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Groups and group actions



Groups and group actions

The usual definition: (Γ , ·, e) a set with inner, associative operation, together
with the identity element.

Groups defined by the actions:

▶ The symmetric group Sym(n) - the set of bijections of 1. . .n with
composition.

▶ The Dihedral group D2n - the set of plane transformations preserving a
regular n-gon.

Throughout the talk I will assume that

▶ Γ is a finite
▶ the field k is "sufficiently" algebraically closed for Γ .
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Group actions

Group Γ acts on a set Ω if there is a function

F : G×Ω→ Ω
such that F(g, ·) : Ω→ Ω is a bijection for every g ∈ Γ , and
F(g, F(h,ω)) = F(gh,ω).

In particular F(e, ·) is the identity.

Example

▶ the symmetric group Sym(n) acts on 1. . .n by permuting points
▶ the dihedral group D2n acts on the vertices of n-gon
▶ if we are given a homomorphism ρ : Γ → GL(V) to the group of

invertible matrices, then Γ acts on V via

(g, v), ρ(g)v.

Pair (V, ρ) is also known as linear representation of Γ .
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The basic example

Example (Action on polynomial ring)
Let Γ = ⟨(1, 2), (1, 2, 3, 4)⟩ and R = R[x1, . . . , x4].

R can be considered as an
R-vector space with a monoid (multiplicative) structure.

1a Γ acts on {x1, x2, x3, x4} in a natural way
1b Γ acts trivially (fixes) the unit
2 Γ acts on the monoid (i.e. monomials) by F(g, xy) = F(g, x)F(g, y).
3 Γ acts on R by linear extension F(g, cx) = cF(g, x)

Notes:

▶ Γ preserves the degree
▶ R = R[x1, . . . , x4] is an infinite-dimensional (linear) representation of Γ .
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Invariance and Equivariance



Invariant subspaces I

Example (continued)
Let

V =
(
⟨R[x1, . . . , x4]⟩

)
0≤deg(m)≤(2)

an invariant (i.e preserved by the action of Γ ), 15-dimensional vector
space.

The subspace of V fixed by Γ is spanned by

VΓ = V1 =


1
x1 + x2 + x3 + x4

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4
x21 + x22 + x23 + x24


with the complement of VΓ < V is spanned by

V2 =



x1 − x4
x2 − x4
x3 − x4
x22 − x24
x23 − x24
x21 − x24

x1x2 − x3x4
x1x3 − x2x4
x1x4 − x2x3


V3 =

[
x1x2 − x1x4 − x2x3 + x3x4
x1x3 − x1x4 − x2x3 + x2x4

]
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The aim
Use the invariant subspaces to simplify the eigenvalue method for solving
polynomial systems in presence of symmetry.

The eigenvalue method

▶ Let f1, . . . , fm ∈ k[x1, . . . , xn] = R and
▶ I = ⟨f1, . . . , fm⟩ ⊂ R be an ideal with dim Z(I) = 0.
▶ Then R/I is a finite dimensional vector space.
▶ Given any f ∈ R define the multiplication map

Af : R/I→ R/I
[r], [r · f]

▶ SinceAf is a linear map for any choice of g = {[g1], . . . [gd]} a linear
independent basis for R/I we can realizeAf as a matrix Af ,g = Af .

▶ each eigen pair (λ, v) of Af corresponds to (f(p),g(p)) for some
p ∈ Z(I).
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Misleading quote of the day

The structure of simplifications that can be derived from
group symmetry does not depend on particular choices
of R, I, etc.



Equivariant maps

Definition
A linear map L : (V, ρ)→ (W, θ) of Γ -representations is said to be
equivariant if for every g ∈ Γ and v ∈ V

L(ρ(g)v) = θ(g)L(v).

▶ If I is invariant under the action of Γ , then the linear action of Γ on R
descends to R/I,

▶ so that the induced action makes R/I a finite dimensional
representation of Γ .

▶ If f is invariant under Γ , thenAf is an equivariant map

Af : R/I→ R/I.

▶ With a particular choice of basis the equivariance condition now reads

Afρ(g)v = ρ(g)Afv for all v ∈ R/I, g ∈ Γ ,
i.e. Af commutes with all matrices defined by ρ!
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RTFG

When a finite Γ acts linearly on V...

▶ every Γ -invariant subspace has a Γ -invariant complement.
▶ a Γ -invariant subspace V is irreducible if its only Γ -invariant subspaces

are {0} and V,
▶ for every Γ there are only finitely many types of irreducible subspaces.
▶ Hence

(V, ρ) ≊
⊕
i
(Vi, ρi) (isotypical decomposition)

≊
⊕
i

 ni⊕
j
(Vi,j, πi)

 .
︸ ︷︷ ︸

≊(Vi,ρi)

(πi irreducible)

An equivariant map L will not split an irreducible subspace!
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Example (continued)
Recall:

V =
(
⟨R[x1, . . . , x4]⟩

)
0≤deg(m)≤(2)

a 15 dimensional vector space with permutation action of Γ = Sym(4).

