Numerical methods for rectangular multiparameter
eigenvalue problems

Bor Plestenjak

University of Ljubljana
Faculty of Mathematics and Physics

supported by the Slovenian Research and Innovation Agency (grant N1-0154)

joint work with

Michiel E. Hochstenbach, TU Eindhoven
Tomaz Kosir, University of Ljubljana

Back to the Roots seminar series, KU Leuven, December 1st, 2023 1/33



QOutline

e Standard (square) multiparameter eigenvalue problems

e Rectangular multiparameter eigenvalue problems
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Motivational example

We want to compute efficiently and accurately a couple of hundreds eigenmodes
of an elliptic membrane Q with a fixed boundary:

(VP+w)u(xy)=0, (xy)€eQ={(x/a)’+(y/B)* <1}, uloa=0.

eigenmode wygg = 24.45490912 fora =4 and g =1
(Gheorghiu, Hochstenbach, P., Rommes 2012)
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Separation of variables: V°u+w?u=0 on 9, uso=2=0

Rectangle: Q = [0, a] x [0, b] = two S-L equations (w? = \ + p)
x4+ Xx =0, x(0) = x(a) =0,
y" +py =0, y(0) = y(b) = 0.

Disc: Q = {x*+ y? < a°}, polar coordinates = a triangular situation

O + b =0, ®(0) = b(27) = 0,
r~H{(rR"Y 4+ (w? — Ar—?)R =0, R(0) < oo, R(a) = 0.
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Rectangle: Q = [0, a] x [0, b] = two S-L equations (w? = \ + p)
x4+ Xx =0, x(0) = x(a) =0,
y" +py =0, y(0) = y(b) = 0.

Disc: Q = {x*+ y? < a°}, polar coordinates = a triangular situation
O + A = 0, ®(0) = &(27) = 0,
r~Y(rR") + (w? — A\r/?)R =0, R(0) < oo, R(a) = 0.

Ellipse: Q = {(x/a)?+ (y/B)? <1}, elliptic coordinates (o > 3)
— modified Mathieu's and Mathieu's DE

1

F'(€) — (A — 2ucosh(26))F(€) =0, F(0) = F(&) =0,
G'(n) + (A — 2ucos(2n))G(n) =0, G(0) = G(r/2) =0,

where h = /a2 — 32, £y = arccosh%, and ;1 = h°w?/4.

This is a two-parameter eigenvalue problem.
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Multiparameter eigenvalue problem (MEP)

In several coordinate systems, when separation of variables is applied to a PDE
(Helmholtz, Laplace, Schrodinger,...), we obtain a MEP. A general form is

pi(t) v/ (8) +ai(5) v/ (5)+15(8) yi(8) + > desie(t) yi(t) =0, j=1,..., k,
/=1

where t; € [aj, bj], with the appropriate b.c. We are looking for (i, ..., Ax) and
nontrivial functions yj, ..., yx that satisfy the above equations and b.c.
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In several coordinate systems, when separation of variables is applied to a PDE
(Helmholtz, Laplace, Schrodinger,...), we obtain a MEP. A general form is

pi(t) v/ (8) +ai(5) v/ (5)+15(8) yi(8) + > desie(t) yi(t) =0, j=1,..., k,
/=1

where t; € [aj, bj], with the appropriate b.c. We are looking for (i, ..., Ax) and
nontrivial functions yj, ..., yx that satisfy the above equations and b.c.

Discretization (e.g., Chebyshev collocation) leads to an algebraic MEP

(Alp+ M A+ -+ A = 0
5 (MEP)
(Ao + M Akt + -+ M A )xe = 0,
where A; € Ci*"i
e eigenvalue: (Ag, ..., Ax), that satisfies (MEP) for nonzero xi, ..., x,

e cigenvector: X3 @ - -+ ® X.

