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Outline

• Standard (square) multiparameter eigenvalue problems

• Rectangular multiparameter eigenvalue problems
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Motivational example

We want to compute efficiently and accurately a couple of hundreds eigenmodes
of an elliptic membrane Ω with a fixed boundary:(

∇2 + ω2
)
u (x , y) = 0, (x , y) ∈ Ω = {(x/α)2 + (y/β)2 ≤ 1}, u|∂Ω = 0.

eigenmode ω298 = 24.45490912 for α = 4 and β = 1

(Gheorghiu, Hochstenbach, P., Rommes 2012)
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Separation of variables: ∇2u+ ω2u = 0 on Ω, u|δΩ = 0

Rectangle: Ω = [0, a]× [0, b] =⇒ two S-L equations (ω2 = λ+ µ)

x ′′ + λx = 0, x(0) = x(a) = 0,

y ′′ + µy = 0, y(0) = y(b) = 0.

Disc: Ω = {x2 + y 2 ≤ a2}, polar coordinates =⇒ a triangular situation

Φ′′ + λΦ = 0, Φ(0) = Φ(2π) = 0,

r−1(rR ′)′ + (ω2 − λr−2)R = 0, R(0) < ∞,R(a) = 0.
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Φ′′ + λΦ = 0, Φ(0) = Φ(2π) = 0,

r−1(rR ′)′ + (ω2 − λr−2)R = 0, R(0) < ∞,R(a) = 0.

Ellipse: Ω = {(x/α)2 + (y/β)2 ≤ 1}, elliptic coordinates (α > β)

=⇒ modified Mathieu’s and Mathieu’s DE

F
′′
(ξ)− (λ− 2µ cosh(2ξ))F (ξ) = 0, F (0) = F (ξ0) = 0,

G
′′
(η) + (λ− 2µ cos(2η))G (η) = 0, G (0) = G (π/2) = 0,

where h =
√
α2 − β2, ξ0 = arccosh

α

h
, and µ = h2ω2/4.

This is a two-parameter eigenvalue problem.
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Multiparameter eigenvalue problem (MEP)

In several coordinate systems, when separation of variables is applied to a PDE
(Helmholtz, Laplace, Schrödinger,...), we obtain a MEP. A general form is

pj(tj) y
′′
j (tj)+qj(tj) y

′
j (tj)+rj(tj) yj(tj)+

k∑
ℓ=1

λℓ sjℓ(tj) yj(tj) = 0, j = 1, ... , k ,

where tj ∈ [aj , bj ], with the appropriate b.c. We are looking for (λ1, ... ,λk) and
nontrivial functions y1, ... , yk that satisfy the above equations and b.c.
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where tj ∈ [aj , bj ], with the appropriate b.c. We are looking for (λ1, ... ,λk) and
nontrivial functions y1, ... , yk that satisfy the above equations and b.c.

Discretization (e.g., Chebyshev collocation) leads to an algebraic MEP

(A10 + λ1A11 + · · ·+ λk A1k)x1 = 0
...

(Ak0 + λ1Ak1 + · · ·+ λk Akk)xk = 0,
(MEP)

where Aij ∈ Cni×ni

• eigenvalue: (λ1, ... ,λk), that satisfies (MEP) for nonzero x1, ... , xk,

• eigenvector: x1 ⊗ · · · ⊗ xk.

Generically, the above (MEP) has N := n1n2 · · · nk eigenvalues.
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Operator determinants

(A10 + λ1A11 + · · ·+ λk A1k)x1 = 0
...

(Ak0 + λ1Ak1 + · · ·+ λk Akk)xk = 0
(MEP)

is related to N × N matrices, called operator determinants,

∆0 =

∣∣∣∣∣∣
A11 · · · A1k
... ...

Ak1 · · · Akk

∣∣∣∣∣∣
⊗

:=
∑
σ∈Sk

sgn(σ)A1σ1 ⊗ A2σ2 ⊗ · · · ⊗ Akσk
,

∆i = (−1)

∣∣∣∣∣∣
A11 · · · A1,i−1 A10 A1,i+1 · · · A1k
... ... ... ... ...

Ak1 · · · Ak ,i−1 Ak0 Ak ,i+1 · · · Akk

∣∣∣∣∣∣
⊗

, i = 1, ... , k .

