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Outline

Polynomial systems via determinantal representations

I Zeros of p(x) = 0

I Zeros of p(x , y) = 0, q(x , y) = 0

Determinantal representations

I Two-parameter eigenvalue problem

I Connections with interesting long-standing open problems!
1902!

I Solving singular generalized eigenvalue problems

Related talk by Bor Plestenjak on 1 December
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Preview example

p(x , y) = 1 + 2x + 3y + 4x2 + 5xy + 6y2 + 7x3 + 8x2y + 9xy2 + 10y3

then p(x , y) = det(A + x B + y C ):
1 3 6
2 5 −1
4 −1
−1

−1


︸ ︷︷ ︸

A

+ x


9 1

8 1
7


︸ ︷︷ ︸

x B

+ y


10

1
1


︸ ︷︷ ︸

y C

I For n = 2 variables (x and y)

I a degree d polynomial

I leads to a size 2d − 1 uniform determinantal representation

“Uniform”: all coefficients affine-linear: of the form γ0 + γ1x + γ2y
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Simple form of main question

p(x) = x3 + a2x
2 + a1x + a0

Companion matrix

A =

 a2 a1 a0
−1

−1


satisfies det(A + xI ) = p(x) with “perfect size” of A: 3

How about

p(x , y) = a20x
2 + a11xy + a02y

2 + a10x + a01y + a0

Do there exist A, B, C with det(A + xB + yC ) = p(x , y) ?

And what about the minimal size of these matrices ?
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Zeros of polynomial in 1 variable

p(x) = xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0

Recall: differential equation y ′′(t) + y(t) = 0

Rewrite higher-order ODE to first-order:

Introduce z = y ′: then z ′ = y ′′ = −y and:[
y
z

]′
=

[
0 1
−1 0

] [
y
z

]
For polynomials, practical to introduce:

x1
x2
...
xd

 =


1
x
...

xd−1

 or in the opposite order
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Zeros of polynomial in 1 variable
p(x) = xd + ad−1x

d−1 + · · ·+ a1x + a0 = 0

Companion matrix approach:
−ad−1 · · · −a1 −a0

1
. . .

1


︸ ︷︷ ︸

A


xd−1

...
x
1

 = x


xd−1

...
x
1



Since:
I Zeros of p are eigenvalues of A
I Coefficient of p(x) = det(A− xI ) is ±1

Conclusion: A is a determinantal representation of p:
p(x) = ± det(A− xI )

Also the term linearization is frequently used, although in a
different sense than in Calculus: here exact, no approximation
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Zeros of polynomial in 1 variable
p(x) = xd + ad−1x

d−1 + · · ·+ a1x + a0 = 0

Companion matrix approach:
−ad−1 · · · −a1 −a0

1
. . .

1


︸ ︷︷ ︸

A


xd−1

...
x
1

 = x


xd−1

...
x
1



x solution to p(x) = det(A− xI ) = 0

=⇒ Can solve matrix eigenvalue problem Au = x u

Zeros often computed in this way, e.g., Matlab’s roots
% Polynomial roots via a companion matrix

n = length(c);

A = diag(ones(1,n-2,c),-1);

A(1,:) = -d;

r = eig(A);
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Determinantal representation in 1 variable −a2 −a1 −a0
1

1

 x2

x
1

 = x

 x2

x
1


 a2 a1 a0
−1

−1

 x2

x
1

 = −x
 x2

x
1



det

 x + a2 a1 a0
−1 x

−1 x

 = p(x)

Other way to see this: x + a2 a1 a0
−1 x

−1 x

 1 x
1

1

 =

 x + a2 x2 + a2x + a1 a0
−1

−1 x


 x + a2 x2 + a2x + a1 a0
−1

−1 x

 1
1 x

1

 =

 x + a2 x2 + a2x + a1 x3 + a2x2 + a1x + a0
−1

−1
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Determinantal representation in 1 variable

Determinantal representation / linearization of previous slide: x + a2 a1 a0
−1 x