Generically, the above (MEP) has N := nyn; - - - n, eigenvalues.
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Operator determinants

(Alp+ M A+ -+ A = 0
: (MEP)
(Ao + MA+ -+ MAk)xk = 0
is related to N x N matrices, called operator determinants,
A oo Awik
No=| : | =) s8n(0) Ay ® Ase, @ -+ ® Argy,

At -0 Ark|g €S

A oo Aricn A Arivr o A
A =(-1)] : : : : | Ii=1 ..k

A - Aci-t A Akirr o Ak

(Atkinson 1972) If Ay is nonsingular, then Ao_lAl,...,Ao_lAk commute and
(MEP) is equivalent to a system of generalized eigenvalue problems (GEPs)

Alz = )\1 A()Z
f (A)
AkZ — )\k AOZ

forz=x1® - ® xx.
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For a 2EP
(Al -+ )\Bl + ,LLCl)Xl = (

(A2 + )\BQ + ILLCQ)XQ = (

4 —1 1 —1 ]
—1 -3 -1 =2
Ay = 0 -3 1 —1 |
3 -5 -1 =2

l_[l I w l_[l
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Example

For a 2EP
(1 2] (3 1] 2 1]
(A1+)\B1+MC1)X1—(_3 4] +)\_1 1_ +,u_2 1_>X1 = 0
(1 0 (1 2] 2 1]
(A2—|—)\82‘|‘,UC2)X2—(_1 3_—|—)\ > 3 —|—,u_1 1_>X2 = 0.

weuse Ag =BG —-CGRB,, A =CGRA-ARG, A=A RB,—B®A,,

4 —1 1 —1 0 —-1 -3 -2 [ 2 2 1 4

—1 -3 -1 =2 1 5 —1 1 -1 -6 3 3

Ay = 0 -3 1 —1 | Ay = 4 3 7 —4 | Ay = 2 6 3 8
| -3 -5 -1 -2 | -1 3 -3 -1 | 5 6 7 9

Then,
eig(A1, Ag) = (—2.5737, 0.4496, —0.7713 + 1.1518/)
eig(Ao, Ag) = (—2.9682, —0.6903, —1.8374 F 4.0984/)

and the 2EP has 4 eigenvalues

()\1, ,Lbl) = (—25737, —29682)
()\2, ,u2) = ( 04496, —06903)
(Ms4 p34) = (—0.7713+1.1518/, —1.8374 F 4.0984/).
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Quadratic 2EP

A Q2EP has the form

(Ay + ABy + Gy + XDy + ApuEy + pi°F)xy = 0,
(Ay + ABy + 1Cy + N°Do + AuEy + 11°F)xo = 0.

and generically has 4nyn, solutions.
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Quadratic 2EP

A Q2EP has the form

(Ay + ABy + Gy + XDy + ApuEy + pi°F)xy = 0,
(Ay + ABy + 1Cy + N°Do + AuEy + 11°F)xo = 0.

and generically has 4nyn, solutions.
We can linearize the Q2EP into a linear 2EP

[ Al Bl Cl i [ 0 D1 E1 i [ 0 0 Fl i [ X1 i

< 0 —I O | +A | [ O O | +p)] 0 0 O > AX1 = 0,
0 0 —/ | 0 0 0. 10 0]/ | pa |
[ A2 BQ C2 i i 0 D2 E2 i [ 0 0 F2 i [ X2 i

( 0 —/ 0 |+Ax| /1 0 ol|l+p|l0 0 o0 ) Ao = 0.
0 0 —I 0 0 0 | 10 0]/ [ we |

The associated GEPs with operator determinants A1z = AQpz and Ayz = plgz,
which are of size 9n1ny X 9nyn,, are both singular.

However, they have 4nin, finite regular eigenvalues that give solutions of Q2EP.
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Singular GEP

A GEP A — AB is singular iff det(A — AB) = 0. Then Ay € C is an eigenvalue if

rank(A — A\gB) < nrank(A, B) := max rank(A — (B)
c

(or rank(B) < nrank(A, B) for A\ = o0). Example:

1 0 1 0
A_AB_[o o]‘Alo o]

is singular and has one eigenvalue 1.
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Singular GEP

A GEP A — AB is singular iff det(A — AB) = 0. Then Ay € C is an eigenvalue if

rank(A — A\gB) < nrank(A, B) := max rank(A — (B)
c

(or rank(B) < nrank(A, B) for A\ = o0). Example:

1 0 1 0
A_AB_[o o]‘Alo o]
is singular and has one eigenvalue 1.

