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Why Study Polynomial Equations?

– fundamental mathematical objects

– powerful modelling tools

– ubiquitous in Science and Engineering (often hidden)

Systems and Control Signal Processing Computational Biology Kinematics/Robotics
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Polynomial root-finding has a long and rich history. . .

Egypt Babylon Euclid Diophantus Al-Khwarizmi
(3000BCE-300BCE) (3000BCE-539BCE) (fl. 300BCE) (c200-c284) (c780-c850)

Zhu Shijie Pierre de Fermat René Descartes Isaac Newton Gottfried Leibniz
(c1260-c1320) (c1601-1665) (1596-1650) (1643-1727) (1646-1716)
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Etienne Bézout
(1730-1783)

Carl Friedrich Gauss
(1777-1755)

Jean-Victor Poncelet
(1788-1867)

Evariste Galois
(1811-1832)

Arthur Cayley
(1821-1895)

Leopold Kronecker
(1823-1891)

Edmond Laguerre
(1834-1886)

James J. Sylvester
(1814-1897)

Francis S. Macaulay
(1862-1937)

David Hilbert
(1862-1943)
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. . . leading to Algebraic Geometry (and computer algebra)

– large body of literature

– emphasis not (anymore) on solving equations

– computer algebra: symbolic manipulations (e.g., Gröbner Bases)

– numerical issues!

Wolfgang Gröbner
(1899-1980)

Bruno Buchberger
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Back to the roots! Let’s use linear algebra!?

– comprehensible and accessible language

– intuitive geometric interpretation

– computationally powerful framework

– well-established methods and stable numerics



10/36

Outline

The history of polynomial system solving

Univariate polynomials and eigenvalue decompositions

Multivariate polynomial systems

Overdetermined polynomial equations

Recent developments in the Macaulay spirit

Conclusions and Perspectives



11/36

Eigenvalue decompositions are at the core of root-finding

Eigenvalue equation
Av = λv

and eigenvalue decomposition

A = VΛV−1

Enormous importance in (numerical) linear algebra and apps

– ‘understand’ the action of matrix A

– at the heart of a multitude of applications: oscillations,
vibrations, quantum mechanics, data analytics, graph theory,
and many more
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From eigenvalues to roots . . . and back

Characteristic Polynomial
The eigenvalues of A are the roots of

p(λ) = |A− λI |

Companion Matrix
Solving

q(x) = 7x3 − 2x2 − 5x + 1 = 0

leads to  0 1 0
0 0 1

−1/7 5/7 2/7

 1
x
x2

 = x

 1
x
x2
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The Sylvester matrix is used for finding common roots
of multiple univariate polynomials

Consider two polynomial equations

f (x) = x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3)
g(x) = −x2 + 5x − 6 = −(x − 2)(x − 3)

Common roots if |S(f , g)| = 0

S(f , g) =


−6 11 −6 1 0

0 −6 11 −6 1

−6 5 −1 0 0
0 −6 5 −1 0
0 0 −6 5 −1

 James Joseph Sylvester
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Sylvester’s construction can be understood from



1 x x2 x3 x4

f (x)=0 −6 11 −6 1 0
x ·f (x)=0 −6 11 −6 1
g(x)=0 −6 5 −1
x ·g(x)=0 −6 5 −1
x2·g(x)=0 −6 5 −1




1 1
x1 x2

x2
1 x2

2

x3
1 x3

2

x4
1 x4

2

 = 0

where x1 = 2 and x2 = 3 are the common roots of f and g
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The vectors in the Vandermonde-like null space K obey a ‘shift
structure’: 

1
x
x2

x3

 x =


x
x2

x3

x4


The Vandermonde-like null space K is not available directly,
instead we compute Z , for which ZV = K . We now have

KD = K

ZVD = ZV

leading to the (generalized) eigenvalue problem

ZV = ZVD
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Generalizing the Sylvester matrix to the multivariate case
leads to the Macaulay matrix