−1 x


Slightly more general / flexible: a0 a1 a3x + a2

x −1
x −1


det = a3x

3 + a2x
2 + a1x + a0

Now:

I We can include the a3
I With column actions, p(x) appears on position (1,1)
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Determinantal representation in 1 variable

Determinantal representation / linearization : a0 a1 a3x + a2
x −1

x −1

 =

 a0 a1 a2
−1

−1


︸ ︷︷ ︸

A

+ x ·

 a3
1

1


︸ ︷︷ ︸

B

So key to efficient method: construction of A and B with

p(x) = det(A + xB)

Size of A and B = degree of polynomial d

Solving eigenvalue problem takes O(d3) flops

“Ideal situation”:

I Representation should be of size ≥ d

I . . . and d is also sufficient
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Outline

Polynomial systems via determinantal representations

I Zeros of p(x) = 0

⇒ Zeros of p(x , y) = 0, q(x , y) = 0

Determinantal representations

I Two-parameter eigenvalue problem

I Connections with interesting long-standing open problems!
1902!

I Solving singular generalized eigenvalue problems
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Zeros of 2 polynomial in 2 variables
p(x , y) = a30x

3+a21x
2y+a12xy

2+a03y
3+a20x

2+a11xy+a02y
2+a10x+a01y+a0

q(x , y) = b30x
3+b21x

2y+b12xy
2+b03y

3+b20x
2+b11xy+b02y

2+b10x+b01y+b0

Bézout’s Theorem
System with 2 polynomials of degree d generically has d2 roots
(including multiplicity, roots may be ∞)

Determinantal representation: find:

I A1,B1,C1 with p(x , y) = det(A1 − xB1 − yC1)

I A2,B2,C2 with q(x , y) = det(A2 − xB2 − yC2)

Then this leads to two-parameter eigenvalue problem

A1u = x B1u + y C1u
A2v = x B2v + y C2v

Size of matrices should be as small as possible!

Big question: is d × d possible ??
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Size of determinantal representation

What is the minimal size of a determinantal representation?

Question solved for p(x):

I Degree of p(x) = det(A− xI ) is ≤ d in x
so size should be ≥ d

I Companion matrix is a construction of size d that does the job

However, for p(x , y) the situation is already much more complex!

I Dixon (1902):

∃ symmetric determinantal representation of size d

I . . . but no explicit construction . . .

I Open question since 1902!

I Plestenjak (2017): construction of nonsymmetric
linearization of size d , involving some computations

I Fast, but roots may be (very) inaccurate for d > 10
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Size representations

I Dixon (1902!): ∃ symmetric linearization of size d

However, not constructive!

I Quarez (2007): symmetric linearization of size 1
4d

2

I Plestenjak, H. (2015): nonsymmetric linearization of size 1
4d

2

or 1
6d

2 with some minor computations

I Boralevi, Van Doornmalen, Draisma, H., Plestenjak (2017):
nonsymmetric linearization, size 2d − 1 without computations

I Open problem if 2 can be improved (without computations),
but conjecture is: impossible

I Plestenjak (2017): size d , nonsymmetric, with computations
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Determinantal representation in 2 variables

p(x , y) = a10x + a01y + a00: already is a 1× 1 representation

p(x , y) = a20x
2 + a11xy + a02y

2 + a10x + a01y + a00

det

 a10x + a01y + a00 a20x + a11y y
x −1

a02y −1

 = p(x , y)

∼
 a20x2 + a11xy + a10x + a01y + a00 a20x + a11y y

−1
a02y −1


∼

 a20x2 + a11xy + a02y2 + a10x + a01y + a00 a20x + a11y
−1

a02y −1


In a similar way we can construct size 2d − 1 linearization for
degree d , without computations!