Singular problems are very challenging to solve numerically, both with respect to
accuracy and efficiency:

e QZ usually returns eigenvalues close to the regular ones mixed with fake ones
(Lotz, Noferini 2020),

e Recommended approach (Wilkinson 1979) - extract the regular part by the
staircase method (Van Dooren 1979) and then apply QZ to the regular part,

e Guptri, a robust software for the extraction (Demmel, Kagstrom 1993),

e Rank-completing perturbations or projections to normal rank (Hochstenbach,
Mehl, P. 2019, 2023).
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Singular MEP

O Alz )\1A02
(MEP) : (A)

(Ako + AAk + -+ + AcAik) Xk = 0 Az = Moz

(Ao + MA1L + - - + MAk)xa

In some applications (MEP) is singular, i.e., all GEPs in (A) are singular.

We can extract the regular part of (A) by a staircase-type algorithm and compute
the eigenvalues (Muhi¢, P. 2010). The algorithm returns matrices P and @ with

orthogonal columns that define A; = P*A;Q for i =0, ..., k such that
a) A is nonsingular,

b) matrices 30_131, o Ao_lﬁk commute,

c) finite regular eigenvalues of (A) are eigenvalues of

£1W )\1£0W

ﬁkW — )\kﬁow

Back to the Roots seminar series, KU Leuven, December 1st, 2023 10/33



Singular MEP

O Alz )\1A02
. (MEP) ; (A)
(Ao + MA+ -+ MAk)xx = 0 Az = Moz

(Ao + MA1L + - - + MAk)xa

In some applications (MEP) is singular, i.e., all GEPs in (A) are singular.

We can extract the regular part of (A) by a staircase-type algorithm and compute
the eigenvalues (Muhi¢, P. 2010). The algorithm returns matrices P and @ with

orthogonal columns that define A; = P*A;Q for i =0, ..., k such that
a) A is nonsingular,

b) matrices 30_131, o Ao_lﬁk commute,

c) finite regular eigenvalues of (A) are eigenvalues of

£1W )\1£0W

ﬁkW — )\kﬁow

For singular MEPs, the equivalence of eigenvalues of (MEP) and (A) is known only for k = 2
(Muhig, P. 2009), (Kosir, P. 2022).
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Numerical methods for standard MEPs

(Ao + MAL+ -+ MAw)xe = 0 ANz = MNApz
: (MEP) : (A)
(Ao + MAK + -+ MAk)xe = 0 Az Aoz

All eigenvalues:

simultaneous Schur decomposition of (A): (Hochstenbach, Kosir, P. 2005)
staircase-type algorithm for singular MEPs: (Muhi¢, P. 2009)

linearization of quadratic 2EP: (Muhi&, P. 2010), (Hochstenbach, Muhig, P. 2012)
continuation methods: (Dong, Yu, Yu 2016), (Rodriguez, Du, You, Lim 2021)
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Numerical methods for standard MEPs

(Ao + MAL+ -+ MAw)xe = 0 ANz = MNApz
: (MEP) : (A)
(Ao + MAK + -+ MAk)xe = 0 Az Aoz

All eigenvalues:

simultaneous Schur decomposition of (A): (Hochstenbach, Kosir, P. 2005)
staircase-type algorithm for singular MEPs: (Muhi¢, P. 2009)

linearization of quadratic 2EP: (Muhi&, P. 2010), (Hochstenbach, Muhig, P. 2012)
continuation methods: (Dong, Yu, Yu 2016), (Rodriguez, Du, You, Lim 2021)

Small subset of eigenvalues for large problems:

e Jacobi—-Davidson: (Hochstenbach, Kosir, P. 2005), (Hochstenbach, P. 2008)
e Sylvester—Arnoldi: (Meerbergen, P. 2015), (Hochstenbach, Meerbergen, Mengi, P. 2019)

e Jacobi—Davidson for PMEP: (Hochstenbach, Muhig, P. 2015)

e Subspace method using tensor-train representation: (Ruymbeek, Michiels, Meerbergen 2022)
e Alternating method (Eisenmann, Nakatsukasa 2022)
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Toolbox MultiParEig for Matlab

‘MﬂthWOI'kS'w Products  Solutions Academia Support Community Events T

File Exchange o - Q

MATLAB Central +  Files  Authors My File Exchange ~  Publish ~ About & Trial software

- MultiParEig 3)
971 Downloads @
‘ Version 2.7.0.0 (322 KB) by Bor Plestenjak Updated 6 Dec 2022

\ L . Toolbox for multiparameter and singular eigenvalue problems View License
v

Overview Functions Version History Reviews (3) Discussions (4)

This is a joined work with Andrej Muhi¢, who wrote part of the code, in particular the staircase algorithm for a singular multiparameter Requires

eigenvalue problem. If you use the toolbox to solve a singular MEP, please cite: A. Muhi¢, B. Plestenjak: On the quadratic two- MATLAB

parameter eigenvalue problem and its linearization, Linear Algebra Appl. 432 (2010) 2529-2542.

