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Bivariate rootfinding (zerofinding)
f (x, y), g(x, y) : bivariate functions [−1, 1]2 → R

Problem: find pairs (x∗, y∗) ∈ [−1, 1]2 s.t. f (x∗, y∗)
g(x∗, y∗)

 = 0

This talk (Part I): Chebfun2’s roots [N.-Noferini-Townsend (15)]

▶ Speedup O(n6)→≈ O(n4), where n is polynomial degree
▶ feasible degree: previously n ≈ 30, now n ≈ 1000

▶ Numerically stable solutions employing
▶ Chebyshev interpolation via FFT
▶ conditioning analysis⇒ local refinement for accuracy
▶ stable eigensolver for polynomial eigenproblems 1/37



Bivariate rootfinding: applications
▶ Solving fx(x∗, y∗) = fy(x∗, y∗) = 0 gives critical points of f

▶ Computing ∥ f ∥∞ = maxx,y∈[−1,1]2 | f (x, y)|
▶ Finding maximum/minimum values of f

▶ KKT conditions in optimization problems
▶ e.g. ellipsoid distance, non-convex problems

f (x, y)
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Rootfinding f (x∗) = 0 on [−1, 1]: principles
–[J. Boyd (02)]1. Approximate f (x) with a polynomial p(x):

∥ f (x) − p(x)∥∞ = O(ϵ)∥ f (x)∥∞ on [−1, 1]

2. Find roots of the polynomial p(x) via generalized eigenvalues
– e.g. companion linearization for p(x) =

∑n
i=0 aixi: Yv = λXv, where

(X,Y) =




an

1
. . .

1

 ,

−an−1 −an−2 . . . −a0

1
. . .

1




▶ The computed solutions x̂∗ are backward stable: f (x̂∗) = O(ϵ)⇔ f̃ (x̂∗) = 0

for ∥ f − f̃ ∥∞ = O(ϵ)

▶ Applications: local extrema, comuting | f (x)|, sign( f (x)), ∥ f ∥1 =
∫ 1
−1 | f (x)|dx,

...
3/37



Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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Rootfinding f (x) = 0 on [−1, 1]: zigzag example
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▶ High-degree polynomial approximation is accurate and stable 5/37



Recap: Rootfinding f (x) = 0 on [−1, 1]: principles
1. Approximate f (x) with a polynomial p(x):

∥ f (x) − p(x)∥∞ = O(ϵ)∥ f (x)∥∞ on [−1, 1]

2. Find roots of p(x) via generalized eigenvalues
– e.g. companion linearization for p(x) =

∑n
i=0 aixi: Yv = λXv,

(X,Y) =




an

1
. . .

1

 ,

−an−1 −an−2 . . . −a0

1
. . .

1
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– for p expressed in the Chebyshev basis p(x) =

∑n
i=0 aiTi(x):

–[Good (61)]

(X,Y) =




an

1
. . .

1

 ,
1
2



−an−1 1 − an−2 −an−3 · · · −a0

1 0 1
. . .

. . .
. . .

1 0 1
2 0



 6/37



Solving pn(x) = 0: subdivision for efficiency
▶ Finding pn(x) = 0 via companion eigenvalues requires O(n3):

dominant cost (recall interpolation is O(n log n))
▶ Remedy-Domain subdivision: Approximate pn(x) on smaller intervals

with lower degree polynomials
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Bivariate rootfinding f (x∗, y∗) = g(x∗, y∗) = 0 on [−1, 1]2

1. Approximate f (x, y), g(x, y) with a bivariate polynomials p(x, y), q(x, y)
via e.g. 2D Chebyshev interpolation:

∥ f (x, y) − p(x, y)∥∞ = O(ϵ)∥ f (x, y)∥∞,

∥g(x, y) − q(x, y)∥∞ = O(ϵ)∥g(x, y)∥∞.

or often better: Chebfun2 [Townsend-Trefethen 13]

2. Find values of y∗ via a polynomial eigenvalue problem using Bézout
resultants

–[E. Bézout (1779)]

3. Find common roots of p(x, y∗) and q(x, y∗) via univariate rootfinding

8/37



Goal: Bivariate rootfinding of high degree
Problem: find (x∗, y∗) s.t. p(x∗, y∗)

q(x∗, y∗)