Just insert the coefficients on certain locations
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Construction without computations

 a10x + a01y + a00 a20x + a11y y
x −1

a02y −1

 =: A + xB + yC

A =

 a00
−1

−1

, B =

 a10 a20
1

, C =

 a01 a11 1

a02



So, unfortunately, in contrast to Dixon (1902) this linearization:

I is not of size d but 2d − 1

I is not symmetric

But it is “uniform” (so no computations)
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Outline

Polynomial systems via determinantal representations

I Zeros of p(x) = 0

I Zeros of p(x , y) = 0, q(x , y) = 0

Determinantal representations

⇒ Two-parameter eigenvalue problem

I Connections with interesting long-standing open problems!
1902!

I Solving singular generalized eigenvalue problems
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Two-parameter eigenvalue problem

So we have rewitten:

p(x , y) = 0 → det(A1 + x B1 + y C1) = 0

q(x , y) = 0 → det(A2 + x B2 + y C2) = 0

To solve this: two-parameter eigenvalue problem

This increases size from 2d − 1 to (2d − 1)2

19 / 36



Two-parameter eigenvalue problem

A1u = λB1u + µC1u
A2v = λB2v + µC2v

It is known how to solve this: Atkinson 1972

∆0 = B1 ⊗ C2 − C1 ⊗ B2 operator determinants

∆1 = A1 ⊗ C2 − C1 ⊗ A2

∆2 = B1 ⊗ A2 − A1 ⊗ B2

(A1 ⊗ C2 − C1 ⊗ A2)(u ⊗ v)

= (λB1 ⊗ C2 − µC1 ⊗ C2 − λC1 ⊗ B2 + µC1 ⊗ C2)(u ⊗ v)

= λ (B1 ⊗ C2 − C1 ⊗ B2)(u ⊗ v)

(B1 ⊗ A2 − A1 ⊗ B2)(u ⊗ v)

= (λB1 ⊗ B2 + µB1 ⊗ C2 − λB1 ⊗ B2 − µC1 ⊗ B2)(u ⊗ v)

= µ (B1 ⊗ C2 − C1 ⊗ B2)(u ⊗ v)

So: ∆1z = λ∆0z , ∆2z = µ∆0z , z = u ⊗ v
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Two-parameter eigenvalue problem

Pro and con:

I Decoupling to 2 generalized eigenvalue problems with same
eigenvectors:

I ∆1(u ⊗ v) = λ∆0(u ⊗ v)

I ∆2(u ⊗ v) = µ∆0(u ⊗ v)

I . . . but of size n2 !
Solving these takes O(n6) operations
These costs are common for solving p(x , y) = 0, q(x , y) = 0
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Effect of linearization being “too large”
Example: p(x , y), q(x , y) polynomials of degree 10

Bézout: 100 solutions
I Ideal determinantal representations: 10× 10 (Dixon)

∆ matrices in ∆1w = λ∆0w and ∆2w = µ∆0w : 100× 100

I 1
4d

2 determinantal representations: 35× 35
∆ matrices 1225× 1225

I 1
6d

2 determinantal representations: 24× 24
∆ matrices 576× 576

I 2d − 1 determinantal representations: 19× 19
∆ matrices 361× 361

Recall: eigenvalue problem takes O(`3) work for size `

So before representations of O(d), this took O(d12) work!

p degree d ⇒ detrep size O(d2) ⇒ ∆ size O(d4) ⇒ work O(d12)

Or even more because of “iterative shrinking” of matrices
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Effect of linearization being “too large”

Apart from the work (100 vs 361), there is an even bigger
challenge:

Unless the determinantal representation is of perfect size,
the GEPs ∆1z = λ∆0z and ∆2z = µ∆0z are both singular

I.e.: pencil ∆1 − λ∆0 singular for all λ ∈ C

More about this soon
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Sizes for n = 2 variables and degree d

