YACS

Yet Another Companion Solver

J.L. Aurentz, T. Mach, L. Robol, R. Vandebril, and D.S. Watkins Raf.Vandebril@cs.kuleuven.be

Dept. of Computer Science, University of Leuven, Belgium

Back To The Roots – February – 2023

Outline

[About Today](#page-1-0) [About the Problem](#page-1-0) [About this Lecture](#page-10-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

About this Lecture

 \triangleright We address the Rootfinding Problem.

• Given
$$
(a_i \in \mathbb{C} \text{ or } a_i \in \mathbb{R})
$$

$$
p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0,
$$

ightharpoontanall λ such that $p(\lambda) = 0$.

About Rootfinding

 \blacktriangleright How would you solve this?

About Rootfinding

- \blacktriangleright How would you solve this?
- ▶ Use, e.g., "roots" in "Matlab" or "Octave".

About Matlab's Roots

 \blacktriangleright What does "roots" do?

About Matlab's Roots

▶ What does "roots" do?

More About

 $\overline{}$ Tips

• Algorithms

The algorithm simply involves computing the eigenvalues of the companion matrix:

 $A = diag(ones(n-1,1), -1);$ $A(1,:) = -c(2:n+1) \cdot c(1);$ $eig(A)$

- \triangleright Coefficients put in first row or last column.
- \triangleright So let's for simplicity only consider monic ones.
- \triangleright We'll come back to this later on, in the backward error analysis!

About Matlab's Roots

- ▶ What does "roots" do?
- \triangleright Given a (complex) monic polynomial

$$
p(x) = x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0.
$$

 \blacktriangleright Form the companion matrix

$$
A = \begin{bmatrix} 1 & & & & & -a_0 & & \\ 1 & & & & & & -a_1 & \\ & 1 & & & & & & -a_2 & \\ & & & \ddots & & & & \vdots & \\ & & & & 1 & & -a_{n-2} & \\ & & & & & 1 & & -a_{n-1} \end{bmatrix}.
$$

► Get the zeros of $p(x) = det(A - xI)$ by computing the eigenvalues of A.

Comments from Cleve Moler

Clever Moler stated in the original documentation for "roots" the following: (Mathworks Newsletter 1991)

It uses order n^2 storage and order n^3 time. An algorithm designed specifically for polynomial roots might use order n storage and n^2 time.

Cost of Roots

 \triangleright MATLAB's roots – xclassical non-structure exploiting algorithm:

- \triangleright $O(n^2)$ storage
- \triangleright $O(n^3)$ flops
- Absolute backward error on the polynomial coefficients $\leq ||p||^2 u$
- \blacktriangleright Francis's implicitly-shifted QR algorithm

- \triangleright Since a decade, structure exploiting algorithms:
	- \triangleright $O(n)$ storage
	- \triangleright $O(n^2)$ flops
	- Absolute backward error on the polynomial coefficients $\leq ||p||^{2,3,4}u$
	- \triangleright Data-sparse representation and adjusted version of Francis's algorithm
	- \blacktriangleright Methods proposed by many authors (overview follows).

Outline

[About Today](#page-1-0) [About the Problem](#page-1-0) [About this Lecture](#page-10-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

We designed

a norwise backward stable algorithm for companion matrices satisfying Cleve's requests: $\mathcal{O}(n)$ storage and $\mathcal{O}(n^2)$ flops.

We designed

a norwise backward stable algorithm for companion matrices satisfying Cleve's requests: $\mathcal{O}(n)$ storage and $\mathcal{O}(n^2)$ flops.

YACS

Yet Another Companion Solver

▶ Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36, 2015.

- ▶ Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36, 2015.
- \triangleright We received a 15-page long review report. And the paper was rejected.

- ▶ Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36, 2015.
- \triangleright We received a 15-page long review report. And the paper was rejected.
- \blacktriangleright But in 2017, we received Siam's outstanding paper prize.

- ▶ Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins, Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36, 2015.
- \triangleright We received a 15-page long review report. And the paper was rejected.
- \blacktriangleright But in 2017, we received Siam's outstanding paper prize.
- \blacktriangleright In 2017 we (im) proved

Absolute backward error on the polynomial coefficients $\leq \|\boldsymbol{\rho}\|^2 u$

to

Absolute backward error on the polynomial coefficients $\leq \|\rho\|^1 u$

▶ Jared L. Aurentz, Thomas Mach, Leonardo Robol, Raf Vandebril, and David S. Watkins, Fast and Backward Stable Computation of Roots of Polynomials, Part II: Backward Error Analysis; Companion Matrix and Companion Pencil, SIAM J. Matrix Anal. Appl., 39, 2018.

About The Authors

Celebration DW75 – May 9 and 10 here in Leuven!

The Rootfinding Problem

$$
p(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0 = 0.
$$

 \blacktriangleright Already 3000 B.C. people were solving such equations.

 \triangleright This basis, because it is "one of" the simplest polynomial basis. (Other bases lead to, e.g., confederate, companion, fellow,... matrices.)

 \blacktriangleright Already thousands of methods exists.

The Rootfinding Problem: Overview

J.M. McNamee and V.Y. Pan

Some Particular Monic Cases

• Case
$$
n = 1
$$
: $p(x) = x^1 + a_0 = 0$.

 \blacktriangleright Left as an exercise to the audience.