 = 0

where p, q are of degree n or less:

p(x, y) =
n∑

i=0

n∑
j=0

Pi, jTi(x)T j(y), q(x, y) =
n∑

i=0

n∑
j=0

Qi, jTi(x)T j(y)

Conventionally: complexity O(n6) or worse + erroneous solutions

▶ reduce to O(n4) in practice
▶ maximum degree estimate

max(n) solution
Mathematica, Maple 20 C

Our 100 ∼ 2000 R
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Bézoutian of two univariate polynomials p(x), q(x)
B(p, q) is a bivariate polynomial

Bp,q(s, t) =
p(s)q(t) − p(t)q(s)

s − t

Express the coefficients using a symmetric matrix B = (bi j):

Bp,q(s, t) =
N−1∑
i, j=0

bi jTi(s)T j(t).

▶ det B is the resultant of p, q:

det B = Πi, j(rootspi − rootsq j)

Theorem 1
p, q share a root p(x∗) = q(x∗)

⇔ B is singular with null space [T0(x∗),T1(x∗), . . . ,TN−1(x∗)]T

⇔ Bp,q(x∗, t) = Bp,q(s, x∗) = 0
10/37



Using Bp,q(s, t) for solving p(x∗, y∗) = q(x∗, y∗) = 0
1. Regard y as fixed in p(x, y), q(x, y). Bp,q(s, t) is a bivariate polynomial

Bp,q(s, t) =
py(s)qy(t) − py(t)qy(s)

s − t
=

N−1∑
i, j=0

bi jTi(s)T j(t).

2. B(y) = (bi j) is a matrix polynomial in y. Since det B(y) = 0 iff
py(x), qy(x) share a root, we can find y∗ by solving

det B(y) = 0,

resulting in a polynomial eigenvalue problem.

When deg(px, py, qx, qy) are all n, B(y) is n × n, degree 2n

▶ Linearization is size O(n2)⇒ O(n6) cost, infeasible for n ≳ 50
▶ Susceptible to numerical errors

11/37



B(p, q) for solving p(x∗, y∗) = q(x∗, y∗) = 0: examples

B(p, q) =
py(s)qy(t) − py(t)qy(s)

s − t
=

N−1∑
i, j=0

bi jTi(s)T j(t).

Let B(y) = (bi j). We find y∗ by solving det B(y) = 0
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Companion-like matrix in Chebyshev basis
The colleague matrix pencil for a matrix polynomial P(λ) =

∑M
i=0 AiTi(λ),

Ai ∈ R
N×N is

λX + Y = λ


AM

IN

. . .

IN

 −
1
2



−AM−1 IN − AM−2 −AM−3 · · · −A0

IN 0 IN

. . .
. . .

. . .

IN 0 IN

2IN 0


.

▶ Eigenvalues λ∗ s.t. det P(λ∗) = 0 satisfy det(λ∗X + Y) = 0: generalized
eigenvalue problem

▶ Other (infinitely many) linearizations available
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Domain subdivision for efficiency (+stability)
▶ subdivide in x or/and y until the polynomial interpolants have degree

16 or less
▶ complexity typically O(n6)→ O(n4)

Subdivision for
f = sin((x − 1/10)y) cos(1/(x + (y − 9/10) + 5)) = 0,

g = (y − 1/10) cos((x + (y + 9/10)2/4)) = 0.

20 40 60 80
10

−1

10
0

10
1

10
2

Polynomial degree
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e

 

 

with subdivision
without subdivision

Trend = O(n4)

Trend = O(n6)

sin(ω(x + y)) = cos(ω(x − y)) = 0, where
ω = 1, . . . , 50 (up to 20 without

subdivision).
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Conditioning of original problem
Suppose

▶ p(x∗, y∗) = q(x∗, y∗) = 0, ∥p∥∞ = ∥q∥∞ = 1
▶ for perturbed p̂ = p + δp, q̂ = q + δq, p̂(x̂, ŷ) = q̂(x̂, ŷ) = 0 for

(x̂, ŷ) = (x∗ + δx, y∗ + δy)

Then to first order in δp, δq,

0 =
p̂(x̂, ŷ)
q̂(x̂, ŷ)

