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CPD in different communities

Signal processing/data analysis

T =

c1

a1
b1 + · · · +

cR

aR
bR + noise

R ∼ I

R small ∼ dimensions
Noise: measurement/model error: often significant
Approximation:

decomposition: pencil-based computation [Evert, Vandecappelle, et al. 2022]
then optimization-based refinement [Sorber, Van Barel, et al. 2013]

Well-posed (within ball around exact solution) [Evert and De Lathauwer 2022]
Use: uniqueness → finding data components/signal separation (basic tool!)
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CPD in different communities

(Numerical) mathematics/computing

T =

c1

a1
b1 +

c2

a2
b2 +

c3

a3
b3 +

c4

a4
b4 + · · · +

cR

aR
bR

R ∼ IN−1/N

Noise: numerical quantization error: typically small
R possibly large ∼ generic rank
Decomposition: NP-hard in general [Håstad 1990; Hillar and Lim 2013]
Approximation: ill-posed in general [Kruskal, Harshman, et al. 1989;

de Silva and Lim 2008]
Use: numerical approximation (not orthogonal → MLSVD, TT/hT)
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Application: detection epileptic seizure in EEG

[Hunyadi, Camps, et al. 2014; De Vos, Vergult, et al. 2007; Acar, Aykut-Bingol, et al. 2007]
5



Sets of polynomial equations in different communities
Signal processing/data analysis

NEW!

Noise: measurement/model error: often significant
R small
Possibly many equations (overdetermined system)
Use: extension of linear least-squares estimation
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Sets of polynomial equations in different communities
(Numerical) mathematics

Noise: numerical quantization error: typically small
R ∼ Bézout number
Typically number of equations = number of unknowns (square system)
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Noisy overdetermined systems: looking for approximative roots


−3− x−2y+4x2+6xy+7y2 = 0
−2− x+ y+3x2−7xy+5y2 = 0

1+7x+ y−8x2+3xy+ y2 = 0

N = 2 unknowns
S = 3 equations → overdetermined
Degree d = 2

−2 −1 0 1 2
−2

−1

0

1

2

Adding noise to the red and blue equations
destroys the single exact root at (1, 0)
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A practical application: “blind” multi-source localization

Friis transmission equation (before conversion into a polynomial expression):

P r
i = Ar

i At
1

λ2
Pt

1
(x r

i − x t
1)2 + (y r

i − y t
1)2 + Ar

i At
2

λ2
Pt

2
(x r

i − x t
2)2 + (y r

i − y t
2)2 , i = 1, . . . , S.

Noisy measured quantities! Unknown Given

−→ for S ≥ 5, positions of transmitters can be retrieved up to permutation ambiguity!
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Similar to least-squares: adding more equations (i.e., antennas) yield better estimates
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Median relative error of estimated transmitter positions over 200 experiments
[Widdershoven, Govindarajan, et al. 2023]

-50 dB error ≈ 5 digits of precision
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Algebraic methods: “classical” vs. recent numerical (multi)-linear algebra approaches
Find all (projective) roots of the system of the multivariate polynomials:

Σ :


p1 = p1(x1, x2, . . . , xN)

...
pS = pS(x1, x2, . . . , xN)

, S ≥ N, deg(ps) = ds .

Auzinger, Stetter, Lazard, ...

Numerical Polynomial
Algebra (NPA)

Features:
- Gröbner basis construction
- (Generalized) eigenvalue problem

Batselier, Dreesen, De Moor,...

Numerical Polynomial
Linear Algebra (NPLA)

Features:
- Macaulay null space construction
- Generalized eigenvalue problem

Vanderstukken, De Lathauwer,...

Numerical Polynomial
Multi-Linear Algebra (NPMLA)

Features:
- Macaulay null space construction
- tensor decomposition problem

DISCLAIMER: The above is a very selected overview and only shows “ancestors” of our own work. It is by no
means a summary of all the contributions done on this topic.
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The Macaulay-based method for polynomial root solving
The rows of the Macaulay matrix M(d) span the set

Md :=
{ S∑

s=1
gs · ps : deg(gs) = d − ds

}
.