(Atkinson 1972) If ∆0 is nonsingular, then ∆−1
0 ∆1, ... ,∆

−1
0 ∆k commute and

(MEP) is equivalent to a system of generalized eigenvalue problems (GEPs)

∆1 z = λ1∆0 z...
∆k z = λk ∆0 z

(∆)

for z = x1 ⊗ · · · ⊗ xk.
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Example

For a 2EP

(A1 + λB1 + µC1)x1 =

([
1 2
3 4

]
+ λ

[
3 1
1 1

]
+ µ

[
2 1
2 1

])
x1 = 0

(A2 + λB2 + µC2)x2 =

([
1 0
1 3

]
+ λ

[
1 2
2 3

]
+ µ

[
2 1
1 1

])
x2 = 0.

we use ∆0 = B1⊗C2−C1⊗B2, ∆1 = C1⊗A2−A1⊗C2, ∆2 = A1⊗B2−B1⊗A2,

∆0 =

 4 −1 1 −1
−1 −3 −1 −2
0 −3 1 −1

−3 −5 −1 −2

 , ∆1 =

 0 −1 −3 −2
1 5 −1 1

−4 −3 −7 −4
−1 3 −3 −1

 , ∆2 =

−2 2 1 4
−1 −6 3 3
2 6 3 8
5 6 7 9

 .
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−1 3 −3 −1

 , ∆2 =

−2 2 1 4
−1 −6 3 3
2 6 3 8
5 6 7 9

 .

Then,
eig(∆1,∆0) = (−2.5737, 0.4496,−0.7713± 1.1518i)
eig(∆2,∆0) = (−2.9682,−0.6903,−1.8374∓ 4.0984i)

and the 2EP has 4 eigenvalues

(λ1,µ1) = (−2.5737,−2.9682)
(λ2,µ2) = ( 0.4496,−0.6903)

(λ3,4,µ3,4) = (−0.7713± 1.1518i ,−1.8374∓ 4.0984i).
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Quadratic 2EP

A Q2EP has the form

(A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1)x1 = 0,

(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2)x2 = 0.

and generically has 4n1n2 solutions.

Back to the Roots seminar series, KU Leuven, December 1st, 2023 8/33



Quadratic 2EP

A Q2EP has the form

(A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1)x1 = 0,

(A2 + λB2 + µC2 + λ2D2 + λµE2 + µ2F2)x2 = 0.

and generically has 4n1n2 solutions.

We can linearize the Q2EP into a linear 2EP A1 B1 C1

0 −I 0

0 0 −I

 + λ

 0 D1 E1

I 0 0

0 0 0

 + µ

 0 0 F1

0 0 0

I 0 0

 x1
λx1
µx1

 = 0,

 A2 B2 C2

0 −I 0

0 0 −I

 + λ

 0 D2 E2

I 0 0

0 0 0

 + µ

 0 0 F2

0 0 0

I 0 0

 x2
λx2
µx2

 = 0.

The associated GEPs with operator determinants ∆1z = λ∆0z and ∆2z = µ∆0z ,
which are of size 9n1n2 × 9n1n2, are both singular.

However, they have 4n1n2 finite regular eigenvalues that give solutions of Q2EP.
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Singular GEP

A GEP A− λB is singular iff det(A− λB) ≡ 0. Then λ0 ∈ C is an eigenvalue if

rank(A− λ0B) < nrank(A,B) := max
ζ∈C

rank(A− ζB)

(or rank(B) < nrank(A,B) for λ0 = ∞). Example:

A− λB =

[
1 0
0 0

]
− λ

[
1 0
0 0

]
is singular and has one eigenvalue 1.
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(or rank(B) < nrank(A,B) for λ0 = ∞). Example:

A− λB =

[
1 0
0 0

]
− λ

[
1 0
0 0

]
is singular and has one eigenvalue 1.

Singular problems are very challenging to solve numerically, both with respect to
accuracy and efficiency:

• QZ usually returns eigenvalues close to the regular ones mixed with fake ones
(Lotz, Noferini 2020),

• Recommended approach (Wilkinson 1979) - extract the regular part by the
staircase method (Van Dooren 1979) and then apply QZ to the regular part,

• Guptri, a robust software for the extraction (Demmel, Kågström 1993),

• Rank-completing perturbations or projections to normal rank (Hochstenbach,
Mehl, P. 2019, 2023).
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Singular MEP

(A10 + λ1A11 + · · ·+ λkA1k)x1 = 0
...