 = ∂x p(x∗, y∗) ∂y p(x∗, y∗)
∂xq(x∗, y∗) ∂yq(x∗, y∗)

 δx
δy

 + δp(x̂, ŷ)
δq(x̂, ŷ)

 .
– A stable solution has error of size O(κ∗u), where κ∗ is the absolute
condition number

κ∗ = lim
ϵ→0+

sup
1
ϵ

min

∥∥∥∥∥∥
[
δx
δy

]∥∥∥∥∥∥
2

: p̂(x̂, ŷ) = q̂(x̂, ŷ) = 0, ∥p̂ − p∥∞ ≤ ϵ, ∥q̂ − q∥∞ ≤ ϵ
 ,

It follows that κ∗ =

∥∥∥∥∥∥∥
∂x p(x∗, y∗) ∂y p(x∗, y∗)
∂xq(x∗, y∗) ∂yq(x∗, y∗)

−1∥∥∥∥∥∥∥
2

:= ∥J−1∥2, where J is the

Jacobian matrix 15/37



Conditioning of our formulation: Bézout eigenproblem
The error in the computed eigenvalues of B(y) is bounded by
(conditioning)·(backward error), where the conditioning is

κ(y∗, B) = lim
ϵ→0+

sup
{

1
ϵ

min |ŷ − y∗| : det B̂(ŷ) = 0, ∥B − B̂∥ ≤ ϵ
}
,

Theorem 2

κ∗∥∥∥∥[ ∂yq −∂y p
−∂xq ∂x p

]∥∥∥∥
2

≤ κ(y∗, B) ≤
κ∗n∥∥∥∥[ ∂yq −∂y p

−∂xq ∂x p
]∥∥∥∥

2

▶ κ∗ ≫ k∗ (unstable) if adj(J) =
[ ∂yq −∂y p
−∂xq ∂x p

]
is small
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Local refinement for accuracy

κ∗∥∥∥∥[ ∂yq −∂y p
−∂xq ∂x p

]∥∥∥∥
2

≤ κ(y∗, B) ≤
κ∗n∥∥∥∥[ ∂yq −∂y p

−∂xq ∂x p
]∥∥∥∥

2

▶ (Bézout conditioning)≫ (original conditioning) if derivatives are
small: |∂p| ≪ ∥p∥∞ and/or |∂q| ≪ ∥q∥∞

▶ Remedy- Local refinement: very small region in which
∥p∥∞ = O(|∂p|), ∥q∥∞ = O(|∂q|) (after scaling to [−1, 1]2)
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Flowchart

 f (x, y)
g(x, y)

 = 0
p(x, y)
q(x, y)

 = 0
Degree
≤ 16?

Bézout
resultant
and regu-
larization

Univariate
rootfinding
and local

refinementno, subdivide

yes

▶ dominant cost: Bézout polynomial eigenproblem
▶ choose first variable (hidden in Bézoutian) x or y from the size of the

generalized eigenproblem (colleague linearization)
▶ multiple eigenvalues (e.g. solutions at (x1, y0), (x2, y0)) do not cause

instability
▶ Defective eigenvalues are indeed ill-conditioned
▶ Non-defective eigenvalues are as well-conditioned as simple

eigenvalues
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Experiments

Coordinate alignment
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Experiments-2

Hadamard
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Experiments-3

Airy
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− cos(20x) sin(20y) − sin(20x) cos(20y)
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Part I (bivariate rootfinding) Summary and future work
Summary:

▶ Algorithm for common zeros of two bivariate functions via Bézout
resultant

▶ Improvements to solve polynomial interpolants of high degree up to
2000:
▶ Domain subdivision for speed
▶ Local refinement for resolving conditioning + removing spurious

solutions

Future work:

▶ Trivariate (multivariate) zerofinding (many unsuccessful attempts)
▶ Non-analytic functions (singularities, poles,...)
▶ Finding appropriate initial domain in applications
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Part II-a: The AAA algorithm for rational approximation
[N.-Sète-Trefethen (18)] Given f (Z), Z = {Zi}

M
i=1 , find rational function r s.t.

f (Z) ≈ r(Z)

▶ rationals outperform polynomials when f nonsmooth

Key ideas in AAA:

▶ Barycentric representation of rational functions

f (z) ≈ r(z) = N(z)
D(z) =

∑n
j=0
β j f j
z−t j

/∑n
j=0

β j
z−t j

▶ Adaptive selection of support points, hence basis functions
▶ Least-squares fitting
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[N.-Sète-Trefethen (18)] Given ( f (Z), Z = {Zi}

M
i=1)← f , find rational function r
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f (z) ≈ r(z) = N(z)
D(z) =

∑n
j=0
β j f j
z−t j

/∑n
j=0

β j
z−t j

▶ Adaptive selection of support points, hence basis functions
▶ Least-squares fitting
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The (standard) AAA algorithm
Given sample points {Zi}

M
i=1,

f (z) ≈ r(z) =
N(z)
D(z)

=

n∑
j=0

β j f j

z − t j

/ n∑
j=0

β j

z − t j

1. n← n + 1, add support point tn ∈ Z,

2. Solve via SVD min∥β∥2=1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥


f (Z(n)

1 )− f0
Z(n)

1 −t0
· · ·

f (Z(n)
1 )− fn

Z(n)
1 −tn

...
. . .

...
f (Z(n)

M )− f0
Z(n)

M −t0
· · ·

f (Z(n)
M )− fn

Z(n)
M −tn



β0
...

βn


∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Key idea: choice of support points {t j}

Desiderata:

▶ Approximation error ∥ f − r∥ decreases
▶ “Basis matrix” Ci j =

1
Zn

i −t j
well conditioned
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Choice of support points {t j}

f (z) ≈ r(z) =
N(z)
D(z)

=

n∑
j=0

β j f j

z − t j

/ n∑
j=0

β j

z − t j
, z ∈ Z(n)

▶ Error after n steps: en(z) := f (z) − r(z)
▶ Greedy choice: take tn+1 := argmaxz∈Z |e(z)|

▶ then en+1(tn+1) = 0: interpolation property

▶ Basis { 1
z−t j
} chosen adaptively, depending on f

Desiderata:
▶ Approximation error ∥ f − r∥ decreases

▶
√

largest error position7→ 0

▶ “Basis matrix” Ci j =
1

Zn
i −t j

well conditioned

▶
√

’localization’
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Choice of support points {t j}

f (z) ≈ r(z) =
N(z)
D(z)

=

n∑
j=0

β j f j

z − t j

/ n∑
j=0

β j

z − t j
, z ∈ Z(n)

▶ Error after n steps: en(z) := f (z) − r(z)
▶ Greedy choice: take tn+1 := argmaxz∈Z |e(z)|

▶ then en+1(tn+1) = 0: interpolation property

▶ Basis { 1
z−t j
} chosen adaptively, depending on f

Desiderata:
▶ Approximation error ∥ f − r∥ decreases

▶
√

largest error position7→ 0
▶ “Basis matrix” Ci j =

1
Zn

i −t j
well conditioned

▶
√

’localization’
25/37



Sample points in AAA
In standard AAA, the sample points Z are given in advance.

▶ Often, equispaced or randomly drawn points in domain
▶ Often |Z| ≫ n, e.g. |Z| = 104 where degree n ≤ 100

(overkill? Issue when f is expensive to sample)
▶ When f has singularities (e.g. f (x) = |x|), need to cluster sample

points exponentially near them (but their location is often unknown)

Question: Can we automate the choice of sample points?

▶ Idea: Use support points to guide where more samples are needed
▶ Roughly: Sample three additional points between support points

Please see [Driscoll-N.-Trefethen (SISC, to appear)] for details (or chat later)
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Part II-b: roots of rational functions via eigenvalues

r(x) = p(x) +
p1(x)
q1(x)

+
p2(x)
q2(x)

+ · · ·
pn(x)
qn(x)

▶ barycentric form r(z) = N(z)
D(z) =

∑n
j=0
β j f j
z−t j

/∑n
j=0

β j
z−t j

, partial fraction,

continued fraction

Goal: compute the roots x0 of r s.t. r(x0) = 0

▶ Bisection, Newton etc...
▶ unclear how to verify all roots are computed

▶ “polynomialization”: compute roots of polynomial r(x)
∏n

i=1 qi(x) via
linearization
▶ taking product can cause numerical issues

▶ This work: linearization without polynomializing
▶ avoids numerical issues + easier to construct (Frobenius-style)
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Companion linearization: monomial basis xi

p(x) = xn + an−1xn−1 + · · · + a1x + a0

The companion linearization is

C =



−an−1 −an−2 . . . −a0

1
1

. . .