Some Particular Monic Cases

\n- Case
$$
n = 1
$$
: $p(x) = x^1 + a_0 = 0$.
\n- Left as an exercise to the audience.
\n

► Case
$$
n = 2
$$
: $p(x) = x^2 + a_1 x^1 + a_0 = 0$.
\n► $x_{1/2} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_0}$.

Some Particular Monic Cases

\n- Case
$$
n = 1
$$
: $p(x) = x^1 + a_0 = 0$.
\n- Left as an exercise to the audience.
\n

► Case
$$
n = 2
$$
: $p(x) = x^2 + a_1 x^1 + a_0 = 0$.
\n► $x_{1/2} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_0}$.

\n- \n Case
$$
n = 3
$$
: $p(x) = x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.\n
\n- \n 1. Substitute $x = z - \frac{a_2}{3}$.\n
\n- \n 2. This gives $z^3 + uz + v = 0$, with $u = a_1 - \frac{a_2^2}{3}$ and $v = \frac{2a_2^3}{27} - \frac{a_2a_1}{3} + a_0$.\n
\n- \n 3. Compute $\Delta = \frac{v^2}{4} + \frac{u^3}{27}$.\n
\n- \n 4. Solve $f = \sqrt[3]{-\frac{v}{2} + \sqrt{\Delta}}$, $g = \sqrt[3]{-\frac{v}{2} - \sqrt{\Delta}}$, with $fg = -\frac{u}{3}$.\n
\n- \n 5. $z_1 = f + g$, $z_2 = f\alpha_1 + g\alpha_2$, and $z_3 = f\alpha_2 + g\alpha_1$, with $\alpha_{1/2} = -\frac{1}{2} \pm \frac{1}{2}i\sqrt{3}$.\n
\n- \n 6. Back substitution.\n
\n

(Proof of correctness left again to the attentive listener.)

Some Particular Cases

\n- Case
$$
n = 4
$$
: $p(x) = x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.
\n- Substitute $x = z - \frac{a_3}{4}$.
\n- This gives $z^4 + uz^2 + vz + w = 0$, with $u = \frac{3a_3^2}{8} + a_2, \ldots$.
\n- 3. ...
\n

(The whole solution method fills a page.)

Some Particular Cases

\n- Case
$$
n = 4
$$
: $p(x) = x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.
\n- Substitute $x = z - \frac{a_3}{4}$.
\n- This gives $z^4 + uz^2 + vz + w = 0$, with $u = \frac{3a_3^2}{8} + a_2$, ...
\n- From the equation $y = \frac{1}{2} \int_0^{2\pi} \frac{1}{y} \, dy$ is the value of $y = \frac{1}{2} \int_0^{2\pi} \frac{1}{y} \, dy$.
\n

(The whole solution method fills a page.)

\n- Case
$$
n = 5
$$
: $p(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.
\n- Not possible anymore: Abel-Ruffini theorem.
\n

Some Particular Cases

\n- Case
$$
n = 4
$$
: $p(x) = x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.
\n- Substitute $x = z - \frac{a_3}{4}$.
\n- This gives $z^4 + uz^2 + vz + w = 0$, with $u = \frac{3a_3^2}{8} + a_2$, ...
\n- Two problems, which follows that, the equation is $y = 0$ and $y = 0$.
\n

(The whole solution method fills a page.)

\n- Case
$$
n = 5
$$
: $p(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.
\n- Not possible anymore: Abel-Ruffini theorem.
\n

At least that is what I thought for a very long time.

- \blacktriangleright I was told that it was impossible and iterative procedures are required.
- \blacktriangleright Because of:

The Abel–Ruffini theorem

- \triangleright But, there is a small glitch here.
- \blacktriangleright Abel–Ruffini states:

 \blacktriangleright I was told that it was impossible and iterative procedures are required.

 \blacktriangleright Because of:

The Abel–Ruffini theorem

 \blacktriangleright But, there is a small glitch here.

 \blacktriangleright Abel–Ruffini states:

There is no solution only using the coefficients and the following operations

- \blacktriangleright addition,
- \blacktriangleright subtraction.
- \blacktriangleright multiplication,
- \blacktriangleright division.
- \blacktriangleright and mth roots.

• Case $n = 5$: $p(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.

 \blacktriangleright There is a direct solution method using elliptic modular functions.

 \blacktriangleright The description fills several pages.

• Case $n = 5$: $p(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0$.

 \blacktriangleright There is a direct solution method using elliptic modular functions.

 \blacktriangleright The description fills several pages.

Before I continue: please do not ask me later on what an elliptic modular function is ...

 \triangleright Case $n = 6$: The sextic equation $p(x) = x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0.$ ▶ There is a solution method using Kampé-de-Fériet functions.

 \triangleright Case $n = 6$: The sextic equation $p(x) = x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0.$ \blacktriangleright There is a solution method using Kampé-de-Fériet functions.

- But, even though for $n = 4, \ldots, 6$ direct methods exists, the complexity grows too fast.
- \blacktriangleright This was already stated by Gauss.

 \triangleright Case $n = 6$: The sextic equation $p(x) = x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x^1 + a_0 = 0.$ \blacktriangleright There is a solution method using Kampé-de-Fériet functions.

- But, even though for $n = 4, ..., 6$ direct methods exists, the complexity grows too fast.
- \blacktriangleright This was already stated by Gauss.

 \triangleright So typically iterative methods to approximate the roots.