(Ak0 + λ1Ak1 + · · ·+ λkAkk)xk = 0
(MEP)

∆1z = λ1∆0z...
∆kz = λk∆0z

(∆)

In some applications (MEP) is singular, i.e., all GEPs in (∆) are singular.

We can extract the regular part of (∆) by a staircase-type algorithm and compute
the eigenvalues (Muhič, P. 2010). The algorithm returns matrices P and Q with

orthogonal columns that define ∆̂i = P∗∆iQ for i = 0, ... , k such that

a) ∆̂0 is nonsingular,

b) matrices ∆̂−1
0 ∆̂1, ... , ∆̂

−1
0 ∆̂k commute,

c) finite regular eigenvalues of (∆) are eigenvalues of

∆̂1w = λ1 ∆̂0w...
∆̂k w = λk ∆̂0w
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In some applications (MEP) is singular, i.e., all GEPs in (∆) are singular.

We can extract the regular part of (∆) by a staircase-type algorithm and compute
the eigenvalues (Muhič, P. 2010). The algorithm returns matrices P and Q with

orthogonal columns that define ∆̂i = P∗∆iQ for i = 0, ... , k such that

a) ∆̂0 is nonsingular,

b) matrices ∆̂−1
0 ∆̂1, ... , ∆̂

−1
0 ∆̂k commute,

c) finite regular eigenvalues of (∆) are eigenvalues of

∆̂1w = λ1 ∆̂0w...
∆̂k w = λk ∆̂0w

For singular MEPs, the equivalence of eigenvalues of (MEP) and (∆) is known only for k = 2

(Muhič, P. 2009), (Košir, P. 2022).
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Numerical methods for standard MEPs

(A10 + λ1A11 + · · ·+ λkA1k)x1 = 0
...

(Ak0 + λ1Ak1 + · · ·+ λkAkk)xk = 0
(MEP)

∆1z = λ1∆0z...
∆kz = λk∆0z

(∆)

All eigenvalues:

• simultaneous Schur decomposition of (∆): (Hochstenbach, Košir, P. 2005)

• staircase-type algorithm for singular MEPs: (Muhič, P. 2009)

• linearization of quadratic 2EP: (Muhič, P. 2010), (Hochstenbach, Muhič, P. 2012)

• continuation methods: (Dong, Yu, Yu 2016), (Rodriguez, Du, You, Lim 2021)
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(Ak0 + λ1Ak1 + · · ·+ λkAkk)xk = 0
(MEP)

∆1z = λ1∆0z...
∆kz = λk∆0z

(∆)

All eigenvalues:

• simultaneous Schur decomposition of (∆): (Hochstenbach, Košir, P. 2005)

• staircase-type algorithm for singular MEPs: (Muhič, P. 2009)

• linearization of quadratic 2EP: (Muhič, P. 2010), (Hochstenbach, Muhič, P. 2012)

• continuation methods: (Dong, Yu, Yu 2016), (Rodriguez, Du, You, Lim 2021)

Small subset of eigenvalues for large problems:

• Jacobi–Davidson: (Hochstenbach, Košir, P. 2005), (Hochstenbach, P. 2008)

• Sylvester–Arnoldi: (Meerbergen, P. 2015), (Hochstenbach, Meerbergen, Mengi, P. 2019)

• Jacobi–Davidson for PMEP: (Hochstenbach, Muhič, P. 2015)

• Subspace method using tensor-train representation: (Ruymbeek, Michiels, Meerbergen 2022)

• Alternating method (Eisenmann, Nakatsukasa 2022)
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Toolbox MultiParEig for Matlab
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Rectangular MEP

M(λ) x :=
( ∑

|ω|≤d

λωAω

)
x = 0, (RMEP)

where ω = (ω1, ... ,ωk), |ω| = ω1 + · · ·+ ωk, λ
ω = λω1

1 · · ·λωk
k , and x ∈ Cn.

The key differences with standard MEP:

a) just one equation,

b) Aω = Aω1,...,ωk
are (n + k − 1)× n rectangular matrices.