1


▶ eig(C) = roots(p)
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Colleague linearization: Chebyshev basis Ti(x)

p(x) = Tn(x) + an−1Tn−1(x) + · · · + a1T1(x) + a0T0(x)

Ti(x): Chebyshev polynomial

C =
1
2



−an−1 1 − an−2 −an−3 · · · −a0

1 0 1
. . .

. . .
. . .

1 0 1
2 0


▶ eig(C) = roots(p)
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Comrade linearization: orthogonal polynomial basis ϕi(x)

p(x) = ϕn(x) + an−1ϕn−1(x) + · · · + a1ϕ1(x) + a0ϕ0(x)

ϕi(x): orthogonal polynomial with recurrence

xϕi(x) = αiϕi+1(x) + βiϕi(x) + γiϕi−1(x)

C =



βn−1 − an−1 γn−1 − an−2 −an−3 · · · −a0

αn−2 βn−2 γn−2
. . .

. . .
. . .

α1 β1 γ1

α0 β0


▶ eig(C) = roots(p)

▶ Other extensions known: confederate (degree graded), congenial
(degree bounded)..., trigonometric polynomials
c +

∑k
i=1(ak sin kx + bk cos kx) [Boyd 2013]
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Companion-like linearizations: how?

p(x) = xn + an−1xn−1 + · · · + a1x + a0

For p(λ) = 0, 

−an−1 −an−2 . . . −a0

1
1

. . .

1





λn−1

λn−2

...

1


= λ



λn−1

λn−2

...

1


▶ Bottom n − 1 rows: λi = λi−1 · λ

▶ First row: p(x) = 0
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Companion-like linearizations: how?

p(x) = Tn(x) + an−1Tn−1(x) + · · · + a1T1(x) + a0T0(x)

For p(λ) = 0,

1
2



−an−1 1 − an−2 −an−3 · · · −a0

1 0 1
. . .

. . .
. . .

1 0 1
2 0





Tn−1(λ)
Tn−2(λ)

...

T0(λ)


= λ



Tn−1(λ)
Tn−2(λ)

...

T0(λ)


▶ Bottom n − 1 rows: 1

2 (Ti(λ) + Ti−2(λ)) = Ti−1(λ) · λ
▶ First row: p(λ) = 0
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Companion-like linearizations: how?

p(x) = ϕn(x) + an−1ϕn−1(x) + · · · + a1ϕ1(x) + a0ϕ0(x)

ϕi(x): orthogonal polynomial with recurrence

xϕi(x) = αiϕi+1(x) + βiϕi(x) + γiϕi−1(x)

For p(λ) = 0,

βn−1 − an−1 γn−1 − an−2 −an−3 · · · −a0

αn−2 βn−2 γn−2
. . .

. . .
. . .

α1 β1 γ1

α0 β0





ϕn−1(λ)
ϕn−2(λ)

...

ϕ0(λ)


= λ



ϕn−1(λ)
ϕn−2(λ)

...

ϕ0(λ)


▶ Bottom n − 1 rows: λϕi(λ) = αiϕi+1(λ) + βiϕi(λ) + γiϕi−1(λ)
▶ First row: p(λ) = 0 33/37



Linearization for rational function in partial fraction form
r(x) = p(x) +

n∑
i=1

ri

(x − γi)

p(x) = xd + ad−1xd−1 + · · · + a1x + a0: polynomial

Note: includes root/polefinding for barycentric r(z) =
∑n

j=0
β j f j
z−t j

/∑n
j=0

β j
z−t j

,

(Cy =)



−ad−1 −ad−2 . . . −a0 −r1 −r2 . . . rn

1
1

. . .

1 γ1

1 γ2
...

. . .

1 γn


y = λy, y =



λd−1

...

