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About this Lecture

I We address the Rootfinding Problem.

I Given (ai ∈ C or ai ∈ R)

p(x) = anxn + an−1xn−1 + an−2xn−2 + . . .+ a1x + a0,

I find all λ such that p(λ) = 0.
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About Rootfinding

I How would you solve this?

I Use, e.g., “roots” in “Matlab” or “Octave”.
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About Matlab’s Roots

I What does “roots” do?

I Coefficients put in first row or last column.

I So let’s for simplicity only consider monic ones.
I We’ll come back to this later on, in the backward error analysis!

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 5 / 76



About Matlab’s Roots

I What does “roots” do?

I Coefficients put in first row or last column.

I So let’s for simplicity only consider monic ones.
I We’ll come back to this later on, in the backward error analysis!

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 5 / 76



About Matlab’s Roots

I What does “roots” do?

I Given a (complex) monic polynomial

p(x) = xn + an−1xn−1 + an−2xn−2 + . . .+ a0.

I Form the companion matrix

A =



−a0
1 −a1

1 −a2
. . .

...
1 −an−2

1 −an−1


.

I Get the zeros of p(x) = det(A − xI) by computing the eigenvalues of A.
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Comments from Cleve Moler

Clever Moler stated in the original documentation for “roots” the following:
(Mathworks Newsletter 1991)

It uses order n2 storage and order n3 time. An algorithm designed specif-
ically for polynomial roots might use order n storage and n2 time.
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Cost of Roots

I Matlab’s roots – xclassical non-structure exploiting algorithm:
I O(n2) storage
I O(n3) flops
I Absolute backward error on the polynomial coefficients ≤ ‖p‖2u
I Francis’s implicitly-shifted QR algorithm

I Since a decade, structure exploiting algorithms:
I O(n) storage
I O(n2) flops
I Absolute backward error on the polynomial coefficients ≤ ‖p‖2,3,4u
I Data-sparse representation and adjusted version of Francis’s algorithm
I Methods proposed by many authors (overview follows).

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 8 / 76



Outline

About Today
About the Problem
About this Lecture

Some Root History

Francis’s Algorithm for Eigenvalues of Matrices

The Companion: Factorization & Facts

Francis’s Algorithm on the Compact Companion

Numerical Experiments

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 9 / 76



About “This Lecture”

We designed

a norwise backward stable algorithm for companion matrices

satisfying Cleve’s requests: O(n) storage and O(n2) flops.

YACS
Yet Another Companion Solver
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About “The Paper”

I Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins,
Fast and backward stable computation of roots of polynomials,
SIAM J. Matrix Anal. Appl., 36, 2015.

I We received a 15-page long review report.
And the paper was rejected.

I But in 2017, we received Siam’s outstanding paper prize.

I In 2017 we (im)proved
Absolute backward error on the polynomial coefficients ≤ ‖p‖2u

to
Absolute backward error on the polynomial coefficients ≤ ‖p‖1u

I Jared L. Aurentz, Thomas Mach, Leonardo Robol, Raf Vandebril, and David
S. Watkins, Fast and Backward Stable Computation of Roots of Polynomials,
Part II: Backward Error Analysis; Companion Matrix and Companion Pencil,
SIAM J. Matrix Anal. Appl., 39, 2018.
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About The Authors

Celebration DW75 – May 9 and 10 here in Leuven!
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The Rootfinding Problem

I p(x) = xn + an−1xn−1 + an−2xn−2 + . . .+ a0 = 0.

I Already 3000 B.C. people were solving such equations.

I This basis, because it is “one of” the simplest polynomial basis.
(Other bases lead to, e.g., confederate, companion, fellow,... matrices.)

I Already thousands of methods exists.
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The Rootfinding Problem: Overview

J.M. McNamee and V.Y. Pan
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Some Particular Monic Cases

I Case n = 1: p(x) = x1 + a0 = 0.
I Left as an exercise to the audience.

I Case n = 2: p(x) = x2 + a1x1 + a0 = 0.
I x1/2 = − a1

2 ±
√

a2
1
4 − a0.

I Case n = 3: p(x) = x3 + a2x2 + a1x1 + a0 = 0.
1. Substitute x = z − a2

3 .
2. This gives z3 + uz + v = 0, with u = a1 − a2

2
3 and v =

2a3
2

27 − a2a1
3 + a0.

3. Compute ∆ = v2

4 + u3

27 .