We assume full normal rank, i.e., nrank(M) := max
λ∈Ck

rank(M(λ)) = n

Eigenvalue: λ = (λ1, ... ,λk) that satisfies (RMEP) for a nonzero x (eigenvector)

λ is an eigenvalue iff rank(M(λ)) < n.
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Example

1 0
0 1
1 1

+ λ

1 2
1 3
2 1

+ µ

1 0
0 1
0 0

+ λ2

0 1
1 0
1 1

+ λµ

0 1
2 2
1 3

+ µ2

3 0
1 1
1 2

 x = 0

(λ,µ) is an eigenvalue, x ̸= 0 is an eigenvector

This is a quadratic rectangular 2EP

The problem has 12 eigenvalues

(λ1,µ1) = ( 2.1783,−2.1234)
(λ2,µ2) = ( 1.7620, 0.9830)

...
(λ11,µ11) = (−1.6590, 0.3378)
(λ12,µ12) = (−1.0000, 0.0000)
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Related results

M(λ) x :=
( ∑

|ω|≤d

λωAω

)
x = 0, (RMEP)

where λ = (λ1, ... ,λk) and Aω ∈ C(n+k−1)×n.

• Khazanov (1998) considers RMEPs, defines eigenvalues and eigenvectors.

• Shapiro and Shapiro (2009) examine linear RMEP (d = 1) and show that the
problem generically has

(
n+k−1

k

)
eigenvalues.

• Alsubaie (2019): application of linear RMEPs in H2-optimal model reduction,
numerical method for RMEPs based on operator determinants.

• Vermeersch and De Moor (2019, 2022, 2023) and De Moor (2019, 2020):
optimal parameters of the ARMA model and the realization of LTI system are
eigenvalues of quadratic RMEPs (d = 2), numerical method for RMEPs based
on block Macaulay matrices.

• Hochstenbach, Košir, P. (2023): a generic RMEP of degree d has dk
(
n+k−1

k

)
eigenvalues, numerical methods for RMEPs based on MEPs.
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Block Macaulay matrices

(A+ λ1B1 + λ2B2)x = 0

We multiply the equation with monomials λi
1λ

j
2 of increasing order, where we add

rows in blocks of the same degree. We get a homogeneous system with the block
Macaulay matrix

1 λ1 λ2 λ2
1 λ1λ2 λ2

2 λ3
1 λ2

1λ2 ...


1 A B1 B2 · · ·
λ1 A B1 B2 · · ·
λ2 A B1 B2 · · ·
λ2
1 A B1 B2 · · ·
... ... ... ... ... . . . . . .


x
λ1x
λ2x
λ2
1x
...

 = 0.

If a block Macaulay matrix is large enough, than the structure of the nullspace
stabilizes and we can compute all eigenvalues from the nullspace.

After some magic (see the PhD defence by Christof Vermeersch later today!),
we get matrices (S1Z )

+(Sλ1Z ) and (S1Z )
+(Sλ2Z ) that commute and whose joint

eigenvalues are solutions of the RMEP.
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Linear RMEP - Algorithm 1

A linear RMEP with k parameters and Ai ∈ C(n+k−1)×n has
(
n+k−1

k

)
eigenvalues

(A0 + λ1A1 + · · ·+ λkAk) x = 0 (RMEP)

We multiply it by random matrices P1, ... ,Pk ∈ Cn×(n+k−1) and transform it into
a MEP with n × n matrices that has nk eigenvalues

(P1A0 + λ1P1A1 + · · ·+ λk P1Ak) x1 = 0
...

(PkA0 + λ1PkA1 + · · ·+ λk PkAk) xk = 0
(MEP)

We keep only the eigenvalues for which rank(A0 + λ1A1 + · · ·+ λkAk) < n.
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A linear RMEP with k parameters and Ai ∈ C(n+k−1)×n has
(
n+k−1

k

)
eigenvalues

(A0 + λ1A1 + · · ·+ λkAk) x = 0 (RMEP)

We multiply it by random matrices P1, ... ,Pk ∈ Cn×(n+k−1) and transform it into
a MEP with n × n matrices that has nk eigenvalues

(P1A0 + λ1P1A1 + · · ·+ λk P1Ak) x1 = 0
...

(PkA0 + λ1PkA1 + · · ·+ λk PkAk) xk = 0
(MEP)

We keep only the eigenvalues for which rank(A0 + λ1A1 + · · ·+ λkAk) < n.

We can apply all numerical methods for MEPs, for instance solve the GEPs

∆1 z = λ1∆0 z...
∆k z = λk ∆0 z

(∆)

∆0 is nonsingular in the generic case.
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Linear RMEP - Algorithm 2

(P1A0 + λ1P1A1 + · · ·+ λk P1Ak) x1 = 0
...

(PkA0 + λ1PkA1 + · · ·+ λk PkAk) xk = 0
=⇒

∆1 z = λ1∆0 z...
∆k z = λk ∆0 z

(∆)

(Alsubaie 2019) Vectors z = x ⊗ · · · ⊗ x span a subspace of dim.
(
n+k−1

k

)
in Cnk .