Multiprecision examples require Advanpix
Toolbox contains numerical methods for multiparameter eigenvalue problems (MEPs) and singular generalized eigenvalue problems Multiprecision Computing Toolbox In Matlab
before 2014a functions twopareigs,

A matrix two-parameter eigenvalue problem (2EP) has the form o ; )
twopareigs_ira and twopareigs_ks run faster if

A1*x = lambda*B1*x + mu*C1%x, package lapack is installed.

A2’y = lambda"B2"y + mu*C2’y, MATLAB Release Compatibility
and we are looking for an eigenvalue (lambda,mu) and nonzero eigenvectors x.y. A 2EP is related to a pair of generalized eigenvalue Created with R2021a

problems Compatible with any release
Delta1*z = lambda*Delta0*z, Platform Compatibility

Delta2*z = mu*Delta0*z, Windows [+] mac0S [+] Linux

where Delta0, Delta1 and Delta2 are operator determinants
Categories

Delta0 = kron(C2, B1) - kron(B2, C1) Sciences > Mathematics > Algebra > Linear

Delta1 = kron(C2, A1) - kron(A2, C1) Algebra > Eigenvalues & Eigenvectors
Delta = kron(A2, B1) - kron(B2, A1) Find more on Eigenvalues & Eigenvectors in
and z = kron(x,y). The 2EP is nonsingular when Delta0 is nonsingular. This can be generalized to 3EP and MEP. Help Center and MATLAB Answers
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Rectangular MEP

M(A) x = ( 3 X"Aw) x=0, (RMEP)

jw|<d
where w = (wy, ..., wk), |w| = w1+ -+ wg, A¥ = A7 A0k and x € C™.

The key differences with standard MEP:

a) just one equation,

w, are (n+ k — 1) x n rectangular matrices.

We assume full normal rank, i.e., nrank(M) := max rank(M(A)) = n
AeC

Eigenvalue: A = (g, ..., Ak) that satisfies (RMEP) for a nonzero x (eigenvector)

A is an eigenvalue iff rank(M(X)) < n.
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Example

1 0 1 2 1 0 0 1 0
0 1{+XA|1 3| 4+x|0 1| 4+X |1 0] +Ap|2
1 1 2 1) 0 0 1 1 1

(A, i) is an eigenvalue, x # 0 is an eigenvector
This is a quadratic rectangular 2EP

The problem has 12 eigenvalues

()\1,,LL1) = ( 21783, —21234)
(M2, i) = ( 1.7620, 0.9830)
()\11,,&11) = (—16590, 03378)
()\12,#12) = (—10000, OOOOO)
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Related results

M(A) x = ( 3 X"Aw> x=0, (RMEP)

w|<d

where X = (A1, ..., Ax) and A, € Clrtk=1)xn

e Khazanov (1998) considers RMEPs, defines eigenvalues and eigenvectors.

e Shapiro and Shapiro (2009) examine linear RMEP (d = 1) and show that the

: k—1 .
problem generically has (”+k ) eigenvalues.

e Alsubaie (2019): application of linear RMEPs in H,-optimal model reduction,
numerical method for RMEPs based on operator determinants.

e Vermeersch and De Moor (2019, 2022, 2023) and De Moor (2019, 2020):
optimal parameters of the ARMA model and the realization of LTI system are
eigenvalues of quadratic RMEPs (d = 2), numerical method for RMEPs based
on block Macaulay matrices.

e Hochstenbach, Kogir, P. (2023): a generic RMEP of degree d has d*("™*~)
eigenvalues, numerical methods for RMEPs based on MEPs.
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Block Macaulay matrices

(A + M By + )\QBQ)X =0

We multiply the equation with monomials )\’i)\é of increasing order, where we add
rows in blocks of the same degree. We get a homogeneous system with the block

Macaulay matrix

D VRS VRSt S V5 VD Y IRD S B YO ¥

1 [A B B . X
At A B, B . A1 X
Ao A B, B .| [ Aax]| =0.
¥ A B, B, ---||Xx

If a block Macaulay matrix is large enough, than the structure of the nullspace
stabilizes and we can compute all eigenvalues from the nullspace.