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0) [Classical Bulge Chasing](#page-33-0)

[New Rotation Chasing](#page-56-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

Classical QR algorithm

 \triangleright Given a Hessenberg matrix A, iteratively compute the Schur decomposition

$$
Q^{\star}AQ=S,
$$

with Q unitary and S upper triangular having the eigenvalues on the diagonal. \blacktriangleright Each iteration is named a QR step.

 \triangleright So graphically several QR steps lead to

Implicitly Shifted QR algorithm

- ▶ John G.F. Francis and Vera N. Kublanovskaya.
- \blacktriangleright Also Rutishauser, Wilkinson, ...
- \blacktriangleright Published in 1961.
- \blacktriangleright 1962 Francis left for industry.

\triangleright We execute $n-1$ similarity transformations with rotations.

 \triangleright We execute $n-1$ similarity transformations with rotations.

 \blacktriangleright Flow:

- 1. Compute a good initial rotation G_1 (acts on rows 1 and 2).
- 2. Apply it on $A_1 = A$:

$$
\mathsf{G}_1^\star\mathsf{A}_1\mathsf{G}_1=\mathsf{A}_2.
$$

- 3. A_2 has lost its Hessenberg structure, it has a bulge.
- 4. Chase the bulge via similarities with rotations G_2, \ldots, G_{n-1} .

 \triangleright We execute $n-1$ similarity transformations with rotations.

 \blacktriangleright Flow:

- 1. Compute a good initial rotation G_1 (acts on rows 1 and 2).
- 2. Apply it on $A_1 = A$:

$$
\mathsf{G}_1^\star\mathsf{A}_1\mathsf{G}_1=\mathsf{A}_2.
$$

- 3. A_2 has lost its Hessenberg structure, it has a bulge.
- 4. Chase the bulge via similarities with rotations G_2, \ldots, G_{n-1} .

 \triangleright On average 2.5 QR steps needed to get a subdiagonal element zero. Thus on average 2.5 QR steps per eigenvalue.

 \triangleright We execute $n-1$ similarity transformations with rotations.

 \blacktriangleright Flow:

- 1. Compute a good initial rotation G_1 (acts on rows 1 and 2).
- 2. Apply it on $A_1 = A$:

$$
\mathsf{G}_1^\star\mathsf{A}_1\mathsf{G}_1=\mathsf{A}_2.
$$

- 3. A_2 has lost its Hessenberg structure, it has a bulge.
- 4. Chase the bulge via similarities with rotations G_2, \ldots, G_{n-1} .

 \triangleright On average 2.5 QR steps needed to get a subdiagonal element zero. Thus on average 2.5 QR steps per eigenvalue.

 \triangleright Continue with the remaining unconverged upper part.

Shorthand Notation for a Rotation

The active part of the rotation is retained.

$$
\vec{\zeta} = \left[\begin{array}{cccc} 1 & & & & \\ & 1 & & & \\ & & \times & \times & & \\ & & \times & \times & & \\ & & & & 1 & \\ & & & & & 1 \end{array}\right]
$$

The original Hessenberg matrix.

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times

Executing the similarity with G_1 giving $G_1^*A_1G_1 = A_2$.

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times È $\sqrt{2}$

A bulge is created.

Remove the bulge via a similarity with G_2 giving $G_2^*A_2G_2=A_3$.

The bulge has moved down.

We have a new, similar Hessenberg matrix.

 \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times

Deflation

 \triangleright After sufficient of these steps we typically get

A = × 0 × .

Deflation

 \blacktriangleright After sufficient of these steps we typically get

$$
A = \begin{bmatrix} \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \\ \times \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \\ \times \times \times \\ \hline \end{bmatrix}
$$

.

 \triangleright One continues with QR steps, on the upper left part. The other parts have converged and are ignored.

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0) [Classical Bulge Chasing](#page-33-0) [New Rotation Chasing](#page-56-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

- \blacktriangleright We do not work on the Hessenberg matrix.
- \triangleright We work directly on the QR factorization of the Hessenberg.
- \blacktriangleright Instead of chasing bulges, we chase rotations.
- \triangleright So we need some tools to manipulate rotations.
- \blacktriangleright Important: theoretically identical.

A QR Factored Hessenberg Matrix

 \blacktriangleright The QR factorization, for A Hessenberg, looks like

$$
\begin{bmatrix}\n\times x \times x \times x \times x \\
\times x \times x \times x \times x \\
\times x \times x \times x \\
\times x \times x \\
\times x \times x \\
\times x \times x\n\end{bmatrix} = \begin{bmatrix}\n\times x \times x \times x \times x \\
\downarrow \\
\uparrow \\
\downarrow \\
\uparrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow\n\end{bmatrix} \begin{bmatrix}\n\times x \times x \times x \times x \\
\times x \times x \times x \times x \\
\times x \times x \times x \\
\times x \times x \\
\times x \times x \\
\times x\n\end{bmatrix}
$$

If A would be unitary Hessenberg, R can be made chosen the identity.

 $A = \Omega P$

.