For example, M(3) for the system in slide 9:

p1(x ,y)
p2(x ,y)
p3(x ,y)
xp1(x ,y)
xp2(x ,y)
xp3(x ,y)
yp1(x ,y)
yp2(x ,y)
yp3(x ,y)



−3 −1 −2 4 6 7 0 0 0 0
−2 −1 1 3 −7 5 0 0 0 0
1 7 1 −8 3 1 0 0 0 0
0 −3 0 −1 −2 0 4 6 7 0
0 −2 0 −1 1 0 3 −7 5 0
0 1 0 7 1 0 −8 3 1 0
0 0 −3 0 −1 −2 0 4 6 7
0 0 −2 0 −1 1 0 3 −7 5
0 0 1 0 7 1 0 −8 3 1





1
x
y
x2

xy
y2

x3

x2y
xy2

y3



=



0
0
0
0
0
0
0
0
0


If d ≥ d∗ (degree of regularity), dim null M(d) = no. of projective roots of the system.
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Our system from slide 9: Macaulay method is suitable in the noisy setting

Add noise to the nonzero coefficients:

M(4) =



−3 −1 4 −2 6 7
−2 −1 3 1 7 5
1 7 −8 1 3 1

−3 −1 4 −2 6 7
−2 −1 3 1 7 5
1 7 −8 1 3 1

−3 −1 4 −2 6 7
−2 −1 3 1 7 5
1 7 −8 1 3 1

−3 −1 4 −2 6 7
−2 −1 3 1 7 5
1 7 −8 1 3 1

−3 −1 4 −2 6 7
−2 −1 3 1 7 5
1 7 −8 1 3 1

−3 −1 4 −2 6 7
−2 −1 3 1 7 5
1 7 −8 1 3 1


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Note: M(4) is expressed in lex ordering this time!
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

1
x
y
x2

xy
y2

x3

x2y
xy2

y3



=



0
0
0
0
0
0
0
0
0


If d ≥ d∗ (degree of regularity), dim null M(d) = no. of projective roots of the system.
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Exponentials as rank-1 matrices and tensors
Consider a univariate exponential signal f (k) = axk , sampled uniformly:[

a ax ax2 ax3 · · ·
]

Let’s arrange it in a Hankel matrix H

H =


a ax ax2 · · ·
ax ax2 ax3 · · ·
ax2 ax3 ax4 · · ·

...
...

...

 = a


1
x
x2

...


[
1 x x2 · · ·

]

H has rank 1 !

(2 × 2 × . . . × 2) tensor H of order k has rank 1: a
[

1
x

]
⊗

[
1
x

]
⊗ . . . ⊗

[
1
x

]

Multivariate exponential: a
[

1
x

]
⊗ . . . ⊗

[
1
x

]
︸ ︷︷ ︸ ⊗

[
1
y

]
⊗ . . . ⊗

[
1
y

]
︸ ︷︷ ︸ ⊗

[
1
z

]
⊗ . . . ⊗

[
1
z

]
︸ ︷︷ ︸
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Macaulay and CPD (1)

Macaulay matrix

⊗ ⊗ ⊗. . .

= 0

R multivariate Vandermonde vectors
(= one per root)
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Macaulay and CPD (2)

Macaulay matrix

⊗
∑

⊗
∑

⊗
∑

. . .

= 0

R linear combinations of outer products
∼ basis null space
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Reformulation of the root recovery as a tensor decomposition problem

Theorem (Vanderstukken and De Lathauwer 2021)
Let G have frontal slices Gt , Gx1 , . . . , GxN , and assume Σ has only simple roots. If G is
constructed from null M(d) with d ≥ d∗ + 1, then G has the essentially unique CPD

G =
q
V, A−1, X

y
, X =


t(1) t(2) ··· t(R)

x (1)
1 x (2)

1 ··· x (R)
1

...
...

...
x (1)

N x (2)
N ··· x (R)

N

 .

G = + . . . +

If the polynomial system has roots of multiplicity greater than one, the theorem can be generalized with the
introduction of block-term decompositions [Vanderstukken, Kürschner, et al. 2021]
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Benefits of tensor approach

Exploit more of the structure for higher accuracy (noisy)
Compute fewer null space vectors (speed up)
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Algorithm basics: CPD

0 50 100 150 20010−15

10−9

10−3

103

ALSNLS

swamp

iteration

||F
(z

)||

CPD of a 9 × 9 × 9 × 9 × 9 tensor of rank 11

init: EVD, random
global ↔ asymptotic
asymptotic convergence: linear - superlinear - quadratic
unconstrained decomposition ↔ numerical challenges
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Optimization-based framework to solve LS-CPDs when considering low-rank structure.