Consider the system

p(x , y) = x2 + 3y2 − 15 = 0
q(x , y) = y − 3x3 − 2x2 + 13x − 2 = 0

Matrix representation of the system: Macaulay matrix M


1 x y x2 xy y2 x3 x2y xy2 y3

p(x ,y) −15 1 3
x ·p(x ,y) −15 1 3
y ·p(x ,y) −15 1 3
q(x ,y) −2 13 1 −2 −3





18/36

p(x , y) = x2 + 3y2 − 15 = 0
q(x , y) = y − 3x3 − 2x2 + 13x − 2 = 0

Continue to enlarge the Macaulay matrix M:

1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y x2y2 xy3 y4 x5 x4y x3y2x2y3 xy4 y5→
d = 3

p − 15 1 3

xp − 15 1 3

yp − 15 1 3

q − 2 13 1 − 2 − 3

d = 4

x2p − 15 1 3

xyp − 15 1 3

y2p − 15 1 3

xq − 2 13 1 − 2 − 3

yq − 2 13 1 − 2 − 3

d = 5

x3p − 15 1 3

x2yp − 15 1 3

xy2p − 15 1 3

y3p − 15 1 3

x2q − 2 13 1 − 2 − 3

xyq − 2 13 1 − 2 − 3

y2q − 2 13 1 − 2 − 3

↓ .
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
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– Macaulay coefficient matrix M:

M =

[ × × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

]

– solutions generate vectors in null space

MK = 0

– number of solutions m = nullity (provided
M large enough)

Multivariate Vandermonde
basis for the null space:

1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

x2
1 x2

2 . . . x2
m

x1y1 x2y2 . . . xmym

y2
1 y2

2 . . . y2
m

x3
1 x3

2 . . . x3
m

x2
1 y1 x2

2 y2 . . . x2
mym

x1y2
1 x2y2

2 . . . xmy2
m

y3
1 y3

2 . . . y3
m

x4
1 x4

2 . . . x4
4

x3
1 y1 x3

2 y2 . . . x3
mym

x2
1 y

2
1 x2

2 y
2
2 . . . x2

my
2
m

x1y3
1 x2y3

2 . . . xmy3
m

y4
1 y4

2 . . . y4
m

...
...

...
...
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Select the ‘top’ m linear independent
rows of K

S1 K



1 1 . . . 1

x1 x2 . . . xm

y1 y2 . . . ym

x2
1 x2

2 . . . x2
m

x1y1 x2y2 . . . xmym

y2
1 y2

2 . . . y2
m

x3
1 x3

2 . . . x3
m

x2
1 y1 x2

2 y2 . . . x2
mym

x1y2
1 x2y2

2 . . . xmy2
m

y3
1 y3

2 . . . y3
m

x4
1 x4

2 . . . x4
4

x3
1 y1 x3

2 y2 . . . x3
mym

x2
1 y

2
1 x2

2 y
2
2 . . . x2

my
2
m

x1y3
1 x2y3

2 . . . xmy3
m

y4
1 y4

2 . . . y4
m

...
...

...
...
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Shifting the selected rows gives (shown for 3 columns)

1 1 1
x1 x2 x3
y1 y2 y3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3

y2
1 y2

2 y2
3

x3
1 x3

2 x3
3

x2
1 y1 x2

2 y2 x2
3 y3

x1y
2
1 x2y

2
2 x3y

2
3

y3
1 y3

2 y3
3

x4
1 x4

2 x4
4

x3
1 y1 x3

2 y2 x3
3 y3

x2
1 y

2
1 x2

2 y
2
2 x2

3 y
2
3

x1y
3
1 x2y

3
2 x3y

3
3

y4
1 y4

2 y4
3

.

.

.

.

.

.

.

.

.


→ “shift with x”→



1 1 1
x1 x2 x3
y1 y2 y3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3

y2
1 y2

2 y2
3

x3
1 x3

2 x3
3

x2
1 y1 x2

2 y2 x2
3 y3

x1y
2
1 x2y

2
2 x3y

2
3

y3
1 y3

2 y3
3

x4
1 x4

2 x4
4

x3
1 y1 x3

2 y2 x3
3 y3

x2
1 y

2
1 x2

2 y
2
2 x2

3 y
2
3

x1y
3
1 x2y

3
2 x3y

3
3

y4
1 y4

2 y4
3

.

.

.

.

.

.

.

.