Manipulating Rotations: Three Operations

$$
\begin{array}{ccccc}\n\stackrel{\rightarrow}{\leftrightarrow} & \stackrel{\rightarrow}{\downarrow} & = & \stackrel{\rightarrow}{\downarrow}\n\end{array}
$$

 \blacktriangleright Fusion

Manipulating Rotations: Three Operations

 \blacktriangleright Fusion $\begin{array}{cccc} \downarrow & \downarrow & = & \downarrow \end{array}$ \blacktriangleright Turnover \rightarrow \rightarrow \rightarrow Ļ Ŕ \rightarrow \rightarrow \rightarrow $\lceil x \times x \rceil$ \times \times \times $\begin{bmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{bmatrix}$ = Ļ Ļ Ŕ \uparrow \uparrow \uparrow

Manipulating Rotations: Three Operations

Function

\n
$$
\begin{array}{rcl}\n\downarrow & \uparrow & = & \uparrow \\
\downarrow & \downarrow & = & \uparrow \\
\downarrow & \uparrow & = & \left[\frac{\times}{x} \times \frac{x}{x}\right] \\
\downarrow & \uparrow & = & \left[\frac{\times}{x} \times \frac{x}{x}\right] \\
\downarrow & \downarrow & = & \left[\frac{x}{x} \times \frac{x}{x}\right] \\
\downarrow & \downarrow & = & \left[\frac{x}{x} \times \frac{x}{x}\right] \\
\downarrow & \downarrow & \downarrow & = & \left[\frac{x}{x} \times \frac{x}{x}\right] \\
\downarrow & \downarrow & \downarrow & = & \left[\frac{x}{x} \times \frac{x}{x}\right] \\
\downarrow & \downarrow & \downarrow & \downarrow & = & \left[\frac{x}{x} \times \frac{x}{x}\right] \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow & \
$$

 \blacktriangleright Pass through an upper triangular

$$
\left[\begin{matrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ & & \times & \times \\ & & & \times \end{matrix}\right] = \left[\begin{matrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ \otimes & \times & \times & \times \\ & & & \times \end{matrix}\right] = \left[\begin{matrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ & \times & \times & \times \\ & & & \times \end{matrix}\right] \left[\begin{matrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ & & \times & \times \end{matrix}\right]
$$

 \blacktriangleright The original (factored Hessenberg matrix).

 × × × × × × × × × × × × × × ×

Initial similarity transformation with G_1 (marked with \times) $G_1^*A_1G_1 = A_2$.

$$
\begin{array}{c}\n\text{R1} \\
\text{L2} \\
\text{L3} \\
\text{L4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R9} \\
\text{R0} \\
\text{R1} \\
\text{R2} \\
\text{R1} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R7} \\
\text{R8} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R3} \\
\text{R4} \\
\text{R5} \\
\text{R6} \\
\text{R9} \\
\text{R1} \\
\text{R1} \\
\text{R2} \\
\text{R3} \\
\text{
$$

Fuse G_1^* on the left.

 \triangleright Pass G_1 (right) the through the upper triangular matrix.

$$
\mathbb{E}_{\mathbb{F}_{\mathbb{F}_{\mathbb{C}}^{\times}}\left[\mathbb{C}\right]} \left[\begin{array}{c} \mathbb{X}\times\mathbb{X}\times\mathbb{X}\\\mathbb{X}\times\mathbb{X}\times\mathbb{X}\\\mathbb{X}\times\mathbb{X}\\\mathbb{X}\times\mathbb{X}\\\mathbb{X}\times\mathbb{X}\\\mathbb{X}\end{array}\right] \notin
$$

 \blacktriangleright Turnover indicated.

$$
\begin{array}{c}\n\uparrow & \uparrow & \uparrow \\
\downarrow & \uparrow & \downarrow \\
\downarrow & \downarrow &
$$

 \triangleright We get a perturbing rotator acting on rows 2 and 3.

$$
\left\{ \begin{array}{c} \mathbf{r} \\ \mathbf{r} \end{array} \right\}
$$

New QR Step

 \triangleright Suppress the triangular matrix (everything passes through).

- \blacktriangleright Start the chasing.
- \blacktriangleright Eliminate rotater in row 2 and 3 via a similarity:
	- \blacktriangleright removes the rotator on the left,
	- \blacktriangleright but add a new one on the right.

$$
\begin{array}{c}\n\overrightarrow{r} \\
\overrightarrow{r} \\
\overrightarrow{r} \\
\overrightarrow{r}\n\end{array}
$$

- \triangleright Similarity moves rotator to the right.
- \blacktriangleright Turnover indicated.

$$
\begin{array}{c}\n\uparrow \\
\uparrow \\
\uparrow \\
\downarrow \\
\downarrow\n\end{array}
$$

 \blacktriangleright Eliminate rotator acting on rows 3 and 4, by similarity.

$$
\begin{array}{c}\n\uparrow \\
\uparrow \\
\downarrow \\
\downarrow \\
\downarrow\n\end{array}
$$

 \blacktriangleright Turnover indicated.

$$
\begin{array}{c}\n\uparrow \\
\uparrow \\
\uparrow \\
\downarrow \\
\downarrow\n\end{array}
$$

 \blacktriangleright Eliminate by similarity the rotator marked with \times .

$$
\begin{array}{c}\n\uparrow \\
\uparrow \\
\uparrow \\
\uparrow \\
\downarrow\n\end{array}
$$
New QR Step

 \blacktriangleright A final fusion.

 \blacktriangleright Again a Hessenberg matrix.

$$
\begin{array}{c}\updownarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}\qquad \qquad \begin{array}{c}\updownarrow \\ \times \times \times \times \times \\ \times \times \times \\ \times \times \times \\ \times \times \\ \times \times \end{array}\qquad \qquad
$$

- \blacktriangleright Deflation after a few steps.
- \blacktriangleright Search for diagonal rotations.

$$
\begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \\ x & x & x & x & x \end{bmatrix} = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x \\ x & x & x & x & x & x \end{bmatrix}
$$

New QR Step

 \blacktriangleright Deflation after a few steps.