Algorithm 1: LS-CPD using Gauss–Newton with dogleg trust region
Input : A, b, and {U(n)}N

n=1
Output: {U(n)}N

n=1
1 while not converged do
2 Compute gradient g.
3 Use PCG to solve Hp = −ḡ for p using Gramian-vector products using a

(block)-Jacobi preconditioner.
4 Update U(n), for 1 ≤ n ≤ N, using dogleg trust region from p, g, and function

evaluation.
5 end

[Boussé, Vervliet, et al. 2018]
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Pencil-based computation: two factor matrices have f.c.r

CPD : T =
c1

a1

b1 +

c2

a2

b2 + · · · +

cR

aR

bR

Slices :

T(:,:,1) =
[
a1 a2 · · · aR

] 
c11

c12 . . .
c1R

 [
b1 b2 · · · bR

]T

T(:,:,2) =
[
a1 a2 · · · aR

] 
c21

c22 . . .
c2R

 [
b1 b2 · · · bR

]T

(G)EVD : T(:,:,1) · T−1
(:,:,2) =

[
a1 a2 · · · aR

] 
c11/c21

c12/c22 . . .
c1R/c2R

 [
a1 a2 · · · aR

]−1
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Multi-pencil-based computation: two factor matrices have f.c.r

CPD : T =
c1

a1

b1 +

c2

a2

b2 + · · · +

cR

aR

bR

Slices :

T(:,:,i) =
[
a1 a2 · · · aR

] 
ci1

ci2 . . .
ciR

 [
b1 b2 · · · bR

]T

T(:,:,j) =
[
a1 a2 · · · aR

] 
cj1

cj2 . . .
cjR

 [
b1 b2 · · · bR

]T

(G)EVD : T(:,:,i) · T−1
(:,:,j) =

[
a1 a2 · · · aR

] 
ci1/cj1

ci2/cj2 . . .
ciR/cjR

 [
a1 a2 · · · aR

]−1
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Equivalent of two slices (1 pencil)

⊗
∑

⊗
∑

⊗
∑

. . .

= 0
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Equivalent of several slices (multi-pencil)

⊗
∑

⊗
∑

⊗
∑

. . .

= 0
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Small eigenvalue gaps lead to inaccuracy

Gen. eigenvalues of (Tk , Tℓ) are interpreted as points on the unit circle. The pencil
(Tk , Tℓ) has R generalized eigenvalues.

     = generalized eigenvalue of              .

The small gap between generalized eigenvalues 
1 and 2 leads to instability in computing the 
generalized eigenvectors        and      . 

Similar issues occur in the other clusters of 
generalized eigenvalues.

3

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

1

2

4

5
6

7

8

9

10

Illustration of generalized eigenvalues of

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

EXISTENCE OF BEST LOW RANK
APPROXIMATIONS FOR TENSORS OF ORDER 3

ERIC EVERT AND LIEVEN DE LATHAUWER

Abstract. One of the most popular methods for computing a
CPD is Jennrich’s algorithm which selects a matrix subpencil of
a tensor, then computes a generalized eigenvalue decomposition of
the pencil to recover a factor matrix of the tensor. The popularity
of the algorithm stems from its success in many practical appli-
cations, and its ability to recover the CPD of generic low rank
tensors. However, Jennrich’s algorithm is known to suffer from
pencil based instability and can heavily under perform in specific
settings.

We propose two separate variations of Jennrich’s algorithm each
offering improvements over the original method. First, we discuss
a recursive generalized eigenspace decomposition (GESD) which
greatly improves on the stability of Jennrich’s algorithm. In a given
subpencil, GESD computes generalized eigenspaces corresponding
to clusters of well-separated generalized eigenvalues then uses those
generalized eigenspaces to express the original tensor as a sum of
tensors with reduced rank. This step is then recursively applied to
the reduced rank tensors until arriving at a sum of rank one tensors.
Since stability of eigenvalue decompositions is heavily impacted by
separation between eigenvalues, only performing computations for
sufficiently well separated clusters of eigenvalues removes on source
of instability in Jennrich’s algorithm.

Next, we illustrate that the full generalized eigenvalue decom-
position computed by Jennrich’s algorithm is unnecessary. Indeed,
computing only a QZ decomposition together with modal products
is already sufficient to reveal one factor matrix. This approach is
observed to both be faster and more accurate than Jennrich’s algo-
rithm for the initial factor matrix computation. In an extension of
this approach, a second factor matrix can be revealed by comput-
ing a second (different) QZ decomposition. The resulting method
is significantly faster than the classical Jennrich’s algorithm.

(Tk,T�) v1 v2

1

28



Generalized EigenSpace Decomp: Improve accuracy by computing eigenspaces
corresponding to well separated eigenvalue clusters.

Clusters C1, C2, C3, C4 are well separated so can improve accuracy by only computing
the corresponding eigenspaces E1, E2, E3, E4.
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Use a new pencil to split eigenspaces!
Consider a new subpencil (Tm, Tn). The eigenvectors of this pencil are the same as
those of (Tk , Tℓ), but the corresponding eigenvalues will lie in new positions on the
unit circle.

