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Strategy

• presented at Selma retreat in Mons, January 2019
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Strategy
• presented at Selma retreat in Mons, January 2019

• improved during Selma project1
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1Bart De Moor, Least squares optimal realisation of autonomous LTI systems is an
eigenvalue problem, Communications in Information and systems, vol. 20, no. 2, pp.
163–207, 2020
Christof Vermeersch and Bart De Moor, Globally optimal least-squares ARMA model
identification is an eigenvalue problem, IEEE Control Systems Letters (L-CSS), vol. 2,
no. 4, pp. 1062–1067, 2019
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Overview

• The multiparameter eigenvalue problem (MEP)

• Solving an MEP using a block Macaulay matrix: simple example

• MEPs from identification problems

• Recent progress

1. Algorithms
2. Theory
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The multiparameter eigenvalue problem (MEP)

• Standard eigenvalue problem (SEP)

(A− λI) v = 0

• Generalized eigenvalue problem (GEP)

(A− λB) v = 0

• Polynomial eigenvalue problem (PEP)(
P0 + P1λ+ · · ·+ Pkλ

k
)
v = 0

• Multiparameter eigenvalue problem (MEP)

example: 3-parameter (λ1, λ2, λ3) eigenvalue problem of degree 4(
P000 + P100λ1 + P002λ

2
3 + P013λ2λ

3
3

)
v = 0
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Solving an MEP using a block Macaulay matrix

• working example

(P00 + P10λ+ P01µ)v = 0

P00=

 2 −5
−2 −1
5 −1

, P10=

 3 0
3 −1

−3 2

, P01=

 2 2
3 2

−2 −4


find the eigenvalue tuples (λ, µ) and eigenvectors v

• three solutions (one real, two complex, no solutions at infinity)

λ1 = 3.4536 µ1 = 1.1169 v1 =

(
0.1862
0.9825

)
λ2 = −0.2268 + 1.4608i µ2 = 0.4415− 0.7775i v2 =

(
−0.4946 + 0.5971i
−0.5972 + 0.2053i

)
λ3 = −0.2268− 1.4608i µ3 = 0.4415 + 0.7775i v3 =

(
−0.4946− 0.5971i
−0.5972− 0.2053i

)
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• create extra equations

(P00 + P10λ+ P01µ)v= 0

λ(P00 + P10λ+ P01µ)v= 0

µ(P00 + P10λ+ P01µ)v= 0

• result: block-Macaulay matrix M

P00 P10 P01 0 0 0
0 P00 0 P10 P01 0
0 0 P00 0 P10 P01


M


v
λv
µv
λ2v
λµv
µ2v

 = 0
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• null space of M has dimension 3

• vectors k1, k2 and k3 span the null space of M

k1 =


v1

λ1v1
µ1v1
λ2
1v1

λ1µ1v1
µ2
1v1

 k2 =


v2

λ2v2
µ2v2
λ2
2v2

λ2µ2v2
µ2
2v2

 k3 =


v3

λ3v3
µ3v3
λ2
3v3

λ3µ3v3
µ2
3v3


• calculate a basis for null space of M: columns of Γ
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• columns of Γ are linear combinations of vectors k1, k2, k3:

Γ
calculated

=


v1 v2 v3

λ1v1 λ2v2 λ3v3
µ1v1 µ2v2 µ3v3
λ2
1v1 λ2

2v2 λ2
3v3

λ1µ1v1 λ2µ2v2 λ3µ3v3
µ2
1v1 µ2

2v2 µ2
3v3

T

︸ ︷︷ ︸
unknown

(T is nonsingular)

• Γ has special structure

Γ =


C
CA1

CA2

CA2
1

CA1A2

CA2
2

 where



C
2×3

=
(
v1 v2 v3

)
T

A1
3×3

= T−1

λ1

λ2

λ3

T

A2
3×3

= T−1

µ1

µ2

µ3

T
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• from Γ we can find C: the first block row of Γ