 \triangleright Continue operating on the upper part

 × = × × × × × × ×

 \blacktriangleright Remark: Rotation chasing is part of rational QR framework.

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0) [Some Facts](#page-76-0) [More Wiggle Room and More Information](#page-85-0) [The Rank One Part](#page-104-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

The Problem of Today

 \blacktriangleright Given the complex polynomial.

$$
p(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0 = 0.
$$

 \triangleright Compute the eigenvalues of the companion matrix

$$
A = \begin{bmatrix} & & & & & -a_0 \\ 1 & & & & & & -a_1 \\ & 1 & & & & & -a_2 \\ & & \ddots & & & & \vdots \\ & & & 1 & & -a_{n-2} \\ & & & & 1 & & -a_{n-1} \end{bmatrix}
$$

.

Fast Companion QR Solvers

- ► Bini, Daddi, Gemignani (2004): explicit QR on $A = A^{-*} + UV^*$
- \triangleright Bini, Eidelman, Gemignani, Gohberg (2007): explicit QR on quasisep. A
- \blacktriangleright Chandrasekaran, Gu, Xia, Zhu (2007): implicit QR on $A = QR$
- Delvaux, Frederix, Van Barel (2009/13): implicit QR on $A = QR$ R in Givens-weight representation
- ▶ Van Barel, Vandebril, Van Dooren, Frederix (2010): implicit QR unitary-plus-rank-one is preserved, Hessenberg structure is perturbed
- ▶ Bini, Boito, Eidelman, Gemignani, Gohberg (2010): now implicit
- \triangleright Boito, Eidelman, Gemignani, Gohberg (2012): higher stability
- Eidelman, Gohberg, Haimovici (2013): three sequences of rotations

 \blacktriangleright Important fact:

 \blacktriangleright Companion matrix is unitary-plus-rank-one

$$
A = \begin{bmatrix} 0 & \cdots & 0 & e^{i\theta} \\ 1 & & & & \\ & \ddots & & \vdots \\ & & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & \cdots & 0 & -e^{i\theta} - a_0 \\ 0 & 0 & -a_1 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & -a_{n-1} \end{bmatrix}.
$$

 \triangleright Unitary-plus-rank-one structure is preserved by unitary similarities:

$$
A = U + uv^H
$$

$$
Q^*AQ = Q^*UQ + (Q^*u)(Q^*v)^*.
$$

 \blacktriangleright Important fact 2:

- \triangleright Companion matrix is also upper Hessenberg,
- \blacktriangleright this is preserved by Francis's QR algorithm.
- \blacktriangleright Remark:
	- \blacktriangleright the unitary matrix is initially of Hessenberg form too.
	- \blacktriangleright This is, however, not preserved.
	- \triangleright Only the sum remains upper Hessenberg.

 \blacktriangleright Important fact 2:

- \blacktriangleright Companion matrix is also upper Hessenberg,
- \blacktriangleright this is preserved by Francis's QR algorithm.
- \blacktriangleright Remark:
	- \blacktriangleright the unitary matrix is initially of Hessenberg form too.
	- \blacktriangleright This is, however, not preserved.
	- \triangleright Only the sum remains upper Hessenberg.

 \triangleright We will therefor run the QR algorithm preserving both

- \blacktriangleright Hessenberg structure;
- \blacktriangleright unitary-plus-low-rank structure.

 \blacktriangleright Important fact 2:

- Companion matrix is also upper Hessenberg,
- \blacktriangleright this is preserved by Francis's QR algorithm.
- \blacktriangleright Remark:
	- \blacktriangleright the unitary matrix is initially of Hessenberg form too.
	- \blacktriangleright This is, however, not preserved.
	- \triangleright Only the sum remains upper Hessenberg.

 \triangleright We will therefor run the QR algorithm preserving both

- \blacktriangleright Hessenberg structure;
- \blacktriangleright unitary-plus-low-rank structure.

 \blacktriangleright Numerically this is, however, not feasible.

Unitary Plus Low Rank

 \triangleright Consider the splitting in more detail:

$$
\begin{array}{c}\n A = U + uv^T \\
 \times \times \times \times \times \times \\
 \times \times \times \times \\
 \times \times \times \\
 \times \times \times\n \end{array} = \begin{bmatrix}\n \times \times \times \times \times \\
 \times \times \times \times \\
 \times \times \times \\
 \times \times \times \\
 \times \times \times\n \end{bmatrix} + \begin{bmatrix}\n u_1v_1 & u_1v_2 & u_1v_3 & u_1v_4 & u_1v_5 \\
 u_2v_1 & u_2v_2 & u_2v_3 & u_2v_4 & u_2v_5 \\
 u_2v_1 & u_2v_2 & u_2v_3 & u_2v_4 & u_2v_5 \\
 u_3v_1 & u_3v_2 & u_3v_3 & u_3v_4 & u_3v_5 \\
 u_4v_1 & u_4v_2 & u_4v_3 & u_4v_4 & u_4v_5 \\
 u_5v_1 & u_5v_2 & u_5v_3 & u_5v_4 & u_5v_5\n \end{bmatrix}
$$

 \blacktriangleright The \boxtimes must cancel out with the corresponding $u_i v_j$.