Can write z = Tw for w ∈ C(
n+k−1

k ) and T ∈ Cnk×(n+k−1
k ),

e.g., (n = 2, k = 2) :

[
x1
x2

]
⊗
[
x1
x2

]
=


x1x1
x1x2
x2x1
x2x2

 =


1 0 0
0 1 0
0 1 0
0 0 1


w1

w2

w3

 .

This enables us to restrict (∆) to a system of GEPs of size
(
n+k−1

k

)
×
(
n+k−1

k

)
.

D1w = λ1D0w...
Dk w = λk D0w

No redundant solutions, can apply all numerical methods for systems of GEPs.

D0 is nonsingular, smaller matrices than in the block Macaulay method.

Back to the Roots seminar series, KU Leuven, December 1st, 2023 18/33



Details of the compression

We form operator determinants with (n + k − 1)k × nk rectangular matrices

∆̃0 =

∣∣∣∣∣∣
A1 · · · Ak
... ...

A1 · · · Ak

∣∣∣∣∣∣
⊗

, ∆̃i = (−1)

∣∣∣∣∣∣
A1 · · · Ai−1 A0 Ai+1 · · · Ak
... ... ... ... ...

A1 · · · Ai−1 A0 Ai+1 · · · Ak

∣∣∣∣∣∣
⊗

.

Matrices Ψℓ := ∆̃ℓT can have only
(
n+k−1

k

)
different rows (up to sign). If

Ψℓ(i1 ... ik, :) is the row of Ψℓ corresponding to a multi-index (i1, ... , ik), then:

a) If ip = iq for p ̸= q, then Ψℓ(i1 ... ik, :) = 0.

b) If (j1, ... , jk) is σ(i1, ... , ik), then Ψℓ(j1 ... jk, :) = sgn(σ)Ψℓ(i1 ... ik, :).

By taking only rows with strictly ordered indices we get matrices Di = L ∆̃iT and
restrict (∆) to a system of GEPs of size

(
n+k−1

k

)
×
(
n+k−1

k

)
.
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Details of the compression

We form operator determinants with (n + k − 1)k × nk rectangular matrices

∆̃0 =

∣∣∣∣∣∣
A1 · · · Ak
... ...

A1 · · · Ak

∣∣∣∣∣∣
⊗

, ∆̃i = (−1)

∣∣∣∣∣∣
A1 · · · Ai−1 A0 Ai+1 · · · Ak
... ... ... ... ...

A1 · · · Ai−1 A0 Ai+1 · · · Ak

∣∣∣∣∣∣
⊗

.

Matrices Ψℓ := ∆̃ℓT can have only
(
n+k−1

k

)
different rows (up to sign). If

Ψℓ(i1 ... ik, :) is the row of Ψℓ corresponding to a multi-index (i1, ... , ik), then:

a) If ip = iq for p ̸= q, then Ψℓ(i1 ... ik, :) = 0.

b) If (j1, ... , jk) is σ(i1, ... , ik), then Ψℓ(j1 ... jk, :) = sgn(σ)Ψℓ(i1 ... ik, :).

By taking only rows with strictly ordered indices we get matrices Di = L ∆̃iT and
restrict (∆) to a system of GEPs of size

(
n+k−1

k

)
×
(
n+k−1

k

)
.

For n = 2 and k = 2 we compress the ∆̃-matrices from size 9×4 to size 3×3 by:

T =

11 12 22


11 1 0 0
12 0 1 0
21 0 1 0
22 0 0 1

, L =

11 12 13 21 22 23 31 32 33[ ]12 0 1 0 0 0 0 0 0 0
13 0 0 1 0 0 0 0 0 0
23 0 0 0 0 0 1 0 0 0

.

We need to compute only the corresponding
(
n+k−1

k

)
rows of ∆̃i .
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Comparison of algorithms for linear RMEPs

Algorithm 1: Transformation to a MEP by multiplications with P1, ... ,Pk

Algorithm 2: Direct construction of compressed D0, ... ,Dk.