The clusters C′
1, C′

2, C′
3, C′

4 are well separated, so can compute the eigenspaces
E ′

1, E ′
2, E ′

3, E ′
4.

Observe E1 = span{v1, v2} and E ′
1 = span{v1, v3, v6}. Thus v1 = E1 ∩ E ′

1.
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GESD recursively deflates tensor rank.

In our implementation, GESD recursively writes T as a sum of tensors of reduced rank.

In the example, GESD would use E1, E2, E3, E4 to write the rank 10 tensor T as

T = T 1 + T 2 + T 3 + T 4

where T 1, T 2, T 3 and T 4 have ranks 2, 3, 1 and 4, respectively. T 1 can then be
decomposed into a sum of rank 1 tensors using the pencil (T 1

m, T 1
n ), etc.

Variations in GESD are possible. E.g. one could compute intersections of eigenspaces as
described above rather than working recursively.
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GESD vs synthetic data

20 40 60 80
10−5

10−4

10−3

10−2

10−1

100

GEVD

GESD

Opt.

GEVD+opt

GESD+opt

SNR (dB)

cp
de

rr

20 40 60 80
10−1

100

101

Opt.

GEVD+opt

GESD+opt

SNR (dB)

Ti
m

e
(s

)

Accuracy and speed against Rank 10 tensors of size 100 × 100 × 100 with highly
correlated factor matrix columns.
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Observed numerical benefits of the tensor approach for noisy overdetermined systems
Take N = 10 noisy copies of the square system:

Σ :
{

f1(x1, x2) = x3
1 + x3

2 − 9x2
1 x2 + 20x1x2 − 3x1 − 20 = 0

f2(x1, x2) = x2
1 + 4x2

2 − x1x2 − 80 = 0

0 20 40 60

10−3

10−1

SNR [dB]

∥X
−

X̂
∥/

∥X
∥

median forward error over 200 trials

The tensor-based method that relies on simultaneous diagonalization is better capable
of recovering roots in noisy conditions than a pure matrix-based method which relies

solely on GEVD [Vanderstukken and De Lathauwer 2021]. 33



Different tensorization approaches: compute roots from fewer null space vectors!

Problem: Square quadratic bivariate system (4 roots)

Approach 1: Retrieve roots from full 4-dimensional null space
u

wwwwww
v



1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
x2

1 x2
2 x2

3 x2
4

x1y1 x2y2 x3y3 x4y4
y2

1 y2
2 y2

3 y2
4


,

 1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4

 ,


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44



}

������
~

Uniqueness properties:
First and third factor full column rank, second factor has no proportional columns
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Different tensorization approaches: compute roots from fewer null space vectors!

Problem: Square quadratic bivariate system (4 roots)

Approach 2: Retrieve null space from just two null space vectors
u

wwwwww
v



1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
x2

1 x2
2 x2

3 x2
4

x1y1 x2y2 x3y3 x4y4
y2

1 y2
2 y2

3 y2
4


,


1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
x2

1 x2
2 x2

3 x2
4

 ,

[
c11 c12 c13 c14
c21 c22 c23 c24

]
}

������
~

Uniqueness properties:
First and second factor full column rank, third factor has no proportional columns.
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Tensor decompositions and polynomial equations in different communities

Motivation: noisy overdetermined polynomial systems

Polynomial root solving: from an eigenvalue to a tensor decomposition problem

Faster Macaulay null space computations

Summary
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Null space computation is the major computational bottleneck in many algorithms!

Σ Σh
{

(t(r), x (r)
1 , . . . , x (r)

N )
}R

r=1

M(d) N(d)

diag(t(1), . . . , t(R)),
diag(x (1)

1 , . . . , x (R)
1 ),

...
diag(x (1)

N , . . . , x (R)
N )

Homogenize Determine roots

Compute null space basis Solve joint-GEVD

Exploit the Toeplitz structures in Macaulay matrices?
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Overview of the fast algorithm

M(d) N(d) = ΨN̂(d)

M̂(d) = ΦM(d)Ψ N̂(d)

Determine null space

step 2:
compute a rank-revealing
LU factorization of M̂(d)

step 1:
convert into Cauchy-like
matrix using FFTs

Both steps can be done fast!
[Govindarajan, Widdershoven, et al. 2023]
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What we have discussed in this talk

Solving polynomial systems in the noisy overdetermined setting.
Number of approximate roots ∼ number of small singular values
Algebraic and optimization-based algorithms
Benefits of taking on a “tensor” view towards polynomial root solving.
Pencil and multi-pencil based CPD
Progress and challenges towards (asymptotically) faster Macaulay null space
algorithms.
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