4. Solve f = 3
√

− v
2 +

√
∆, g = 3

√
− v

2 −
√
∆, with fg = − u

3 .
5. z1 = f + g , z2 = f α1 + gα2, and z3 = f α2 + gα1, with α1/2 = − 1

2 ± 1
2 ı
√

3.
6. Back substitution.

(Proof of correctness left again to the attentive listener.)
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Some Particular Cases

I Case n = 4: p(x) = x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
1. Substitute x = z − a3

4 .
2. This gives z4 + uz2 + vz + w = 0, with u =

3a2
3

8 + a2, . . . .
3. ...

(The whole solution method fills a page.)

I Case n = 5: p(x) = x5 + a4x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
I Not possible anymore: Abel–Ruffini theorem.

At least that is what I thought for a very long time.

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 16 / 76



Some Particular Cases

I Case n = 4: p(x) = x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
1. Substitute x = z − a3

4 .
2. This gives z4 + uz2 + vz + w = 0, with u =

3a2
3

8 + a2, . . . .
3. ...

(The whole solution method fills a page.)

I Case n = 5: p(x) = x5 + a4x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
I Not possible anymore: Abel–Ruffini theorem.

At least that is what I thought for a very long time.

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 16 / 76



Some Particular Cases

I Case n = 4: p(x) = x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
1. Substitute x = z − a3

4 .
2. This gives z4 + uz2 + vz + w = 0, with u =

3a2
3

8 + a2, . . . .
3. ...

(The whole solution method fills a page.)

I Case n = 5: p(x) = x5 + a4x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
I Not possible anymore: Abel–Ruffini theorem.

At least that is what I thought for a very long time.

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 16 / 76



Beyond n = 4

I I was told that it was impossible and iterative procedures are required.

I Because of:
The Abel–Ruffini theorem

I But, there is a small glitch here.

I Abel–Ruffini states:

There is no solution only using the coefficients and the following operations
I addition,
I subtraction,
I multiplication,
I division,
I and mth roots.
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Beyond n = 4
I Case n = 5: p(x) = x5 + a4x4 + a3x3 + a2x2 + a1x1 + a0 = 0.
I There is a direct solution method using elliptic modular functions.
I The description fills several pages.

I Before I continue:
please do not ask me later on what an elliptic modular function is ...
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Beyond n = 4

I Case n = 6: The sextic equation
p(x) = x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x1 + a0 = 0.

I There is a solution method using Kampé-de-Fériet functions.

I But, even though for n = 4, ..., 6 direct methods exists,
the complexity grows too fast.

I This was already stated by Gauss.

I So typically iterative methods to approximate the roots.
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Classical QR algorithm

I Given a Hessenberg matrix A, iteratively compute the Schur decomposition

Q?AQ = S,

with Q unitary and S upper triangular having the eigenvalues on the diagonal.
I Each iteration is named a QR step.
I So graphically several QR steps lead to

QR steps
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Implicitly Shifted QR algorithm

I John G.F. Francis and Vera N. Kublanovskaya.
I Also Rutishauser, Wilkinson, ...
I Published in 1961.
I 1962 Francis left for industry.
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An Implicitly Single Shifted QR Step

I We execute n − 1 similarity transformations with rotations.

I Flow:
1. Compute a good initial rotation G1 (acts on rows 1 and 2).
2. Apply it on A1 = A:

G?
1 A1G1 = A2.

3. A2 has lost its Hessenberg structure, it has a bulge.
4. Chase the bulge via similarities with rotations G2, . . . ,Gn−1.

I On average 2.5 QR steps needed to get a subdiagonal element zero.
Thus on average 2.5 QR steps per eigenvalue.

≈ 2.5 QR steps

I Continue with the remaining unconverged upper part.
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Shorthand Notation for a Rotation

The active part of the rotation is retained.

�� =


1

1
× ×
× ×

1
1


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A Classical QR Step

The original Hessenberg matrix.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×

Raf Vandebril (University of Leuven) Roots of Polynomials Back To The Roots 2023 25 / 76



A Classical QR Step

Executing the similarity with G1 giving G∗
1 A1G1 = A2.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×

��

� �
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A Classical QR Step

A bulge is created.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×

×
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A Classical QR Step

Remove the bulge via a similarity with G2 giving G∗
2 A2G2 = A3.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×

×
��

� �
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A Classical QR Step

The bulge has moved down.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×

×
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A Classical QR Step

Continue the procedure.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×

×
��

� �
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A Classical QR Step

We have a new, similar Hessenberg matrix.

× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

×
×

×
×

×
×
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Deflation

I After sufficient of these steps we typically get

A =



× × × × × × ×
× × × × × × ×

× × × × × ×
× × × × ×

× × × ×
× × ×

0 ×

 .