Algorithm 1 Algorithm 2

Pros • Simple construction • Uses D-matrices of optimal size
• Can apply numerical methods • No redundant solutions
for MEPs that do not require • Sparsity is preserved
∆-matrices

Cons • Uses much larger ∆-matrices • D-matrices are needed explicitly

• Sparsity is lost with random Pi • Kronecker structure of ∆̃-matrices
is lost in multiplication by L and T
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Quadratic R2EP - Algorithm 3

We consider a generic quadratic R2EP with (n + 1)× n matrices

(A00 + λA10 + µA01 + λ2A20 + λµA11 + µ2A02) x = 0 (QR2EP)

First approach: apply n× (n+1) matrices P1,P2 to get a standard quadratic 2EP

(P1A00 + λP1A10 + µP1A01 + λ2P1A20 + λµP1A11 + µ2P1A02) x1 = 0

(P2A00 + λP2A10 + µP2A01 + λ2P2A20 + λµP2A11 + µ2P2A02) x2 = 0

This problem has 4n2 solutions that include the 2n(n+ 1) solutions of (QR2EP).
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First approach: apply n× (n+1) matrices P1,P2 to get a standard quadratic 2EP

(P1A00 + λP1A10 + µP1A01 + λ2P1A20 + λµP1A11 + µ2P1A02) x1 = 0

(P2A00 + λP2A10 + µP2A01 + λ2P2A20 + λµP2A11 + µ2P2A02) x2 = 0

This problem has 4n2 solutions that include the 2n(n+ 1) solutions of (QR2EP).

Can apply all methods for quadratic 2EPs, e.g., a linearization to a 2EP

(Vi0 + λVi1 + µVi2) ui = 0, i = 1, 2,

where

Vi0 =

PiA00 PiA10 PiA01

0 −I 0
0 0 −I

, Vi1 =

 0 PiA20 PiA11

I 0 0
0 0 0

, Vi2 =

 0 0 PiA02
0 0 0
I 0 0

, ui =
 xi

λxi
µxi


This is a singular 2EP with 3n × 3n matrices.

Back to the Roots seminar series, KU Leuven, December 1st, 2023 21/33



Quadratic R2EP - Algorithm 4

(A00 + λA10 + µA01 + λ2A20 + λµA11 + µ2A02) x = 0 (QR2EP)

(V10 + λV11 + µV12) u1 = 0

(V20 + λV21 + µV22) u2 = 0
=⇒

∆1 z = λ∆0 z

∆2 z = µ∆0 z
(∆)

Aij is (n + 1)× n, Vij is 3n × 3n, ∆i is 9n
2 × 9n2, z = u1 ⊗ u2,

ui = [xTi λxTi µxTi ]
T for i = 1, 2.

Vectors [xT λxT µxT ]T ⊗ [xT λxT µxT ]T span a subspace of dimension 3n(n+1)

in C9n2. We can restrict (∆) to singular GEPs with 3n(n+1)×3n(n+1) matrices

D̃1 u = λ D̃0 u

D̃2 u = µ D̃0 u

No redundant solutions, can apply methods for systems of singular GEPs.
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Comparison for QR2EP

Block Macaulay method vs. Algorithm 4 for a generic QR2EP

(A00 + λA10 + µA01 + λ2A20 + λµA11 + µ2A02) x = 0

with (n + 1)× n matrices for n = 4, ... , 20.

n Block Macaulay Alg. 4 (D̃i) # Eigs

4 180 × 220 60 40

6 546 × 630 126 84

8 1224 × 1368 216 144

10 2310 × 2530 330 220

12 3900 × 4212 468 312

14 6090 × 6510 630 420

16 8976 × 9520 816 544

18 12654 × 13338 1026 684

20 17220 × 18060 1260 840

n n(n + 1)(2n + 1) × n(n + 1)(2n + 3) 3n(n + 1) 2n(n + 1)

Matrices D̃i are much smaller than matrices in the block Macaulay method.
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Application - ARMA

Let y1, ... , ym ∈ R. The ARMA(p, q) model is

yk +

p∑
i=1

αi yk−i = ek +

q∑
j=1

γj ek−j , k = p + 1, ... ,m,

where p and q are the orders of the autoregressive (AR) and the moving-average
(MA) part, respectively. We look for α1, ... ,αp and γ1, ... , γq that minimize ∥e∥2.

(Vermeersch, De Moor 2019): stationary points of an ARMA model are
eigenvalues of a quadratic RMEP. We can use the block Macaulay matrices
to compute all stationary points including the globally optimal one.