 $\sqrt{ }$ $\overline{}$ $\overline{1}$ $\overline{}$ $\overline{1}$ 1 $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$

Unitary Plus Low Rank

 \triangleright Consider the splitting in more detail:

$$
\begin{array}{rcl}\n & A & = & U + uv^T \\
 & \times \times \times \times \times \times \\
 & \times \times \times \times \\
 & \times \times \times \\
 & \times \times\n \end{array}\n\bigg\} = \n\begin{bmatrix}\n & \times \times \times \times \times \\
 & \times \times \times \times \\
 & \times \times \times \\
 & \times \times \\
 & \times \times\n \end{bmatrix}\n+ \n\begin{bmatrix}\n & u_1v_1 & u_1v_2 & u_1v_3 & u_1v_4 & u_1v_5 \\
 & u_2v_1 & u_2v_2 & u_2v_3 & u_2v_4 & u_2v_5 \\
 & u_2v_1 & u_2v_2 & u_2v_3 & u_2v_4 & u_2v_5 \\
 & u_2v_1 & u_2v_2 & u_2v_3 & u_2v_4 & u_2v_5 \\
 & u_3v_1 & u_3v_2 & u_3v_3 & u_3v_4 & u_3v_5 \\
 & u_4v_1 & u_4v_2 & u_4v_3 & u_4v_4 & u_4v_5 \\
 & u_5v_1 & u_5v_2 & u_5v_3 & u_5v_4 & u_5v_5\n \end{bmatrix}
$$

 \blacktriangleright The \boxtimes must cancel out with the corresponding $u_i v_j$.

A pity: not enough information in U to reconstruct uv^T .

 $\sqrt{ }$ $\overline{}$ $\overline{1}$ $\overline{}$ $\overline{1}$ 1 $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Some Facts](#page-76-0) [More Wiggle Room and More Information](#page-85-0) [The Rank One Part](#page-104-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

Additional Zero Root

 \triangleright We add an additional zero root to the polynomial.

$$
\blacktriangleright xp(x) = x^{n+1} + a_{n-1}x^n + a_{n-2}x^{n-1} + \ldots + a_0x + 0 = 0.
$$

Companion matrix

Additional Zero Root

 \triangleright We add an additional zero root to the polynomial.

$$
\blacktriangleright xp(x) = x^{n+1} + a_{n-1}x^n + a_{n-2}x^{n-1} + \ldots + a_0x + 0 = 0.
$$

Companion matrix

In this form: still unable to get uv^T from U in $A = U + uv^T$. \triangleright So: first do a special QR step (shift 0).

- \triangleright We perform explicitly theoretically one QR step with shift 0.
- \triangleright Since this is a perfect shift: theoretical convergence in one step!
- \triangleright Explicit computation (on paper) without round-off since all rotations are flips.
- \triangleright After the QR step we obtain (we have overwritten A)

$$
A = \left[\begin{array}{cccc} 0 & & & -a_0 & 1 \\ 1 & & & -a_1 & 0 \\ & \ddots & & \vdots & \vdots \\ & & 1 & -a_{n-1} & 0 \\ & & & 0 & 0 \end{array}\right]
$$

.

- \triangleright We perform explicitly theoretically one QR step with shift 0.
- \triangleright Since this is a perfect shift: theoretical convergence in one step!
- \triangleright Explicit computation (on paper) without round-off since all rotations are flips.
- \triangleright After the QR step we obtain (we have overwritten A)

$$
A = \begin{bmatrix} 0 & & -a_0 & 1 \\ 1 & & -a_1 & 0 \\ & \ddots & & \vdots & \vdots \\ & & 1 & -a_{n-1} & 0 \\ \hline & & 0 & 0 \end{bmatrix}.
$$

- \blacktriangleright Extra zero root can be deflated immediately.
- \triangleright We apparently end up with the same companion matrix.

- \triangleright We perform explicitly theoretically one QR step with shift 0.
- \triangleright Since this is a perfect shift: theoretical convergence in one step!
- \triangleright Explicit computation (on paper) without round-off since all rotations are flips.
- \triangleright After the QR step we obtain (we have overwritten A)

$$
A = \begin{bmatrix} 0 & & -a_0 & 1 \\ 1 & & -a_1 & 0 \\ & \ddots & & \vdots & \vdots \\ & & 1 & -a_{n-1} & 0 \\ \hline & & 0 & 0 \end{bmatrix}.
$$

- \blacktriangleright Extra zero root can be deflated immediately.
- \triangleright We apparently end up with the same companion matrix.
- In But, we will still consider the factorization of the entire matrix $A = U + uv^{T}$.
- Now we can reconstruct uv^T from U.

We will not explain all advantages in detail.

But summarized we have:

 \blacktriangleright We can reconstruct uv^T from U.

We will not explain all advantages in detail.

But summarized we have:

- \blacktriangleright We can reconstruct uv^T from U.
- \blacktriangleright We do not need uv^T , only U. As a consequence:
	- **Faster QR steps, no need to update u nor v, (saves 30%)**
	- \blacktriangleright less storage.

We will not explain all advantages in detail.

But summarized we have:

- \blacktriangleright We can reconstruct uv^T from U.
- \blacktriangleright We do not need uv^T , only U. As a consequence:
	- **Faster QR steps, no need to update u nor v, (saves 30%)**
	- \blacktriangleright less storage.
- \triangleright Strong theoretical backward stability results.

 \triangleright We start as before, by factoring our $(n + 1) \times (n + 1)$ Hessenberg matrix A.