I One continues with QR steps, on the upper left part.
The other parts have converged and are ignored.
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New Setting

I We do not work on the Hessenberg matrix.

I We work directly on the QR factorization of the Hessenberg.

I Instead of chasing bulges, we chase rotations.

I So we need some tools to manipulate rotations.

I Important: theoretically identical.
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A QR Factored Hessenberg Matrix

I The QR factorization, for A Hessenberg, looks like

A = QR

× × × × × × ×
× × × × × × ×

× × × × × ×
× × × × ×

× × × ×
× × ×

× ×

 =

��
��
��
��
��
��



× × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

 .

I If A would be unitary Hessenberg, R can be made chosen the identity.
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Manipulating Rotations: Three Operations

I Fusion
�↪→ �� � = ��

I Turnover
� y��

�
�

� =

[
× × ×
× × ×
× × ×

]
=

�
�

�
�� �

I Pass through an upper triangular

��

 × × × ×
× × ×

× ×
×

 =

 × × × ×
× × ×
⊗ × ×

×

 =

 × × × ×
× × ×

× ×
×

 ��
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New QR Step

I The original (factored Hessenberg matrix).

��
��
��
��


× × × × ×

× × × ×
× × ×

× ×
×


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New QR Step

I Initial similarity transformation with G1 (marked with ×) G∗
1 A1G1 = A2.

�× �� �
��
��
��


× × × × ×

× × × ×
× × ×

× ×
×


�×�
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New QR Step

I Fuse G∗
1 on the left.

I Pass G1 (right) the through the upper triangular matrix.

�×↪→ �� �
��
��
��


× × × × ×

× × × ×
× × ×

× ×
×


�×�
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New QR Step

I Turnover indicated.

� y�×�
�

�
�

��
��


× × × × ×

× × × ×
× × ×

× ×
×


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New QR Step

I We get a perturbing rotator acting on rows 2 and 3.

�
�×
�
�� �
��
��


× × × × ×

× × × ×
× × ×

× ×
×


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New QR Step

I Suppress the triangular matrix (everything passes through).

I Start the chasing.

I Eliminate rotater in row 2 and 3 via a similarity:
I removes the rotator on the left,
I but add a new one on the right.

�
�×
�
�� �
��
��
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New QR Step

I Similarity moves rotator to the right.
I Turnover indicated.

��
� y�×�

�
�

�
��
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New QR Step

I Eliminate rotator acting on rows 3 and 4, by similarity.

��
�

�×
�
�� �
��
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New QR Step

I Turnover indicated.

��
��
� y�×�

�
�

�
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New QR Step

I Eliminate by similarity the rotator marked with ×.

��
��
�

�×
�
�� �
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New QR Step

I A final fusion.

��
��
��
�↪→ �×� �
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New QR Step

I Again a Hessenberg matrix.

��
��
��
��


× × × × ×

× × × ×
× × ×

× ×
×


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New QR Step

I Deflation after a few steps.
I Search for diagonal rotations.

��
��
��


× × × × ×

× × × ×
× × ×

× ×
×

 =


× × × × ×
× × × × ×

× × × ×
× × ×

×


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New QR Step

I Deflation after a few steps.
I Continue operating on the upper part

��
��
��


× × × × ×

× × × ×
× × ×

× ×
×

 =


× × × × ×
× × × × ×

× × × ×
× × ×

×



I Remark: Rotation chasing is part of rational QR framework.
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The Problem of Today

I Given the complex polynomial.

I p(x) = xn + an−1xn−1 + an−2xn−2 + . . .+ a0 = 0.

I Compute the eigenvalues of the companion matrix

A =



−a0
1 −a1

1 −a2
. . .

...
1 −an−2

1 −an−1


.
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Fast Companion QR Solvers

I Bini, Daddi, Gemignani (2004): explicit QR on A = A−∗ + UV ∗

I Bini, Eidelman, Gemignani, Gohberg (2007): explicit QR on quasisep. A

I Chandrasekaran, Gu, Xia, Zhu (2007): implicit QR on A = QR

I Delvaux, Frederix, Van Barel (2009/13): implicit QR on A = QR
R in Givens-weight representation

I Van Barel, Vandebril, Van Dooren, Frederix (2010): implicit QR
unitary-plus-rank-one is preserved, Hessenberg structure is perturbed

I Bini, Boito, Eidelman, Gemignani, Gohberg (2010): now implicit

I Boito, Eidelman, Gemignani, Gohberg (2012): higher stability

I Eidelman, Gohberg, Haimovici (2013): three sequences of rotations
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Structural Fact 1

I Important fact:
I Companion matrix is unitary-plus-rank-one

A =


0 · · · 0 e iθ

1 0
. . .