In contrast, state-of-the-art numerical methods for the identification of parameters
in ARMA models, based on nonlinear optimization, converge locally without
guarantee to find the optimal solution.
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ARMA(1,1) via MEP

For p = q = 1 we get quadratic R2EP (α1 = α and γ1 = γ)

(A00 + αA10 + γA01 + γ2A02) x = 0 (ARMA)

with (3m − 1)× (3m − 2) matrices Aij .

We introduce a new parameter ξ = γ2 and treat the problem as a linear 3EP([
0 0
1 0

]
+ α

[
0 0
0 0

]
+ γ

[
1 0
0 1

]
+ ξ

[
0 1
0 0

])
v = 0,

(A00 + αA10 + γ A01 + ξ A02) x = 0.

We get singular GEPs of size (3m − 1)(3m − 2)× (3m − 1)(3m − 2)

D̃1u = α D̃0u, D̃2u = γ D̃0u, D̃3u = ξ D̃0u

that we solve by the staircase-type algorithm for singular MEPs.
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ARMA(1,1) example

We take y ∈ R12, where

y = [2.4130, 1.0033, 1.2378, −0.72191, −0.81745, −2.2918, 0.18213, 0.073557, 0.55248, 2.0180, 2.6593, 1.1791]
T

and build matrices of size 35× 34 of

(A00 + αA10 + γA01 + γ2A02) x = 0. (ARMA)

Back to the Roots seminar series, KU Leuven, December 1st, 2023 26/33



ARMA(1,1) example

We take y ∈ R12, where

y = [2.4130, 1.0033, 1.2378, −0.72191, −0.81745, −2.2918, 0.18213, 0.073557, 0.55248, 2.0180, 2.6593, 1.1791]
T

and build matrices of size 35× 34 of

(A00 + αA10 + γA01 + γ2A02) x = 0. (ARMA)

From singular GEPs of size 1190× 1190

D̃1u = α D̃0u, D̃2u = γ D̃0u, D̃3u = ξ D̃0u

we get 147 eigenvalues of (ARMA). Three of them are real and give the stationary
points of the objective function ∥e∥22.

Type stationary point α γ ∥e∥22
Saddle point 0.3224 0.7799 17.58
Local minimum −0.5234 0.0476 13.85
Saddle point −0.8305 −0.8542 23.78

We estimate that for the same result we need a block Macaulay matrix of size 77385 × 79764.
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ARMA(1,1) comparison

Size of matrices required to compute stationary points for the ARMA(1,1) model
from eigenvalues of

(A00 + αA10 + γA01 + γ2A02) x = 0

by MEP approach vs. the block Macaulay approach for m = 4, 6, ... , 20.

m # Eigs D̃i Time (s) Degree Macaulay matrix

4 35 110 0.008 19 1881 × 2100

6 63 272 0.027 31 7905 × 8448

8 91 506 0.085 43* 20769 × 21780

10 119 812 0.225 55* 43065 × 44688

12 147 1190 0.595 67* 77385 × 79764

14 175 1640 1.43 79* 126321 × 129600

16 203 2162 3.51 91* 192465 × 196788

18 231 2756 7.41 103* 278409 × 283920

20 259 3422 14.1 115* 386745 × 393588

*: estimate

A block Macaulay method for m = 8 needs 41.7 seconds (Vermeersch, De Moor 2023)
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Application - LTI realization

Let y1, ... , ym ∈ R. In the optimal realization problem of autonomous LTI systems
(LTI(p)), we look for α1, ... ,αp for the best 2-norm approximation of y by ŷ that
satisfies

ŷk+p + α1 ŷk+p−1 + · · ·+ αp ŷk = 0, k = 1, ... ,m − p,

where p is the order of the LTI.

De Moor (2019): critical points of an LTI(p) model are eigenvalues of a quadratic
RMEP.
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Application - LTI(2)

The corresponding quadratic R2EP is

(A00 + α1A10 + α2A01 + (α2
1 + α2

2)A20 + α1α2A11) x = 0 (LTI)

with matrices of size (3m − 4)× (3m − 5).

We linearize (LTI) as a four-parameter eigenvalue problem by introducing two
new parameters ξ1 = α1α2 and ξ2 = α2

1 + α2
2 as([

0 0
1 0

]
+ α1

[
1 0
0 0

]
+ α2

[
0 0
0 1

]
+ ξ1

[
0 1
0 0

]
+ ξ2

[
0 0
0 0

])
v1 = 0,([

0 0
1 0

]
+ α1

[
1 0
0 1

]
+ α2

[
1 0
0 1

]
+ ξ1

[
0 2
0 0

]
+ ξ2

[
0 1
0 0

])
v2 = 0,

(A00 + α1A10 + α2A01 + ξ1A11 + ξ2A20) x = 0.

