. 2018). "Linear Systems with a Canonical Polyadic 螶 Decomposition Constrained Solution: Algorithms and applications". In: Numerical Linear Algebra with Applications 25.6, e2190.
- de Silva, V. and Lim, L.-H. (Sept. 2008). "Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem". In: SIAM Journal on Matrix Analysis and Applications 30.3, pp. 1084–1127.
- De Vos, M. et al. (Sept. 2007). "Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone". In: NeuroImage 37.3, pp. 844–854.
- Evert, E. and De Lathauwer, L. (Mar. 2022). "Guarantees for existence of a best 螶 canonical polyadic approximation of a noisy low-rank tensor". In: SIAM Journal On Matrix Analysis And Applications 43.1, pp. 328–369.

References II

- Evert, E., Vandecappelle, M., and De Lathauwer, L. (Feb. 2022). "A recursive 暈 eigenspace computation for the canonical polyadic decomposition". In: SIAM Journal On Matrix Analysis And Applications 43.1, pp. 274–300.
- Govindarajan, N. et al. (2023) . "A fast algorithm for computing Macaulay nullspaces of bivariate polynomial systems". In: Technical Report 23-16, ESAT-STADIUS, KU Leuven (Leuven, Belgium).
- **H** Håstad, J. (1990). "Tensor Rank is NP-complete". In: Journal of Algorithms 11.4, pp. 644–654.
- Hillar, C. J. and Lim, L.-H. (Nov. 2013). "Most Tensor Problems Are NP-Hard". In: Journal of the ACM 60.6, 45:1–45:39.
- **Hunyadi, B. et al. (Sept. 2014). "Block term decomposition for modelling epileptic** seizures". In: EURASIP Journal on Advances in Signal Processing 2014.139. Special Issue on Recent Advances in Tensor-Based Signal and Image Processing, pp. 1–19.

References III

- F Kruskal, J. B., Harshman, R. A., and Lundy, M. E. (1989). "How 3-MFA Data Can Cause Degenerate PARAFAC Solutions, Among Other Relationships". In: Multiway Data Analysis. Ed. by R. Coppi and S. Bolasco. Amsterdam. The Netherlands: North-Holland Publishing Co., pp. 115–121.
- Sorber, L., Van Barel, M., and De Lathauwer, L. (Apr. 2013). "Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank- $(L_r,L_r,1)$ terms, and a new generalization". In: \emph{SIAM} Journal on Optimization 23.2, pp. 695–720.
- Vanderstukken, J. and De Lathauwer, L. (2021). "Systems of Polynomial Equations, Higher-Order Rensor Decompositions and Multidimensional Harmonic Retrieval: A Unifying Framework. Part I: The Canonical Polyadic Decomposition". In: SIAM Journal on Matrix Analysis and Applications 42.2, pp. 883–912.

References IV

- Ħ Vanderstukken, J. et al. (2021). "Systems of Polynomial Equations, Higher-Order Tensor Decompositions, and Multidimensional Harmonic Retrieval: A Unifying Framework. Part II: The Block Term Decomposition". In: SIAM Journal on Matrix Analysis and Applications 42.2, pp. 913–953.
- Widdershoven, R., Govindarajan, N., and De Lathauwer, L. (Sept. 2023). "Overdetermined systems of polynomial equations: tensor-based solution and application". In: 2023 31st European Signal Processing Conference, (EUSIPCO), Helsinki, Finland, September 4-8, 2023.