.


simplified:

1 1 1
x1 x2 x3
y1 y2 y3

x1y1 x2y2 x3y3

x3
1 x3

2 x3
3

x2
1 y1 x2

2 y2 x2
3 y3

[
x1

x2
x3

]
=


x1 x2 x3

x2
1 x2

2 x2
3

x1y1 x2y2 x3y3

x2
1 y1 x2

2 y2 x2
3 y3

x4
1 x4

2 x4
4

x3
1 y1 x3

2 y2 x3
3 y3
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– finding the x-roots: let Dx = diag(x1, x2, . . . , xs), then

S1 KDx = Sx K ,

where S1 and Sx select rows from K wrt. shift property

– reminiscent of Realization Theory
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We have
S1 KDx = Sx K

However, K is not known, instead a basis Z is computed that satisfies

ZV = K

Which leads to

(SxZ )V = (S1Z )VDx
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It is possible to shift with y as well. . .

We find
S1KDy = SyK

with Dy diagonal matrix of y -components of roots, leading to

(SyZ )V = (S1Z )VDy

Some interesting results:

– same eigenvectors V !

– (SyZ )−1(S1Z ) and (SxZ )−1(S1Z ) commute
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Algorithm

1 Fix a monomial ordering scheme

2 Construct coefficient matrix M to sufficiently large dimensions

3 Compute basis for nullspace of M: nullity s and Z

4 Find s linear independent rows in Z

5 Choose shift function, e.g., x

6 Solve the GEVP
(S2Z )V = (S1Z )VDx

S1 selects linearly independent rows in Z
S2 selects rows that are ‘hit’ by the shift

(S1Z and S2Z can be rectangular as long as S1Z contains s linear
independent rows)
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Roots at infinity? Mind the Gap!

– dynamics in the null space of M(d) for increasing degree d

– nilpotency gives rise to a ‘gap’

– mechanism to count and separate affine from infinity
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The NLA approach allows for overdetermined systems

Can we ’solve’ overdetermined systems of polynomial
equations?

Not feasible using (exact) computer algebra methods
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System of completely intersecting quadratic bivariate equations

x2 + y2 − 3xy − x − 6 = 0

2x2 − y2 + 3xy − y − 6 = 0

-3 -2 -1 0 1 2 3 4 5

x
1

-5

0

5

10

x
2

- 8 repetitions of each equation with perturbed coefficients
(SNR 40 dB)

- 16 equations in 2 unknowns
- (approximate) rank decisions
- extracts 4 ’approximate’ solutions
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Recent advances in the Macaulay spirit

Computing state-recursion polynomials
Batselier K., Wong N., “Computing the state recursion polynomials for
discrete linear mD systems”, Automatica, vol. 64, pp.254-261, 2016.

“The CPD appears to be the joint EVD of the multiplication tables”
Vanderstukken J., Stegeman A., De Lathauwer L., “Systems of
polynomial equations, higher-order tensor decompositions and
multidimensional harmonic retrieval: A unifying framework.” (two-part
paper), KU Leuven ESAT-STADIUS TR 17-133 and TR 17-134, 2017.

Block-shifting with an objective function
Vermeersch C., De Moor B., “Globally Optimal Least-Squares ARMA
Model Identification is an Eigenvalue Problem”, IEEE Control Systems
Letters, 3:4, 1062–1067, 2019.

Adapting the choice of basis for improved numerical stability
Telen S., Mourrain B., Van Barel M., “Solving Polynomial Systems via
Truncated Normal Forms”, SIAM J Matrix Anal Appl, 39:3, 1421–1447,
2018.
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Conclusions

– bridging the gap between algebraic geometry and (numerical)
linear algebra

– finding roots: (numerical) linear algebra (and realization the-
ory)!

– extension to over-constrained systems
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Open Problems

Many challenges remain

– exploiting sparsity and structure of M

– efficient (more direct) construction of the eigenvalue problem

– replace SVD by structured low-rank approximation of M

Dreesen P., Batselier K., De Moor B., “Multidimensional
realisation theory and polynomial system solving”, Int J Control,
91:12, pp. 2692–2704, 2018. (arXiv 1805.02253)
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Thank you for listening!
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