1
1
λ−γ1

1
λ−γ2
...
1
λ−γn


▶ eig(C) = roots(r) [Saad, El-Guide, Miedlar (19)]

▶ bottom rows: 1 + γi
λ−γi
= 1
λ−γi
· λ
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Example: ’Perfidious rational function’

r(x) = x +
15∑
i=1

1
x − 9 − i

▶ Polynomialize: p(x) = r(x)
∏15

i=1(x − 9 − i) has coefficients O(1018)
▶ Rational companion: ∥C∥2 ≈ 20
▶ eig: computes eigenvalues of C + ϵ∥C∥

maxi |r(x̂i)|
C for r(x) 4e-11
C for p(x) 6.8e+3

5 10 15 20 25
−5

0

5

10

15

 

 

ratcomp
polycomp

35/37



Linearization for continued fractions
r(x) = p(x) +

b1

x + a1 +
b2

x+a2+
b3

x+a3+···

p(x) = xn + an−1xn−1 + · · · + a1x + a0: polynomial (below shown as ∗)

C0 + λC1 =



∗ b1

1 −a1 −b2
. . .

. . .
. . .

1 −ak−1 −bk−1

1 −ak


+ λ


a0

1
. . .

1

 ,

with eigenvector (C0 + λC1)x = 0, x =



(poly)
...
1
λ+ak

λ+ak−1+
bk
λ+ak

1
λ+ak−1+

bk
λ+ak


.

▶ eig(C) = roots(r) [Salazer 23]

▶ bottom rows: g(x) :=
1

x+a2

x+a1+
b1

x+a2

, xg(x) = x
x+ak−1+

bk
x+ak

= 1 +
−ak−1−

bk
x+ak

x+ak−1+
bk

x+ak 36/37



’Perfidious rational function’, continued fraction
r(x) = x − 2 +

1
x − 1 + −1

x+2+ 1
x+3−···+1/(x+11)

▶ Polynomialize: p(x) = r(x)
∏15

i=1(x − 9 − i) has coefficients O(108)
▶ Rational companion: ∥C∥2 ≈ 10
▶ eig: computes eigenvalues of C + ϵ∥C∥

maxi |r(x̂i)|
C for r(x) 4e-4
C for p(x) 7.2e0

4 5 6 7 8 9
−2

0

2

4

6

8

10

x

 

 

polycomp
ratcomp
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Linearization for rational functions, more general form

r(x) = p(x) +
n∑

i=1

 mi∑
j=1

ri j

(x − γi) j

 , (1)

C =



−ad −ad−1 . . . −a0 −r11 . . . −r1m1 −r21 . . . −rnmn

1
1

. . .

1 γ1
. . .

. . .

1 γ1

1 γ2

1
. . .

1 γn


▶ eig(C) = roots(p) 38/37



Conclusion and discussion
Summary
▶ Linearize rational function without polynomializing

▶ typically reduced matrix norm, improved stability

Other things possible

▶ DL-type linearization
▶ Matrix rational functions (as opposed to scalars [Su,Bai 2011])

To be examined

▶ Conditioning
▶ Exploit structure (low-rank etc) in matrix case
▶ Trigonometric + polynomial (or rational)

Coming: more systematic framework using Schur complements (with
Vanni Noferini and Maria Quintana Ponce),

39/37



Chebyshev polynomials Tk(x)

Tk(cos θ) = cos kθ

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

 

 

k=1
k=2
k=3
k=4
k=5
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Chebyshev polynomials Tk(x)

Tk(cos θ) = cos kθ

0

2

4

10

20

−1
0

1
−1

0
1

k

x
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Polynomial bases and Chebyshev coefficients
p(x) expressed in

▶ monomial basis: p(x) =
∑n

i=0 cixi

▶ Chebyshev basis: p(x) =
∑n

i=0 ciTi(x)
▶ For smooth f ≈ p, |cn| → 0 as n→ ∞, often like |cn| = e−cn
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2D polynomial approximation by interpolation
Interpolation: find p(x, y) s.t.

f (xi, y j) = p(xi, y j), i = 0, 1, . . . , n, j = 0, 1, . . . ,m.

