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Chebyshev polynomials
Tn(x) = cos(n ⋅ arccos(x)), x ∈ [−1,1]
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Chebyshev plane curves
a + b ⋅ T5(t) + c ⋅ T7(t) = 0

a + b ⋅ x + c ⋅ y = 0
(x, y) = (T5(t), T7(t)) for some t ∈ ℂ

a + b ⋅ t5 + c ⋅ t7 = 0

a + b ⋅ x + c ⋅ y = 0
(x, y) = (t5, t7) for some t ∈ ℂ

toric curve

a + bx + cy = 0

x7 − y5 = 0

a + bx + cy = 0 a + bx + cy = 0

Chebyshev 
curve

f(x, y) = 0
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Theorem. 𝒞m,n ⊂ {(x, y) ∈ ℂ2 : Tn(x) − Tm(y) = 0}

Tn(x) − Tm(y)gcd(m, n) = 1If then is irreducible 

Freudenburg-Freudenburg, Curves defined by Chebyshev polynomials (2009) 
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P̃(x, y, z) = 2T25(x)T7(z) − T33(y)
= − 4294967296y33 + 2147483648x25z7 + … − 33y

Different choices give the same ideal:
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Chebyshev space curves

𝒞2,3,6
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Theorem.  Let . A polynomial of the form 
 has at least  real roots.

0 < m < n
f = αTm(t) + βTn(t) m

Q: What is the minimal/expected number of real roots of v1T2(t) + v2T3(t) + v3T7(t)?
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2) ( T1(t1)T2(t2) , T1(t1)T1(t2) , T2(t1)T3(t2) ) ( cos(t1 + 2t2) , cos(t1 + t2), cos(2t1 + 3t2) )

Surfaces in three-space:

det
1 x y
x 1 z
y z 1

= 0−6x4y + x3z − x2y (−48y4 + 22y2 − 3)
−xy2 (20y2 − 3) z + y3 (−16y4 + 8y2 + 2z2 − 1) = 0

xy − z = 0
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Tensor product basis
A = (a1 a2 ⋯ an) =
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a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

∈ ℕm×n

𝒯aj,⊗(t1, …, tm) = Ta1j
(t1) ⋅ Ta2j

(t2) ⋅ ⋯ ⋅ Tamj
(tm)

𝒳A,⊗ = {(𝒯a1,⊗(t), …, 𝒯an,⊗(t)) : t ∈ ℂm} ⊂ ℂn
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Theorem.  deg 𝒳A,⊗ ≤ m! vol(PC) ≤ m! ⋅ 2−m ⋅ vol(PB)

fi(t) = ci0 + ci1𝒯a1,⊗(t) + ⋯ + cin𝒯an,⊗(t) = 0, i = 1,…, m



PC

PB

Tensor product basis
−6x4y + x3z − x2y (−48y4 + 22y2 − 3)

−xy2 (20y2 − 3) z + y3 (−16y4 + 8y2 + 2z2 − 1) = 0

7 < 11 < 12

deg 𝒳A,⊗ ≤ m! vol(PC) ≤ m! ⋅ 2−m ⋅ vol(PB)
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PC

PB

Tensor product basis
−6x4y + x3z − x2y (−48y4 + 22y2 − 3)

−xy2 (20y2 − 3) z + y3 (−16y4 + 8y2 + 2z2 − 1) = 0

7 < 11 < 12

deg 𝒳A,⊗ ≤ m! vol(PC) ≤ m! ⋅ 2−m ⋅ vol(PB)
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Theorem. Both bounds are equalities if  is sufficiently denseA



Tensor product basis

c10 + c11𝒯a1,⊗(t) + ⋯ + c1n𝒯an,⊗(t) = c20 + c21𝒯a1,⊗(t) + ⋯ + c2n𝒯an,⊗(t) = 0
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Cosines of linear spaces
A = (a1 a2 ⋯ an) =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

∈ ℕm×n

𝒯aj,cos(u1, …, um) = cos(aj ⋅ u) = cos(a1ju1 + ⋯ + amjum)

𝒳A,cos = {(𝒯a1,cos(u), …, 𝒯an,cos(u)) : u ∈ ℂm} ⊂ ℂn
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Cosines of linear spaces
A = (a1 a2 ⋯ an) =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

∈ ℕm×n

𝒯aj,cos(u1, …, um) = cos(aj ⋅ u) = cos(a1ju1 + ⋯ + amjum)

𝒳A,cos = {(𝒯a1,cos(u), …, 𝒯an,cos(u)) : u ∈ ℂm} ⊂ ℂn

(1 1 2
2 1 3) ( cos(u1 + 2u2), cos(u1 + u2), cos(2u1 + 3u2) )Example.

det
1 x y
x 1 z
y z 1

= 1 − x2 − y2 − z2 + 2xyz = 0
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Cosines of linear spaces
Theorem. The Chebyshev variety  is irreducible of dimension . 

It is obtained as the closure of the projection to  of





𝒳A,cos rank(A)
ℂn

𝒴 = {(x, u) ∈ ℂn × (ℂ∖{0})n : u ∈ YA, u2
j − 2xjuj + 1 = 0}
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Cosines of linear spaces
Theorem. The Chebyshev variety  is irreducible of dimension . 

It is obtained as the closure of the projection to  of





𝒳A,cos rank(A)
ℂn

𝒴 = {(x, u) ∈ ℂn × (ℂ∖{0})n : u ∈ YA, u2
j − 2xjuj + 1 = 0}

Example: A = (1 1 2
2 1 3)
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Let PA,cos = Conv(A ∪ −A)
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2
+ ⋯ + cin

van + v−an

2
= 0

v = e −1u



Cosines of linear spaces

Theorem. Under mild assumptions on , we have A 2 deg 𝒳A,cos = m! vol PA,cos

fi(u) = ci0 + ci1 cos(a1 ⋅ u) + ⋯ + cin cos(an ⋅ u) = 0, i = 1,…, m

Let PA,cos = Conv(A ∪ −A)

20

fi(v) = ci0 + ci1
va1 + v−a1

2
+ ⋯ + cin

van + v−an

2
= 0

v = e −1u

A = (4 4 6 7 9 2
8 4 1 2 6 7)

deg 𝒳A,cos = 129

64 pairs of real solutions

Example.



Cosines of linear spaces

21

A = (1 0 2
0 1 3)



Thank you!