V1 =


1

x1 + x2 + x3 + x4
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

x21 + x22 + x23 + x24

 ≊



[
1
][

x1 + x2 + x3 + x4
][

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4
][

x21 + x22 + x23 + x24
]



V2 =



x1 − x4
x2 − x4
x3 − x4
x22 − x24
x23 − x24
x21 − x24

x1x2 − x3x4
x1x3 − x2x4
x1x4 − x2x3


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x1x2 − x3x4x1x3 − x2x4
x1x4 − x2x3




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Example (continued)
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Diagonalization alá Schur

Lemma (Schur)
Let L : (A1, π1)→ (A2, π2) be a Γ -equivariant map of irreducible
representations. Then

▶ if (A1, π1) ̸≊ (A2, π2) (they are of different types), then L = 0.
▶ if (A1, π1) ≊ (A2, π2) (they are of same type), then either L = 0, or L is an
isomorphism.

▶ (V, ρ) ≊
⊕

i(Vi, ρi) (isotypical)
▶ (W, θ) ≊

⊕
i(Wi, θi) (isotypical)

▶ If Li,j : Vi → Wj, then by Schur
Li,j = 0 when i ≠ j.

(V, ρ)

(W, θ)

Projections to isotypical components (Vi or Wj) can be expressed in a base-free (hence

matrix-free!) form as elements of group algebra.
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Group algebra and projections

Definition
Group algebra R[G]

▶ elements of R[G] are (finitely supported) functions a : G→ R, usually
written as a =

∑
g agg

▶ multiplication is convolution: if a =
∑

g agg and b =
∑

g bgg then

ab =
∑
g

∑
h
agh−1bhg

e.g. (1e− 2g)(g+ 3g−1h2) = 1g− 2g2 + 3g−1h2 − 6h2.

Fact:
Projections onto isotypical subspaces live in R[G] in a matrix-free form.

V3 =
[
x1x2 − x1x4 − x2x3 + x3x4
x1x3 − x1x4 − x2x3 + x2x4

]
←→ p3 =

1
12

(
2()− (2, 4, 3)− (2, 3, 4)+ 2(1, 2)(3, 4)−
(1, 3, 2)− (1, 4, 2)− (1, 4, 3)+ (1, 3)(2, 4)−
(1, 2, 3)+ 2(1, 4)(2, 3)− (1, 2, 4)− (1, 3, 4)

)
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Lemma (Schur cd)
Let L : (A1, π1)→ (A2, π2) be a Γ -equivariant map of irreducible
representations.

▶ ...

▶ If (A1, π1) = (A2, π2) (they are of equal), then L = λI for a scalar λ.

(Vi, ρi)

(Wi, θi)
d2×d2 by Schur 2

V′3 =
1
2

(
x1x2−x1x4−x2x3+x3x4+

x1x3−x1x4−x2x3+x2x4

)
←→ q3 · p3 where q3 =

1
2 (()+ (3, 4))
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Example: SymbolicWedderburn.jl

# [ ... ]
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis

[, semisimple=false])

Simple blocks when acting on basis:

V′1 =


1

x1 + x2 + x3 + x4
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

x21 + x
2
2 + x

2
3 + x

2
4

 V′2 =


1
3 (3x1 − x2 − x3 − x4)1
3 (3x

2
1 − x

2
2 − x

2
3 − x

2
4)

x1x2 + x1x3 + x1x4 − x2x3 − x2x4 − x3x4



V′3 =
[ 1
2 (2x1x2 − x1x3 − x1x4 − x2x3 − x2x4 + 2x3x4)

]

Reduction: 15× 15→ (4× 4, 9× 9, 2× 2)→ (4× 4, 3× 3, 1× 1)-psd constraints.



Large scale example

Optimization problem from geometric group theory1:

Estimate the spectral gap of the group Laplacian for Aut(F5)
If ∆2 − λ∆ á 0 then (0, λ) is not in the spectrum.

▶ relax ∆2 − λ∆ á 0 as sum of squares problem:
▶ psd-constraint of size 4 641× 4 641, 1.1 · 107 constraints
▶ symmetry group: S2 ≀ S5 (3840 elements)
▶ After symmetrization:

▶ 29-blocks (largest: 58× 58) (13 232 variables in total)
▶ 7 230 constraints

▶ Solvable in 20 minutes to ε ∼ 10−12!

1Kaluba, M., Nowak, P.W. & Ozawa, N. Aut(F5) has property (T). Math. Ann. 375, 1169–1191 (2019).
https://doi.org/10.1007/s00208-019-01874-9

https://doi.org/10.1007/s00208-019-01874-9
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Original psd constraint (4 641× 4 641)

diagonalized psd (⊂ 448× 448)
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