Chebyshev points (good)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Equispaced points (bad)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

▶ For sufficiently smooth f (x, y), with Chebyshev interpolation

∥ f − pn,m∥ ≤ Ce−c min(n,m)
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Bivariate polynomial approximation: f (x, y) ≈ p(x, y)

p(x, y) =
mp∑
i=0

np∑
j=0

Pi jTi(y)T j(x)
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Bivariate Chebyshev interpolation: convergence

f (x, y) = sin(5xy) cos(5y) exp((x + y)/10)

function

convergence:
∥ f (x, y) − p(x, y)∥∞

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

degree

er
ro

r
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Regularization for improved numerical stability
– B(y) is nearly singular: B(y) is ill-conditioned for every y

▶ decaying Chebyshev coefficients⇒ small bottom-right corner

Remedy-Regularization: partition B(y) as

B(y) =
B1(y) E(y)T

E(y) B0(y)

 ,
B1(y) is the largest numerically nonsingular part, i.e., for any y0 ∈ [−1, 1]

▶ ∥B0(y0)∥2 = O(u)
▶ ∥E(y0)∥2 = O(u1/2)

We prove eig(B1(y)) are within O(ϵ) of the desired eig(B(y))
⇒ work with B1(y), “more regular” (accurate) + efficient
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Example f (x) = ex on [−1, 1]
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Type (0,0) approximant

Red circle: support points 46/37



Example f (x) = ex on [−1, 1]
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Example f (x) = ex on [−1, 1]
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Example f (x) = |x| on [−1, 1]
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Example f (x) = |x| on [−1, 1]
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Support points cluster near singularities
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f (x) = exp(x)
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▶ For functions with singularities, support points cluster near them 48/37



Support points cluster near singularities
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▶ Support points cluster near singularities
▶ Informally: because hard to get error small there

▶ Hence support points useful for clustering sample points on the fly
▶ We’ll add three sample points between support points (i.e., six new

points per step)
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Continuum AAA: support+sample points
Sample points with aaax on x > 0, for f (x) = |x|:
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AAA vs. continuum AAA for |x|
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▶ AAA with equispaced sample points yield poor error near singularity
▶ Continuum AAA yields good accuracy with fewer samples
▶ Monitor poles on [−1, 1] (’bad poles’), ensure output is pole-free
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Example: f = @(x) abs(x); r = aaax(f)
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▶ red: bad poles (in [−1, 1]) present
▶ green: output, pole-free on [−1, 1] 52/37



NICONET Beam example
f (z) = cT (zI − A)−1b, A ∈ Cn×n, n = 348; f expensive to evaluate
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aaai succeeds with many fewer samples
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Linearization and orthogonal polynomials
▶ Polynomial linearization entries are coefficients in the three-term

recurrence, e.g. for Chebyshev

2xTn(x) = Tn+1(x) + Tn−1(x)

▶ Partial fraction linearization: two-term recurrence x 1
x−γi
= 1 + γi

x−γi

▶ Continued fraction is historically connected to orthogonal polynomials
(evaluation scheme via recursion), and the three-term recurrence
gives linearization coefficients

▶ For non-orthogonal polynomial bases, C is dense (e.g. Hessenberg)
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General rational function

r(x) = p(x) +
p1(x)
q1(x)

+
p2(x)
q2(x)

+ · · ·
pn(x)
qn(x)

C =



∗ b1

1 −a1 −b2
. . .

. . . bn

1 −an

1 γ1

1 γn



with eigenvector Cx = λx, x =



(poly)
...
1
λ+ak

λ+ak−1+
bk
λ+ak

1

λ+ak−1+
bk
λ+ak

1
λ−γ1
...
1
λ−γn


.

▶ eig(C) = roots(r)
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It is a strong linearization for polynomialization
C(λ) is a linearization for polynomial p(λ)⇔ C = E(λ)

[ p
I
]
F(λ) for

unimodular E, F, strong linearization if rev(C) = Ê(λ)
[ rev(p)

I
]
F̂(λ)

▶ The pencil belongs to L1 [Mackey, Mackey, Mehrmann, Mehl SIMAX 05],
although in a nonstandard polynomial basis

▶ L1 pencil is a strong linearization iff regular [YN,VN,AT preprint]

▶ Since our pencils are regular, they are a strong linearization

C is a linearization for r(x)
∏n

i=1 qi(x) (i.e. mathematically equivalent to
polynomializing, but numerically different)
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Stability in matrix⇒ stability in polynomial?
The computed x̂i are exact eigvals of a pertubed matrix pencil:

{x̂i} = eig(λ(X + ∆X) + (Y + ∆Y))

But stability in polynomial means x̂i are exact roots of p + ∆p:

p(x) + ∆p(x) = α
n∏

i=1

(x − x̂i), ∥∆p∥ ≤ ϵ∥p∥

▶ For companion, Van Dooren and prove stability if QZ is used

▶ For comrade (Chebyshev + Jacobi polynomial bases),
[YN and VN, Math. Comp.] proves stability, again if QZ is used
(QR can be unstable)

▶ For rational linearization, stability is open problem
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Applications: point-ellipsoid distance
Problem: find x on ellipsoid (x − b)T A−1(x − b) = K2 closest to origin
▶ KKT conditions are

(x − b)T A−1(x − b) = K2,

Ax = λ(x − b).

−5 0 5
−6

−4

−2

0

2

Writing A = QDQT and y := QT b, this leads to solving for λ

K2 =

n∑
i=1

diy2
i

(λ − di)2 .

⇒ eigenvalues of


K2 0 −y1 0 −y2

1 d1

1 d1

1 d2

1 d2


, then x = −(A − λI)−1b
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Take-home message
▶ Approximate with polynomials of high degree

▶ Often considered inaccurate (Newton(quadratic) > Halley (cubic)) and
unstable (Vandermonde matrix...)

▶ If properly implemented: accurate (global approximation instead of
local) and stable (Chebyshev basis + FFT)

▶ Replace algorithms based on linear approximation by local sampling
with high-degree polynomial approximation by global sampling(?)
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Explaining ∥ f − pn∥ ≤ O(log n)∥ f − pn,best∥: Lebesgue constants
▶ The Lebesgue constant Λ of {xi}

n
i=0 is

Λ = sup
f

∥Ln f ∥∞
∥ f ∥∞

(2)

Interpretation: Given data values on an (n + 1)-point grid from sampling ∥ f ∥∞ = 1, Λ
is the largest possible value of the interpolant p.

▶ Λ is an accurate measure of the interpolation points {xi}
n
i=0:

∥ f − pn∥∞ ≤ (Λ + 1)∥ f − pn,best∥∞.

▶ Characterization using Lagrange polynomials ℓ j(x) defined by
ℓ(x) =

∏n
i=0(x − xi), ℓi(x) = ℓ(x)

ℓ′(xi)(x−xi)
:

Λ = sup
x∈[−1,1]

n∑
j=0

|ℓ j(x)|.
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Explaining ∥ f − pn∥ ≤ O(log n)∥ f − pn,best∥: Lebesgue function

Λ = sup
x∈[−1,1]

n∑
j=0

|ℓ j(x)|.

∑n
j=0 |ℓ j(x)| is called the Lebesgue function of {xi}

n
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Matrix size

Resultant Size of Ai Degree Size of Cv = λEv

Bézout (y first) max(np, nq) mp + mq max(np, nq)(mp + mq)

Bézout (x first) max(mp,mq) np + nq max(mp,mq)(np + nq)

Sylvester (y first) np + nq max(mp,mq) max(mp,mq)(np + nq)

Sylvester (x first) mp + mq max(np, nq) max(np, nq)(mp + mq)

Table: Sizes and degrees of matrix polynomials constructed from the Bézout and
Sylvester resultant matrices. The product of the size of the Ai and degree is the
size of the resulting generalized eigenvalue problem Cv = λEv, which depends on
whether the x- or y-variable is solved for first. We use the Bézout resultant matrix
and solve for the y-values first if max(np, nq)(mp + mq) ≤ max(mp,mq)(np + nq); the
x-values first, otherwise.
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aaaz: on unit circle
Same idea, sample points on unit circle
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▶ Poles allowed in |z| < 1 (mero=1) or disallowed (mero=0, here)

▶ with Lawson steps (find minimax approx, [N.-Trefethen 2020])
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aaai: on imaginary axis
Use map

z = M
1 + w
1 − w

, w =
z − M
z + M

▶ z ∈ iR⇔ |w| = 1
▶ Then apply aaaz to f (w(z))
▶ M ∈ R arbitrary, we set to 1.207
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