After some magic (see the PhD defence by Christof Vermeersch later today!),
we get matrices (51Z)7(5x,Z) and (51Z2)%(5x,Z) that commute and whose joint
eigenvalues are solutions of the RMEP.
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Linear RMEP - Algorithm 1
A linear RMEP with k parameters and A; € C("tk=1)xn hag (”H;_l) eigenvalues
(Ao + MAL+ -+ MA) x =0 (RMEP)

We multiply it by random matrices P, ..., Px € Cr=(ntk=1) and transform it into
a MEP with n x n matrices that has n* eigenvalues

(PLAV+ M PIAT+ -+ XM PiA) X = 0
; (MEP)
(PcAg+ A\ PkAr+ -+ M PlA) xk = 0

We keep only the eigenvalues for which rank(Ag + A1A; + - -+ + AAx) < n.
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Linear RMEP - Algorithm 1

A linear RMEP with k parameters and A; € C("tk=1)xn hag (”H;_l) eigenvalues

(Ao+ MAL+ -+ MA)x=0  (RMEP)

We multiply it by random matrices P, ..., Px € Cr=(ntk=1) and transform it into
a MEP with n x n matrices that has n* eigenvalues

(PLAV+ M PIAT+ -+ XM PiA) X = 0
; (MEP)
(PcAg+ A\ PkAr+ -+ M PlA) xk = 0

We keep only the eigenvalues for which rank(Ag + A1A; + - -+ + AAx) < n.

We can apply all numerical methods for MEPs, for instance solve the GEPs

Alz = )\1A02

= (8)
AkZ = )\k A()Z

Aq is nonsingular in the generic case.
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Linear RMEP - Algorithm 2

(PiAc+ M PiAL+ -+ M PiA) X = O Az = MAyz
: — : (A)
(PcAo+ A PkAr+ - + M PlA) xk = 0 Az = MDAz
(Alsubaie 2019) Vectors z = x ® - - - ® x span a subspace of dim. (”“L/;_l) in C"".
Can write z = Tw for w € (C(Hlfi_l) and T & C”kx(w’i_l),
_X1X1_ _]. 0 O_ —W -
. . _ X1 X1 . X1 X2 o 0 1 O L
eg., (n=2,k=2): [XJ ® [XJ = x| = lo 1 0 xg
_X2X2_ _O 0 ]._ LT3

This enables us to restrict (A) to a system of GEPs of size (""<71) x ("%~ 1).

D1W — )\1DOW
Diw = M Dyw

No redundant solutions, can apply all numerical methods for systems of GEPs.

Dy is nonsingular, smaller matrices than in the block Macaulay method.
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Details of the compression

We form operator determinants with (n + k — 1)k x n* rectangular matrices

N A - A N Al -+ Ar A A - A
Ny = | o, A= (=1) ¢ : : : :
At Ay Av oo A Ao A e Addg
Matrices W, := A,T can have only (”H;(_l) different rows (up to sign). |If
Wiy ... Ik, :) is the row of W, corresponding to a multi-index (i, ..., ix), then:

a) If i, =i, for p# q, then V(i ... i, :) = 0.
b) If (j1,...,Jk) is o(i1, ..., ix), then Wo(j1 ... ji,:) = sgn(o) We(iy ... ik, :).

By taking only rows with strictly ordered indices we get matrices D; = LZ,-T and

restrict (A) to a system of GEPs of size ("% 71) x ("),
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Details of the compression
We form operator determinants with (n + k — 1)k x n* rectangular matrices

N Ay - Ak Ar - A A A oo Ak
AO: : : , A,:(—]_) : : : : :

A - Ak Ar - A A A - Ak

®

Matrices W, := A,T can have only (”H;(_l) different rows (up to sign). |If

Wiy ... Ik, :) is the row of W, corresponding to a multi-index (i, ..., ix), then:
a) If i, =i, for p# q, then V(i ... i, :) = 0.
b) If (j1,....Jk) is o(it, ..., ix), then Wy(ji ... jk,:) = sgn(o) We(iy ... iy, :).