Sizes determinantal representations for p(x , y) with degree d

Degree 3 4 5 6 7 8 9 10 11 12

Lin1 1
4
d2 5 8 11 15 19 24 29 35 41 48

Lin2 1
6
d2 3 5 8 10 13 17 20 24 29 34

MinUnif 2d − 1 5 7 9 11 13 15 17 19 21 23

Recall: for d = 10 this gives ∆-matrices of size

352 = 1225, 242 = 576, 192 = 361

And costs to solve eigenproblem are at least cube of this
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Sizes for n variables and degree d

n d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

2 3 5 7 9 11 13 15 17
3 4 7 10 14 18 22 27 34
4 5 9 14 19 26 34 44
5 6 11 18 26
6 7 13 22 33
7 8 15 27 39
8 9 17 32

I Given p in n variables and degree d , this is the smallest known
size of linearization A,B,C with p(x , y) = det(A− xB − yC )

I For n ≥ 3 NP-hard problem (e.g., Turán number)

so already for p(x , y , z) = 0, q(x , y , z) = 0, r(x , y , z) = 0
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Sizes for n variables and degree d

n d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

2 3 5 7 9 11 13 15 17
3 4 7 10 14 18 22 27 34
4 5 9 14 19 26 34 44
5 6 11 18 26
6 7 13 22 33
7 8 15 27 39
8 9 17 32

Example: p and q, degree d = 8 in x and y (so n = 2):

I Linearizations of size 2d − 1 = 15 (A1, B1, C1, A2, B2, C2)

I ∆ matrices of size d2 = 152 = 225
∆0 = B1 ⊗ C2 − C1 ⊗ B2, ∆1 = B1 ⊗ C2 − C1 ⊗ B2

I Eigenvalue problem takes O((d2)3) = O(d6) work

I Pencil (∆1,∆0) is singular; size 225 but only 64 solutions

I In past, best linearization size was 1
4d

2 !
This is already very encouraging!
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Difficulty use for n ≥ 3 variables: p(x , y , z) = 0, . . .

n d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

2 3 5 7 9 11 13 15 17
3 4 7 10 14 18 22 27 34
4 5 9 14 19 26 34 44

Example: 3 variables x , y , z p(x , y , z) degree d = 4

2 variables: tensor product ∆0 = B1 ⊗ C2 − C1 ⊗ B2

3 variables: tensor products with terms such as
B1 ⊗ C2 ⊗ D3: size 103 = 1000 !

So ∆1u = λ∆0u gives 1000 solutions
but the polynomial system has only 43 = 64 roots

Example: 4 variables x , y , z , w p(x , y , z ,w) degree d = 3

So ∆ matrices size 94 = 6561, very expensive! Only 34 = 81 roots!
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Experiments

Average milliseconds for Lin1, Lin2, MinUnif, and PHCLab for random
bivariate polynomial systems of degree 3 to 15

For Lin1 and MinUnif results are split for real/complex polynomials.

d Lin1 (R) Lin1 (C) Lin2 PHCLab MinUnif (R) MinUnif (C)
1
4
d2 1

4
d2 1

6
d2 2d − 1 2d − 1

3 6 8 4 116 6 7
4 9 11 6 130 12 13
5 20 26 13 151 18 20
6 39 71 28 174 27 27
7 96 160 51 217 36 44
8 205 395 118 264 59 74
9 467 1124 279 329 95 125

10 1424 3412 600 414 147 221
11 538 248 354
12 650 361 530
13 911 592 740
14 1142 842 1148
15 1531 1237 1835
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Asymptotic size: work with algebra colleagues
Boralevi, Van Doornmalen, Draisma, H., Plestenjak (2017)

Minimal size of any uniform determinantal representation:

Fixed n, d →∞: size ∼
√
dn

previously known upper bound: O(dn)

Fixed d , n→∞: size ∼
√
nd

In particular, for n = 2 (2 variables x and y), degree d →∞,
size ∼ d

The best uniform size we have been able to find is 2d − 1

Is smaller size: d ≤ size < 2d − 1 possible??