...
1 0

+


0 · · · 0 −e iθ − a0
0 0 −a1
...

...
...

0 · · · 0 −an−1

 .

I Unitary-plus-rank-one structure is preserved by unitary similarities:

A = U + uvH

Q?AQ = Q∗UQ + (Q∗u)(Q∗v)?.
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Structural Fact 2

I Important fact 2:
I Companion matrix is also upper Hessenberg,
I this is preserved by Francis’s QR algorithm.
I Remark:

I the unitary matrix is initially of Hessenberg form too.
I This is, however, not preserved.
I Only the sum remains upper Hessenberg.

I We will therefor run the QR algorithm preserving both
I Hessenberg structure;
I unitary-plus-low-rank structure.

I Numerically this is, however, not feasible.
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Unitary Plus Low Rank

I Consider the splitting in more detail:

A = U + uvT
× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 =


× × × × ×
× × × × ×
� × × × ×
� � × × ×
� � � × ×

+


u1v1 u1v2 u1v3 u1v4 u1v5
u2v1 u2v2 u2v3 u2v4 u2v5
u3v1 u3v2 u3v3 u3v4 u3v5
u4v1 u4v2 u4v3 u4v4 u4v5
u5v1 u5v2 u5v3 u5v4 u5v5


I The � must cancel out with the corresponding uivj .

I A pity: not enough information in U to reconstruct uvT .
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Additional Zero Root

I We add an additional zero root to the polynomial.

I xp(x) = xn+1 + an−1xn + an−2xn−1 + . . .+ a0x + 0 = 0.

I Companion matrix

A =



0
1 −a0

1 −a1
1 −a2

. . .
...

1 −an−2
1 −an−1



I In this form: still unable to get uvT from U in A = U + uvT .
I So: first do a special QR step (shift 0).
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Our Representation (Matrix A)

I We perform explicitly theoretically one QR step with shift 0.
I Since this is a perfect shift: theoretical convergence in one step!
I Explicit computation (on paper) without round-off since all rotations are flips.
I After the QR step we obtain (we have overwritten A)

A =


0 −a0 1
1 −a1 0

. . .
...

...
1 −an−1 0

0 0

 .

I Extra zero root can be deflated immediately.
I We apparently end up with the same companion matrix.
I But, we will still consider the factorization of the entire matrix A = U + uvT .
I Now we can reconstruct uvT from U.
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Advantages of the Additional Root

We will not explain all advantages in detail.

But summarized we have:
I We can reconstruct uvT from U.

I We do not need uvT , only U.
As a consequence:
I faster QR steps, no need to update u nor v , (saves 30%)
I less storage.

I Strong theoretical backward stability results.
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Our Representation (Matrix A)

I We start as before, by factoring our (n + 1)× (n + 1) Hessenberg matrix A.
I Consider it’s QR factorization: A = QR , where

A = QR
0 −a0 1
1 −a1 0

. . .
...

...
1 −an−1 0

0 0

 =

��

. . . ��


1 −a1 0

. . .
...

...
1 −an−1 0

±a0 ∓1
0 0


= Q1Q2 · · ·Qn−1R .

I The deflation is visible in Q as well since Qn = I.

I It remains to factor the upper triangular R .
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Our Representation (Matrix R)

R =


1 −a1 0

. . .
...

...
1 −an−1 0

±a0 ∓1
0 0


I R is unitary-plus-rank-one:

R =


1 0 0

. . .
...

...
1 0 0

0 ∓1
±1 0

+


0 −a1 0

. . .
...

...
0 −an−1 0

±a0 0
∓1 0


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Representation of R

I R = U + xyT , where

xyT =


−a1

...
−an−1
±a0
∓1


[

0 · · · 0 1 0
]

I Next step: Roll up x . Thus project x onto e1 with rotators.
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Representation of R

��
��

��

×××
×

 =

×××
×



So we get (the vector is of length n + 1)

C1 · · ·Cn x = αe1 (w.l.g. α = 1)

x = C∗e1 = C∗
n . . .C∗

1 e1.
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Representation of R

��
��

��
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0
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x = C∗e1 = C∗
n . . .C∗

1 e1.
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Representation of A

Altogether we have

I A = QR = Q C∗ (B + e1yT ), with C∗B = U.

I Again B = CU is unitary Hessenberg: B = B1 · · ·Bn.