By taking only rows with strictly ordered indices we get matrices D; = LZ,-T and

restrict (A) to a system of GEPs of size ("% 71) x ("),

For n =2 and kK = 2 we compress the A-matrices from size 9 x 4 to size 3 x 3 by:

11 12 22 11 12 13 2

noroo o Lo 1 o o 0

T = | = 13 |o 0 1 0 0

2110 1 01" 23 Lo 0 0 0 0
2 Lo 0 1

=

22 2

w

31 32 33
0 0 0
0 0 0
0 0 0

= O O

We need to compute only the corresponding ("*%~") rows of A;.
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Comparison of algorithms for linear RMEPs

Algorithm 1: Transformation to a MEP by multiplications with P, ..., Py

Algorithm 2: Direct construction of compressed Dy, ..., Dx.
Algorithm 1 Algorithm 2
Pros e Simple construction e Uses D-matrices of optimal size

e Can apply numerical methods e No redundant solutions
for MEPs that do not require e Sparsity is preserved
A-matrices

Cons e Uses much larger A-matrices e D-matrices are needed explicitly

e Sparsity is lost with random P; e Kronecker structure of A-matrices
is lost in multiplication by L and T
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Quadratic R2EP - Algorithm 3

We consider a generic quadratic R2EP with (n+ 1) x n matrices

(Ago + Mg + pAor + NAx + A Ay + 12Ap)x =0 (QR2EP)
First approach: apply n x (n+ 1) matrices Py, P, to get a standard quadratic 2EP

(Ple() + )\PlAl() -+ ,LLP1A01 -+ )\2P1A20 + )\,uPlAll -+ ,LL2P1A02) Xy = 0
(PyAgo + AP2A10 + ptPoAgs + N2PoAx + A uPoAry + 12 PoAgp) xa = 0

This problem has 4n? solutions that include the 2n(n + 1) solutions of (QR2EP).
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Quadratic R2EP - Algorithm 3

We consider a generic quadratic R2EP with (n+ 1) x n matrices

(Ago + Mg + pAor + NAx + A Ay + 12Ap)x =0 (QR2EP)
First approach: apply n x (n+ 1) matrices Py, P, to get a standard quadratic 2EP

(Ple() + )\PlAl() -+ ,LLP1A01 -+ )\2P1A20 + )\,uPlAll -+ ,LL2P1A02) Xy = 0
(PyAgo + AP2A10 + ptPoAgs + N2PoAx + A uPoAry + 12 PoAgp) xa = 0

This problem has 4n? solutions that include the 2n(n + 1) solutions of (QR2EP).

Can apply all methods for quadratic 2EPs, e.g., a linearization to a 2EP
(Vio+ AVii+uVip)ui=0, i=1,2,

where

PiAoo PiAio  PiAo 0 PiAyx PiA11 0 0 PAp
Vio= 1 o .y o |, V=11 o o |, V=10 0o o |, u=

0 0 —1 0 0 0

This is a singular 2EP with 3n x 3n matrices.
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Quadratic R2EP - Algorithm 4

(Ago + Mg + Ao + N2Ax + A pAin + ?Ap)x =0  (QR2EP)

(V10+>\V11‘|‘,UV12) uu = 0 Nz = NN\yz
— (A
(Voo + AVor + Vo) o = 0 Nyz = phoz

Aijis(n+1)xn, V;is3nx3n, A;is9n?x9n% z=uQ u,

u =[x Ax" pux"]T fori=1,2.

Vectors [x" AxT ux"]" @ [x" AxT pux"]" span a subspace of dimension 3n(n+1)
in C°". We can restrict (A) to singular GEPs with 3n(n+1) x 3n(n+ 1) matrices

blu = )\bou
bgu = ,ubou

No redundant solutions, can apply methods for systems of singular GEPs.
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Comparison for QR2EP

Block Macaulay method vs. Algorithm 4 for a generic QR2EP
(Ago + M1g + 11Ao1 + N2 Aoy + A\uArr + p2Ag) x = 0
with (n+ 1) x n matrices for n =4, ..., 20.

n Block Macaulay Alg. 4 (5,) # Eigs
4 180 x 220 60 40
6 546 x 630 126 84
38 1224 x 1368 216 144
10 2310 x 2530 330 220
12 3900 x 4212 4638 312
14 6090 x 6510 630 420
16 8976 x 9520 816 544
18 12654 x 13338 1026 634
20 17220 x 18060 1260 840
n| nn+1)2n+1)x n(n+1)(2n+3) 3n(n+1) | 2n(n+1)