 $A = \bigcap$

 \triangleright Consider it's QR factorization: $A = QR$, where

 0 −a⁰ 1 1 −a¹ 0 1 −an−¹ 0 0 0 = . . . 1 −a¹ 0 1 −an−¹ 0 ±a⁰ ∓1 0 0 = Q1Q² · · · Qn−1R.

 \blacktriangleright The deflation is visible in Q as well since $Q_n = I$.

 \triangleright We start as before, by factoring our $(n + 1) \times (n + 1)$ Hessenberg matrix A.

 $A = \bigcap$

 \triangleright Consider it's QR factorization: $A = QR$, where

$$
\begin{bmatrix}\n0 & -a_0 & 1 \\
1 & -a_1 & 0 \\
\vdots & \vdots & \vdots \\
1 & -a_{n-1} & 0 \\
\hline\n0 & 0 & 0\n\end{bmatrix} = \begin{bmatrix}\n\vdots & & & \\
\vdots & & & \\
\hline\n0 & 0 & 0\n\end{bmatrix} = Q_1 Q_2 \cdots Q_{n-1} R.
$$

- \blacktriangleright The deflation is visible in Q as well since $Q_n = I$.
- It remains to factor the upper triangular R .

$$
R = \left[\begin{array}{ccc|c} 1 & & -a_1 & 0 \\ & \ddots & \vdots & \vdots \\ & 1 & -a_{n-1} & 0 \\ & & \pm a_0 & \mp 1 \\ \hline & 0 & 0 \end{array}\right]
$$

 \blacktriangleright R is unitary-plus-rank-one:

$$
R = \left[\begin{array}{cc|c}1 & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 1 & 0 & 0 & \\ & & 1 & 0 \\ \hline & & & \pm 1 & 0\end{array}\right] + \left[\begin{array}{cc|c}0 & -a_1 & 0 \\ \cdot & \cdot & \cdot & \cdot \\ & & \cdot & \cdot \\ 0 & -a_{n-1} & 0 \\ & & \pm a_0 & 0 \\ \hline & & \mp 1 & 0\end{array}\right]
$$

$$
\blacktriangleright R = U + xy^T, \text{ where}
$$

$$
xy^{T} = \begin{bmatrix} -a_1 \\ \vdots \\ -a_{n-1} \\ \pm a_0 \\ \hline +1 \end{bmatrix} [0 \cdots 0 1 | 0]
$$

Next step: Roll up x. Thus project x onto e_1 with rotators.

$$
\begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} = \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix}
$$

$$
\begin{bmatrix} x \\ x \\ x \\ x \\ x \end{bmatrix} = \begin{bmatrix} x \\ x \\ x \\ 0 \end{bmatrix}
$$

$$
\begin{bmatrix} x \\ y \\ z \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 0 \\ 0 \end{bmatrix}
$$

$$
\begin{array}{cc}\n\uparrow & & \uparrow \\
\downarrow & & \uparrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow\n\end{array} = \begin{bmatrix}\n\times \\
0 \\
0 \\
0 \\
0\n\end{bmatrix}
$$

$$
\begin{array}{ccc} \updownarrow & \\ \downarrow & \end{array} \begin{bmatrix} \times \\ \times \\ \times \\ \times \end{bmatrix} = \begin{bmatrix} \times \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

So we get (the vector is of length $n + 1$)

$$
C_1 \cdots C_n x = \alpha e_1 \qquad (\text{w.l.g. } \alpha = 1)
$$

$$
x = C^* e_1 = C_n^* \dots C_1^* e_1.
$$

Altogether we have

$$
\blacktriangleright A = QR = Q C^* (B + e_1 y^T), \text{ with } C^* B = U.
$$

Again $B = CU$ is unitary Hessenberg: $B = B_1 \cdots B_n$.

► $A = Q_1 \cdots Q_{n-1} C_n^* \cdots C_1^* (B_1 \cdots B_n + e_1 y^T).$

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Some Facts](#page-76-0) [More Wiggle Room and More Information](#page-85-0) [The Rank One Part](#page-104-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

B and C contain the information in y

Recall: A is now of size $(n+1) \times (n+1)$. \blacktriangleright $C^*(B + e_1y^T) = R$ and $R \in \mathbb{C}^{(n+1)\times (n+1)}$ is upper triangular

B and C contain the information in y

- Recall: A is now of size $(n+1) \times (n+1)$. \blacktriangleright $C^*(B + e_1y^T) = R$ and $R \in \mathbb{C}^{(n+1)\times (n+1)}$ is upper triangular ▶ The complete last row of R is zero: $e_{n+1}R = 0 = e_{n+1}(C^*(B + e_1y^T)).$ ▶ Therefore $y^T = -\rho^{-1} e_{n+1}^T C^* B$, with $\rho = e_{n+1}^T C^* e_1$
- \triangleright Only possible because of the additional root!

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0) [The New Chasing](#page-107-0)

[Numerical Experiments](#page-127-0)
Original Hessenberg Matrix A

Altogether we have

$$
A = QR = Q C^*(B + e_1y^T)
$$

\n
$$
A = Q_1 \cdots Q_{n-1} C_n^* \cdots C_1^*(B_1 \cdots B_n + e_1y^T)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

Original Hessenberg Matrix A

Altogether we have

$$
\begin{aligned}\n\blacktriangleright A &= QR = Q \ C^* \left(B + e_1 y^T \right) \\
\blacktriangleright A &= Q_1 \cdots Q_{n-1} \ C_n^* \cdots C_1^* \left(B_1 \cdots B_n + e_1 y^T \right) \\
\downarrow \uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \\
\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

 \triangleright We will ignore the rank one part!