We get a system of singular GEPs

D̃1u = α1 D̃0u, D̃2u = α2 D̃0u, D̃3u = ξ1 D̃0u, D̃4u = ξ2 D̃0u, (D̃)

where matrices are of size 2(3m − 4)(3m − 5)× 2(3m − 4)(3m − 5).
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LTI(2) example

We take z ∈ R10 whose elements satisfy

zk + α1zk−1 + α2zk−2 = 0

for α1 = 0.6 and α2 = −0.25, and perturb it into y = z + 0.1*randn(10,1).

y = [0.69582, −0.68195, −0.24647, −0.50437, −0.23207, 0.34559, −0.19628, −0.20553, −0.17737, −0.11543]
T
.

From matrices Aij of size 26× 25 of

(A00 + α1A10 + α2A01 + (α2
1 + α2

2)A20 + α1α2A11) z = 0

we get singular GEPs

D̃1u = α1 D̃0u, D̃2u = α2 D̃0u, D̃3u = ξ1 D̃0u, D̃4u = ξ2 D̃0u

with matrices of size 1300× 1300.

A staircase-type algorithm returns 1059 eigenvalues. There are 11 real eigenvalues
(α1,α2) that give critical points of the objective function ∥y − ŷ∥22, the minimum
is obtained at (α1,α2) = (0.60076,−0.26572).

We estimate that for the same result we need a block Macaulay matrix of size 29328 × 30625.
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LTI(2) comparison

Size of matrices required to compute critical points for a generic LTI(2) model as
eigenvalues of

(A00 + α1A10 + α2A01 + (α2
1 + α2

2)A20 + α1α2A11) x = 0

by MEP aproach vs. the block Macaulay approach for m = 4, 6, ... , 12.

m # Eigs D̃i Time (s) Degree Macaulay matrix

4 51 112 0.015 12 528 × 637

6 243 364 0.158 24 3864 × 4225

8 579 760 1.18 36 12600 × 13357

10 1059 1300 7.03 48* 29328 × 30625

12 1683 1984 32.5 60* 56640 × 58621

*: estimate

A block Macaulay method for m = 6 needs 2.3 seconds (Vermeersch, De Moor 2023)
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Common points with block Macaulay matrices approach

(polynomial) RMEP( ∑
|ω|≤d

λωAω

)
x = 0

MultiParEig
∆ matrices
compression

staircase algorithm

MacaulayLab
block Macaulay

matrix

common GEPs common GEPs

eigenvalues
λ = (λ1, ... ,λk)

eigensolver eigensolver
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Common points with block Macaulay matrices approach

(polynomial) RMEP( ∑
|ω|≤d

λωAω

)
x = 0

MultiParEig
∆ matrices
compression

staircase algorithm

MacaulayLab
block Macaulay

matrix

common GEPs common GEPs

eigenvalues
λ = (λ1, ... ,λk)

eigensolver eigensolver

We get two families of k GEPs that have the same eigenvalues. Are these two
families related in any way?

For problems with solutions at infinity, it might be interesting to compare the
staircase-type method to the transformations applied to the block Macaulay
matrix that extract only the part with the affine solutions.
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Conclusions

We can ”squareify” RMEPs into (square) MEPs.

Operator determinants, compression and staircase algorithm are another way that
leads from RMEP to a joint system of GEPs.

Some RMEPs can be solved efficiently with tools for standard MEPs.

New options for finding optimal parameters of ARMA(1,1), ARMA(2,1), and
LTI(2) models for small samples.

More details: M.E. Hochstenbach, T. Košir, P.: On the solution of rectangular
multiparameter eigenvalue problems, with applications to finding optimal ARMA
and LTI models, Numer. Linear Algebra Appl. 2023, e2540.

Back to the Roots seminar series, KU Leuven, December 1st, 2023 33/33



Conclusions

We can ”squareify” RMEPs into (square) MEPs.

Operator determinants, compression and staircase algorithm are another way that
leads from RMEP to a joint system of GEPs.

Some RMEPs can be solved efficiently with tools for standard MEPs.

New options for finding optimal parameters of ARMA(1,1), ARMA(2,1), and
LTI(2) models for small samples.

More details: M.E. Hochstenbach, T. Košir, P.: On the solution of rectangular
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Thank you for your attention!
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