Matrices 5,- are much smaller than matrices in the block Macaulay method.
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Application - ARMA

Let y1, ..., ¥m € R. The ARMA(p, g) model is

p q
Yk+zaiYk—i:ek+Z’Yjek—j, k=p+1,..,m,

where p and g are the orders of the autoregressive (AR) and the moving-average
(MA) part, respectively. We look for oy, ..., ap and 71, ..., 74 that minimize ||e||».

(Vermeersch, De Moor 2019): stationary points of an ARMA model are
eigenvalues of a quadratic RMEP. We can use the block Macaulay matrices
to compute all stationary points including the globally optimal one.

In contrast, state-of-the-art numerical methods for the identification of parameters
in ARMA models, based on nonlinear optimization, converge locally without
guarantee to find the optimal solution.
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ARMA(1,1) via MEP
For p = g = 1 we get quadratic R2EP (a; = a and 71 = %)
(AOO + OéAlO + ’}/A()l + "}/2A02) x=0 (ARMA)

with (3m — 1) x (3m — 2) matrices Aj;.

We introduce a new parameter £ = 72 and treat the problem as a linear 3EP

([3 o] +a[s o]+ [s 3]+¢[e 3])v = o

(A00+04A10-|—7A01—|—€A02)X = 0.

We get singular GEPs of size (3m —1)(3m —2) x (3m —1)(3m — 2)

blu =« bou, bgu = 7 bou, 53u = ¢ bou

that we solve by the staircase-type algorithm for singular MEPs.
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ARMA(1,1) example

We take y € R?, where
y = [2.4130, 1.0033, 1.2378, —0.72101, —0.81745, —2.2918, 0.18213, 0.073557, 0.55248, 2.0180, 2.6593, 1.1791] "

and build matrices of size 35 x 34 of
(Ao + @A +vAor + Y Ap) x =0.  (ARMA)
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ARMA(1,1) example

We take y € R?, where
y = [2.4130, 1.0033, 1.2378, —0.72101, —0.81745, —2.2918, 0.18213, 0.073557, 0.55248, 2.0180, 2.6593, 1.1791] "

and build matrices of size 35 x 34 of
(Ago + aAig + YA + V?Ap)x =0.  (ARMA)
From singular GEPs of size 1190 x 1190
blu =« bou, Egu =7 Eou, 53u = ¢ bou
we get 147 eigenvalues of (ARMA). Three of them are real and give the stationary
points of the objective function ||e||5.

Type stationary point « ~y ||e||%
Saddle point 0.3224 0.7799  17.58
Local minimum —0.5234 0.0476  13.85
Saddle point —0.8305 —0.8542  23.78

We estimate that for the same result we need a block Macaulay matrix of size 77385 x 79764.
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ARMA(1,1) comparison

Size of matrices required to compute stationary points for the ARMA(1,1) model
from eigenvalues of

(Ago + Ao + VAo + 7 Ag) x =0
by MEP approach vs. the block Macaulay approach for m = 4,6, ..., 20.

m  # Eigs D: Time (s) | Degree  Macaulay matrix
4 35 110 0.008 19 1881 x 2100
6 63 272 0.027 31 7905 x 8448
8 01 506 0.085 43%* 20769 x 21780
10 119 812 0.225 55* 43065 X 44688
12 147 1190 0.595 67* 77385 x 79764
14 175 1640 1.43 79* 126321 x 129600
16 203 2162 3.51 01%* 192465 x 196788
18 231 2756 7.41 103* 278409 x 283920
20 259 3422 14.1 115* 386745 x 393588

*. estimate

A block Macaulay method for m = 8 needs 41.7 seconds (Vermeersch, De Moor 2023)
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Application - LTI realization

Let y1, ..., ¥m € R. In the optimal realization problem of autonomous LTI systems
(LTI(p)), we look for a, ..., a, for the best 2-norm approximation of y by y that
satisfies

where p is the order of the LTI.