 \blacktriangleright The rank one part is encoded in the unitary matrices.

 Q¹ · · · Qn−¹ C ∗ n · · · C ∗ 1 B¹ · · · Bⁿ

Similarity 3 We operate on a 5×5 matrix ($n = 4$), so it is fine.

- \blacktriangleright Iteration complete!
- \triangleright Cost roughly 3*n* turnovers/iteration, so $O(n)$ flops/iteration.
- \blacktriangleright To the Schur form thus $O(n^2)$ operations.

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

[Backward Stability](#page-127-0)

[Runtimes and Accuracy](#page-135-0) [Tightness of the Backward Error Bound](#page-138-0)

Backward Stability

▶ Backward error on the Schur form:

$$
Q^*(A+\Delta A)Q=S,
$$

where

$$
\|\Delta A\|_F \leq \|\text{coefficients of } p(x)\|^2 \ \mathcal{O}(\epsilon_m).
$$

Backward Stability

 \blacktriangleright Backward error on the Schur form:

$$
Q^*(A+\Delta A)Q=S,
$$

where

$$
\|\Delta A\|_F \leq \|\text{coefficients of } p(x)\|^2 \ \mathcal{O}(\epsilon_m).
$$

 \blacktriangleright Lapack (roots) does better here:

 $\|\Delta A\|_F \leq \|\text{coefficients of } p(x)\|^1 \ \mathcal{O}(\epsilon_m).$

One step further, push the error to the polynomial coefficients:

▶ Following P. Dewilde and P. Van Dooren we must add another

 \Vert coefficients of $p(x)\Vert$.

 \triangleright So we would get:

 $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^3 \mathcal{O}(\epsilon_m).$

Roots would get:

 $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^2 \mathcal{O}(\epsilon_m).$

Backward Stability (Version 2 - 2 years later)

 \triangleright Considering the structure in the perturbation:

$$
A + \Delta A = U + \Delta U + uv^{T} + \Delta (uv^{T})
$$

we get

.

ighthrow unitary part only perturbed by $\mathcal{O}(\epsilon_m)$,

 \triangleright rank one part (reconstruction) introduces errors of the order

 $\|\text{coefficients of } p(x)\|^2 \mathcal{O}(\epsilon_m)$

 \blacktriangleright Because of this we get

 $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^2 \text{ } \mathcal{O}(\epsilon_m).$

▶ Yeah: we are as good as roots!

Backward Stability (Version 3 - three years later)

- \triangleright We were running tests for generalized companion matrices.
- \blacktriangleright This runs directly on non-monic polynomials and better accuracy expected.
- \blacktriangleright But experimentally no improvement was observed.

Backward Stability (Version 3 - three years later)

- \triangleright We were running tests for generalized companion matrices.
- In This runs directly on non-monic polynomials and better accuracy expected.
- \blacktriangleright But experimentally no improvement was observed.
- \blacktriangleright We proved

 $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^{1}$ $\mathcal{O}(\epsilon_{m}).$

 \blacktriangleright Even when loosening monotonicity, lapack (or roots) gives $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^2 \mathcal{O}(\epsilon_m).$

Backward Stability (Version 3 - three years later)

- \triangleright We were running tests for generalized companion matrices.
- In This runs directly on non-monic polynomials and better accuracy expected.
- \blacktriangleright But experimentally no improvement was observed.
- \blacktriangleright We proved

 $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^{1}$ $\mathcal{O}(\epsilon_{m}).$

 \blacktriangleright Even when loosening monotonicity, lapack (or roots) gives $\|\text{error on coefficients of } p(x)\| \leq \|\text{coefficients of } p(x)\|^2 \mathcal{O}(\epsilon_m).$

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

[Backward Stability](#page-127-0) [Runtimes and Accuracy](#page-135-0) [Tightness of the Backward Error Bound](#page-138-0)

Speed Comparison, Complex Case

Contestants

- ▶ LAPACK code ZHSEQR $(O(n^3))$, unbalanced Hessenberg solver)
- BBEGG (Bini, Boito, Eidelman, Gemignani, and Gohberg 2010)
- ▶ BEGG (Boito, Eidelman, Gemignani, and Gohberg 2012)
- ▶ CGXZ (Chandrasekaran, Xia, Gu, and Zhu 2007)
- \triangleright AMVW (Our single-shift or double-shift code)

Relative backward error measure

$$
\max_{\lambda} \frac{\|Av - \lambda v\|}{\|A\|_{\infty} \|v\|_{\infty}}
$$

Comparison, Complex Case

Note: our new implementation is even 25% faster.

Outline

[About Today](#page-1-0)

[Some Root History](#page-18-0)

[Francis's Algorithm for Eigenvalues of Matrices](#page-33-0)

[The Companion: Factorization & Facts](#page-76-0)

[Francis's Algorithm on the Compact Companion](#page-107-0)

[Numerical Experiments](#page-127-0)

[Backward Stability](#page-127-0) [Runtimes and Accuracy](#page-135-0) [Tightness of the Backward Error Bound](#page-138-0)

Absolute Backward Error on Coefficients

- \blacktriangleright Is this the best method for computing roots?
- \blacktriangleright Is this the best companion method?
- \triangleright Better than normwise stability is component wise small error.
- \triangleright Software part of EisCor (github).

Conclusions