I A = Q1 · · ·Qn−1 C∗
n · · ·C∗

1 (B1 · · ·Bn + e1yT ).

��
��

��

Q1 · · ·Qn−1

��
��

��
��

C∗
n · · ·C∗

1

��
��

��
��

B = B1 · · ·Bn

+

1

0

0

0

0

e1

× × × × 0

yT

R

.
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B and C contain the information in y

��
��

��

Q1 · · ·Qn−1

��
��

��
��

C∗
n · · ·C∗

1

��
��

��
��

B = B1 · · ·Bn

+

1

0

0

0

0

e1

× × × × 0

yT

R

I Recall: A is now of size (n + 1)× (n + 1).
I C∗(B + e1yT ) = R and R ∈ C(n+1)×(n+1) is upper triangular

I The complete last row of R is zero: en+1R = 0 = en+1(C∗(B + e1yT )).
I Therefore yT = −ρ−1eT

n+1C∗B, with ρ = eT
n+1C∗e1

I Only possible because of the additional root!
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Original Hessenberg Matrix A

Altogether we have

I A = QR = Q C∗ (B + e1yT )

I A = Q1 · · ·Qn−1 C∗
n · · ·C∗

1 (B1 · · ·Bn + e1yT )

��
��
��

�
�
�

�
�

�
�

�


��
��
��
��
+ · · ·



I We will ignore the rank one part!
I The rank one part is encoded in the unitary matrices.
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The Chase

�� ��

��
����

�� ��
��

��
�� ��

��
��

��
��

��

Q1 · · ·Qn−1

��
��

��
��

C∗
n · · ·C∗

1

��
��

��
��

B1 · · ·Bn

Similarity 1
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We operate on a 5 × 5 matrix (n = 4), so it is fine.

I Iteration complete!
I Cost roughly 3n turnovers/iteration, so O(n) flops/iteration.
I To the Schur form thus O(n2) operations.
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Backward Stability

I Backward error on the Schur form:

Q∗(A +∆A)Q = S,

where
‖∆A‖F ≤ ‖coefficients of p(x)‖2 O(εm).

I Lapack (roots) does better here:

‖∆A‖F ≤ ‖coefficients of p(x)‖1 O(εm).
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Backward Stability (Version 1)

One step further, push the error to the polynomial coefficients:
I Following P. Dewilde and P. Van Dooren we must add another

‖coefficients of p(x)‖.

I So we would get:

‖error on coefficients of p(x)‖ ≤ ‖coefficients of p(x)‖3 O(εm).

I Roots would get:

‖error on coefficients of p(x)‖ ≤ ‖coefficients of p(x)‖2 O(εm).
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Backward Stability (Version 2 - 2 years later)

I Considering the structure in the perturbation:

A +∆A = U +∆U + uvT +∆(uvT )

we get
I unitary part only perturbed by O(εm),
I rank one part (reconstruction) introduces errors of the order

‖coefficients of p(x)‖2O(εm)

.

I Because of this we get

‖error on coefficients of p(x)‖ ≤ ‖coefficients of p(x)‖2 O(εm).

I Yeah: we are as good as roots!
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Backward Stability (Version 3 - three years later)

I We were running tests for generalized companion matrices.

I This runs directly on non-monic polynomials and better accuracy expected.

I But experimentally no improvement was observed.

I We proved

‖error on coefficients of p(x)‖ ≤ ‖coefficients of p(x)‖1 O(εm).

I Even when loosening monotonicity, lapack (or roots) gives

‖error on coefficients of p(x)‖ ≤ ‖coefficients of p(x)‖2 O(εm).

I Yeah2.
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Speed Comparison, Complex Case

Contestants
I LAPACK code ZHSEQR (O(n3), unbalanced Hessenberg solver)
I BBEGG (Bini, Boito, Eidelman, Gemignani, and Gohberg 2010)
I BEGG (Boito, Eidelman, Gemignani, and Gohberg 2012)
I CGXZ (Chandrasekaran, Xia, Gu, and Zhu 2007)
I AMVW (Our single-shift or double-shift code)

Relative backward error measure

max
λ

‖Av − λv‖
‖A‖∞ ‖v‖∞
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Comparison, Complex Case

Note: our new implementation is even 25% faster.
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Absolute Backward Error on Coefficients
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LAPACK balanced
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Conclusions & Comments

I Is this the best method for computing roots?

I Is this the best companion method?

I Better than normwise stability is component wise small error.

I Software part of EisCor (github).
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Conclusions

Thank You!
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