• from Γ we can find A1 and A2 by solving linear equations

− selection of block rows
C

CA1

CA2

CA2
1

CA1A2

CA2
2


Γ

·A1−−→


C

CA1

CA2

CA2
1

CA1A2

CA2
2


Γ


C

CA1

CA2

CA2
1

CA1A2

CA2
2


Γ

·A2−−→


C

CA1

CA2

CA2
1

CA1A2

CA2
2


Γ

− solving equationsC
CA1

CA2

A1 =

CA1

CA2
1

CA1A2

 and

C
CA1

CA2

A2 =

CA2

CA1A2

CA2
2
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• recall:

C =
(
v1 v2 v3

)
T

A1 = T−1

λ1

λ2

λ3

T

A2 = T−1

µ1

µ2

µ3

T

• the eigenvalues of A1 and A2 give the solutions (λi, µi) (i = 1, 2, 3)
of the MEP

• the eigenvectors of A1 are equal to the eigenvectors of A2 and form
the matrix T

• the eigenvectors of the MEP can be found as(
v1 v2 v3

)
= CT−1
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MEPs from identification problems

• big MEPs

• not only linear terms in the MEP

• solutions at infinity

• solution set at infinity, dimension > 0

example: first order ARMA model with parameters α and β:(
P00 + P10α+ P01β + P20α

2 + P11αβ + P02β
2
)
v = 0

size of the matrices: (3N − 1)× (3N − 2), where N is the number of
output measurements
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Recent progress: Algorithms

1. recursive and sparse algorithms to compute the null space of the
block Macaulay matrix2

→ faster
→ less memory

example: identification of order 1 ARMA model from N = 8 data
points

• size of matrices in MEP: 23× 22
• size of block Macaulay matrix: 20 769× 21 780
• memory usage: factor 150 000 reduction

− standard approach: 3.62 GB
− sparse adaptation: 24.28 kB

• computation time: factor 725 faster

− standard approach: 30 225 s (8.5 hours)
− sparse-recursive: 42 s

2Christof Vermeersch and Bart De Moor, Two Double Recursive Block Macaulay
Matrix Algorithms to Solve Multiparameter Eigenvalue Problems, accepted
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2. avoid computation of null space, work directly in column space of
block Macaulay matrix3

3Christof Vermeersch and Bart De Moor, A column space based approach to solve
systems of multivariate polynomial equations, IFAC-PapersOnLine, vol. 54, no. 9, pp.
137–144, July 2021
Christof Vermeersch and Bart De Moor, Two Complementary Block Macaulay
Algorithms to Solve Multiparameter Eigenvalue Problems, submitted
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Recent progress: Theory

1. different types of eigenvalue problems and their connection to
shift-invariant spaces and realization theory4, see poster Christof
Vermeersch

2. study of multidimensional (mD) systems
• an mD system has more than one independent variable, e.g., time

and place
• connection with our Selma work:

Γ of the MEP example is the observability matrix of a 2-dimensional
LTI system with commuting system matrices A1 and A2 and output
matrix C

• results:

− 2D descriptor systems: condition for system so that non-trivial state
sequence exists5

− observability
− mD realization: find commutative system from output data

4Katrien De Cock and Bart De Moor, Multiparameter Eigenvalue Problems and
Shift-Invariance, IFAC PapersOnLine, vol. 54, no. 9, pp. 159–165, July 2021

5Bob Vergauwen and Bart De Moor, Two-dimensional descriptor systems, IFAC
PapersOnLine vol. 54, no. 9, pp. 151–158, July 2021
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• ongoing, see poster Lukas Vanpoucke

− relation to PDEs
− least squares identification
− open problem: minimal parameterization of mD difference equations

3. globally optimal LS identification of multiple-output systems
tools: functional analysis, operator theory, behavioral framework

• inner functions
• Beurling-Lax theorem
• isometric state space models
• norm preserving behavioral models

4. globally optimal H2 model reduction
• by solving an MEP6

proof-of-concept: order 2 → order 1
• improvements, ongoing, see poster Sibren Lagauw

based on Walsh’s theorem: order 7 → order 3

6Oscar M. Agudelo, Christof Vermeersch and Bart De Moor, Globally Optimal
H2-Norm Model Reduction: A Numerical Linear Algebra Approach, IFAC
PapersOnLine vol. 54, no. 9, pp. 564–571, July 2021
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