E.g.: Degree 10 polynomials, size 19 is best currently known

This leads to 192 = 361 matrices for the MEP, but because of
Alsubaie compression, this is reduced to 316
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Singular generalized eigenvalue problem (GEP)

Another very interesting aspect:

GEPs ∆1z = λ∆0z and ∆2z = µ∆0z are both singular

I.e.: pencil ∆1 − λ∆0 singular for all λ ∈ C

Introduce normal rank: nrank(A,B) = maxζ∈C rank(A− ζB)

λ is an eigenvalue if rank(A− λB) < nrank(A,B)

Solution methods:

I eig fails

I Staircase method: guptri

(Van Dooren 1979; Demmel, Kagstrom 1993)

iteratively “cutting away” singular part of pencil,
may be very time-consuming

I Alternative: rank-completing perturbation
H., Mehl, Plestenjak (2019)
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Singular generalized eigenvalue problem (GEP)

Rank-completing perturbation, main ideas:

I Update (A,B)→ (A + E , B + F ), random perturbations

Generically, new pencil is no longer singular

However, we perturb all eigenvalues

Very difficult to see which new eigenvalues corresponds to
true eigenvalues

I Update (A,B)→ (A + τ U DA V ∗, B + τ U DB V ∗)

U, V ∈ Rn×k : rank k = n − nrank(A,B)

DA, DB : diagonal k × k (prescribe ourselves)

random rank-completing perturbation
Perturbation just enough such that new pencil is nonsingular

and we do not touch original true eigenvalues

31 / 36



Determinantal representations and singular GEP

H., Mehl, Plestenjak (2019, 2023):

I Random rank-completing perturbation of rank n − r

I Random projection of dimension r

I Random augmentation

Ex: p(x , y) = 0, q(x , y) = 0, both degree 10
There are 100 roots, but det. rep. and MEP
det(Ai + x Bi + y Ci ) = 0 are of size 19,
so corresponding GEP ∆1z = x ∆0 z is of size 192 = 361

Pair (∆1, ∆0) is of rank 280, so there are 3 options:

I Rank-completing perturbation of rank 361− 280 = 81

I Rank projection onto dimension 280

I augmentation to size 361 + 81 = 442
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Many links with KU Leuven group

I De Moor (2019, 2020)

Vermeersch, De Moor (2019, 2022, 2023)

Multivariate polynomial system → rectangular MEP
Approach via block Macaulay matrices
Interesting applications: ARMA model, LTI model

Related alternative approach: rectangular MEP → MEP
Bor Plestenjak, talk 1 December

I Lagauw, De Moor, Mauricio Agudelo (2022): model reduction
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Conclusions

I Dixon: ∃ “perfect” symmetric linearization of degree d

I . . . but proof not constructive: open since 1902!

I Quarez (2012): symmetric linearization size 1
4d

2

I . . . but ∆-matrices O(d4) and eigenvalue problem O(d12+)

I 2017: nonsymmetric uniform linearization size 2d − 1,
no computations; work O(d6)

I Or “a bit more”, since pencil (A,B) is singular

I Competitive with state-of-the-art
(Mathematica, SOSTOOLS, PHCpack, Vermeersch–De Moor! . . . )

I Classical problem with many different math aspects:
algebra, linear algebra, numerics, tensors, O(d6+) work,
singular GEP, theory vs. practice (rank decisions), . . .
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Many fascinating open problems

I For n = 2 (2 variables x and y), and degree d ,
is size 2d − 1 matrices the best we can do ?

Improvement would have big impact, in view of work ∼ (2d)6

I Construction for original Dixon Theorem (1902) is still open !
How to find symmetric det. representation of size d ?
Bor Plestenjak has a construction for nonsymmetric of size d ,
but stability is an issue

I Can algorithms exploit symmetry of the matrices ?

I For 4 variables and degree 4, there are only 44 = 256 roots.
Determinantal representation is only of size 14, quite modest.

But eigenvalue approach: based on matrices of form
∆ = A⊗ B ⊗ C ⊗ D of size 144 = 38416 . . .
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