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The eigenvalue problem (EVP) is fundamental and ubiquitous in science and engineering. Its theory, applications
and algorithms have been described abundantly. For the multiparemeter eigenvalue problem (MEVP), our
theoretical and algorithmic understanding is much less elaborate (early references include [1] [2]). This de�ciency is
deplorable as applications of the MEVP are also ubiquitous in science and engineering.
In this contribution, we will discuss theory, algorithms and applications for MEVPs, using a combination of insights
from (multi-)dimensional system theory (realization algorithms, see e.g. [3]), algebraic geometry (multivariate poly-
nomials, ideals and varieties, see e.g. [4]), operator theory (shift-invariant model spaces, see e.g. [5] [6]) and numerical
linear [7] or polynomial [8] algebra. The MEVP is to �nd the non-trivial eigenvectors x ∈ Cn and the eigentuples
λi ∈ C, i = 1, . . . , p in

(A0 +A1λ1 + . . .+Apλp)x = 0 , (57)

where the matrices Ai ∈ Rm×n with m ≥ n contain the problem data. Special cases are the square (Jordan Canonical
Form), generalized square (Weierstrass Canonical Form) and rectangular (Kronecker Canonical Form) EVP.
For the sake of clarity of exposition, we consider 5 `prototypical' cases, each of which starts with one or more (mul-
tivariate) polynomial `seed equation(s)', from which new (equivalent) equations are generated by multiplying them
with all monomials of increasing degree. With this forward shift recursion (FSR), we create structured matrices
('quasi-Toeplitz'), the null spaces of which have special, shift-invariant properties that can be exploited to calculate
the solutions of the seed equations via one or several EVPs.
Case 1: Single shift scalar banded Toeplitz matrix: The `seed equation' is a univariate polynomial p(λ) of
degree n in a single variable λ. The FSR generates a banded Toeplitz matrix, the null space of which has the structure
of a (con�uent) Vandermonde matrix, or (in system theory terms) an observability matrix of a linear time-invariant
(LTI) system with a single output. By exploiting the shift-invariant structure, the roots of the characteristic equation
(the eigenvalues) can be calculated via realization theory.
Case 2: Single shift scalar Sylvester matrix: The `seed problem' here is to �nd the common roots of two
univariate polynomials p(λ) = 0 and q(λ) = 0. The FSR generates a Sylvester matrix. Its nullity reveals the number
of common zeros and its null space can be shown to be shift-invariant. The common roots are then obtained via a
realization algorithm.
Case 3: Single shift block banded Toeplitz matrix: The `seed problem' is the polynomial matrix eigenvalue
problem (A0 + A1λ + A2λ

2 + . . . + Apλ
p)x = 0, where the real matrices Ai ∈ Rm×n,m ≥ n are given. The FSR

for this case generates a block banded Toeplitz matrix. Again, its nullity reveals the number of roots, that can be
calculated from several EVPs, by exploiting the block shift structure of the null space via realization theory.
Case 4: Multi-shift scalar Macaulay matrix: The `seed equations' form a set of multivariate polynomials. We
want to �nd their common roots. The FSR generates a quasi-Toeplitz matrix, called a Macaulay matrix. The nullity
equals the Bezout number (i.e. the number of a�ne zeros and zeros at in�nity), which can be found by exploiting
the multi-shift invariant structure of the null space and applying multi-dimensional realization algorithms to it.
Case 5: Multi-shift block Macaulay matrix: The `seed problem' is the polynomial multi-parameter eigenvalue
problem. As an example, for p = 2, with 2 parameters λ1 and λ2, it is of the form (A00 +A10λ1 +A01λ2 +A20λ

2
1 +

A11λ1λ2 +A02λ
2
2 + . . .)x = 0 with Aij ∈ Rm×n,m ≥ n, with an obvious generalization for p variables. The FSR now

generates a block Macaulay matrix, the nullity of which corresponds to the number of solutions. We demonstrate
how its null space can be modelled as the observability matrix of a p-dimensional discrete shift invariant state space
model with multiple outputs.

For each of these cases, we describe how, starting from the 'seed equation(s)', the FSR generates structured, sparse,
quasi-(block)-Toeplitz matrices, the null spaces of which are scalar or vector, single- or multi-shift invariant projec-
tive subspaces. They can be 'modelled' as observability matrices of (possibly) singular, autonomous, commutative,
(multi-)dimensional discrete shift-invariant dynamical systems [9]. Obtaining the null space is an exercise in linear
algebra (e.g. via the SVD), while exploiting the (multi-)shift invariant structure leads to several EVPs, that together
deliver all the (common) roots of the seed equation(s).

As a special application we discuss the computation of the global minimum of a multivariate polynomial optimization
problem, which corresponds to calculating the minimizing root of a MEVP of the form (57). Important engineer-
ing examples include the identi�cation of LTI dynamic models from observed data, where a sum-of-squares of the
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so-called prediction errors is minimized [10]. There is a rich variety of model classes like ARMA(X), Box-Jenkins,
etc., which have been described abundantly in the statistical and engineering literature, the identi�cation of which
requires the solution of a nonlinear least squares optimization problem. All known algorithms are heuristic (local
minima, convergence behavior, etc.). But a crucial observation (see e.g.[11]) is the fact that all these models and the
objective function are multivariate polynomial. As a consequence, one only needs to �nd the minimizing solution of
an MEVP of the form (57), a fact that we consider to be a fundamental breakthrough.
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