De Moor (2019): critical points of an LTI(p) model are eigenvalues of a quadratic
RMEP.
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Application - LTI(2)
The corresponding quadratic R2EP is
(AOO —+ 1 AlO —+ (87%) A01 -+ (Oé% -+ Ckg) A20 —+ a1 All) X = O (LTl)

with matrices of size (3m —4) x (3m — 5).

We linearize (LTI) as a four-parameter eigenvalue problem by introducing two
new parameters £; = oy and & = af + a3 as

(_(1’ 8_—|—oz1_(1) 8_+a2_8 $_+§1_8 ;_+52_8 8_)‘/1 —
(_(1’ o| Tor|g 1] te2ly 1| té|, o t&|, é_)VQ _—
(AOO —|_ Oé]_ A]_O _|_ sz AO]_ —|— €]_ A]_]_ —i— 52 A20) X — O

We get a system of singular GEPs
Elu = (X1 Bou, 52” = (X2 Bou, 53U = 51 Eou, 54U = fz bou, (5)
where matrices are of size 2(3m — 4)(3m — 5) x 2(3m — 4)(3m — b).
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LTI(2) example

We take z € R whose elements satisfy

Zx + o1Zg—1 + iz = 0

for ¢y = 0.6 and ap, = —0.25, and perturb it intoy = z + 0.1*randn(10,1).

y = [0.69582, —0.68195, —0.24647, —0.50437, —0.23207, 0.34559, —0.19628, —0.20553, —0.17737, —0.11543]T.

From matrices A;; of size 26 x 25 of
(Ago + 1A1g + avAg1 + (af + a3)Ax + aqanAr )z =0
we get singular GEPs
lN)lu — (g lN?Ou, 52u — Qi lNDou, lNDgu =& lNDou, 54u =& [NDou
with matrices of size 1300 x 1300.

A staircase-type algorithm returns 1059 eigenvalues. There are 11 real eigenvalues

(a1, ap) that give critical points of the objective function ||y — y||3, the minimum
is obtained at (a1, ap) = (0.60076, —0.26572).

We estimate that for the same result we need a block Macaulay matrix of size 29328 x 30625.
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LTI(2) comparison

Size of matrices required to compute critical points for a generic LTI(2) model as
eigenvalues of

(Ao + a1A1o + Ao + (af 4+ a3) A + a1anAin) x = 0
by MEP aproach vs. the block Macaulay approach for m =4,6, ..., 12.

m  # Eigs 5,- Time (s) | Degree  Macaulay matrix
4 51 112 0.015 12 528 X 637
9 243 364 0.158 24 3864 x 4225
8 579 760 1.18 36 12600 x 13357
10 1059 1300 7.03 48%* 20328 x 30625
12 1683 1984 325 60* 56640 x 58621

*. estimate

A block Macaulay method for m = 6 needs 2.3 seconds (Vermeersch, De Moor 2023)
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Common points with block Macaulay matrices approach

(polynomial) RMEP
MultiParEig
A matrices «— Z A“A,)x=0 (| MacaulaylLab
compression jw[<d block I\/Ia.caulay
staircase algorithm matrix

, l

common GEPs common GEPs

— -

eigenvalues
A= (A1, ..., Ak)

eigensolver eigensolver
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Common points with block Macaulay matrices approach

(polynomial) RMEP

MultiParEig
A matrices «— ( Z X"Aw) x=0 || MacaulayLab

' |w|<d block Macaulay
compression <

staircase algorithm matrix
, l
common GEPs common GEPs
— eigenvalues |
eigensolver eigensolver
A= (A1, ..., Ak)

We get two families of kK GEPs that have the same eigenvalues. Are these two
families related in any way?

For problems with solutions at infinity, it might be interesting to compare the
staircase-type method to the transformations applied to the block Macaulay
matrix that extract only the part with the affine solutions.
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Conclusions

We can "squareify” RMEPs into (square) MEPs.

Operator determinants, compression and staircase algorithm are another way that
leads from RMEP to a joint system of GEPs.

Some RMEPs can be solved efficiently with tools for standard MEPs.

New options for finding optimal parameters of ARMA(1,1), ARMA(2,1), and
LTI(2) models for small samples.

More details: M.E. Hochstenbach, T. Kosir, P.: On the solution of rectangular
multiparameter eigenvalue problems, with applications to finding optimal ARMA
and LTI models, Numer. Linear Algebra Appl. 2023, €2540.
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Thank you for your attention!
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