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» The symmetric group Sym(n) - the set of bijections of 1...n with
composition.

» The Dihedral group D5, - the set of plane transformations preserving a
regular n-gon.

Throughout the talk I will assume that

» T isafinite

» the field kis "sufficiently" algebraically closed for T.
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Group I acts on a set Q if there is a function
F:GxQ—-Q

such that F(g,-): Q — Q is a bijection for every g € T, and
F(g,F(h,w)) = F(gh, w). In particular F(e, -) is the identity.
Example
> the symmetric group Sym(n) acts on 1...n by permuting points
> the dihedral group D,, acts on the vertices of n-gon
> if we are given a homomorphism p: T' — GL(V) to the group of
invertible matrices, then I acts on V via

(g,v) = p(g)v.

Pair (V, p) is also known as linear representation of I'.
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The basic example

Example (Action on polynomial ring)
LetT = ((1,2),(1,2,3,4)) and R = R[X4,...,X4]. R can be considered as an
R-vector space with a monoid (multiplicative) structure.
1a T acts on {xq,%2,X3,X,} In a natural way
1b T acts trivially (fixes) the unit
2 T acts on the monoid (i.e. monomials) by F(g,xy) = F(g,x)F(g,y).

3 T acts on R by linear extension F(g, cx) = cF(g, x)
Notes:

> T preserves the degree

> R =R[Xq,...,X] is an infinite-dimensional (linear) representation of T.
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Example (continued)
Let
V= ((RD,-. xD) )

0<deg(m)=(2)

an invariant (i.e preserved by the action of I'), 15-dimensional vector
space. The subspace of V fixed by T is spanned by

1
X1+ X + X3 + X

X1X2 + X1X3 + X1X4 + XoX3 + XoXs + X3Xs
X+ X3+ 3+ X2

VI=y, =

with the complement of VI' < V is spanned by

X1 — X4
X2 — X4
X3 — X4
i
Vp = X§ = X% V3 = |:
e

X1X2 — X3X4

X1X3 — X2 X4

X1X4 — X2X3

X1X2 — X1X4 — X2X3 + X3X4
X1X3 — X1X4 — X2X3 + X2X4
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The aim

Use the invariant subspaces to simplify the eigenvalue method for solving
polynomial systems in presence of symmetry.

The eigenvalue method
> letfi,...,fm € R[X1,...,Xxn] = Rand
> | =(fi,...,fm) C R be an ideal with dimZ(l) = 0.
» Then R/l is a finite dimensional vector space.
» Given any f € R define the multiplication map

As: R/l — R/
(r] = [r-f]
> Since Ay is a linear map for any choice of g = {[g1],...[gq4]} a linear
independent basis for R/l we can realize Ay as a matrix Arg = Ar.

> each eigen pair (A, v) of As corresponds to (f(p),g(p)) for some
p e Z().



Misleading quote of the day

The structure of simplifications that can be derived from
group symmetry does not depend on particular choices
of R, I, etc.
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Equivariant maps

Definition
Alinear map L: (V,p) — (W, ) of I'-representations is said to be
equivariant if foreverygeTTandv eV

L(p(g)v) = 0(g)L(v).

» |f | is invariant under the action of I, then the linear action of I on R
descends to R/I,

» so that the induced action makes R/I a finite dimensional
representation of I'.

> If f is invariant under T, then Ay is an equivariant map

As: R/l — R/I.

» With a particular choice of basis the equivariance condition now reads
Asp(g)v = p(g)Asv forallveR/l,geT,

i.e. Ar commutes with all matrices defined by p!
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RTFG

When a finite I acts linearlyon V...

» every I'-invariant subspace has a I'-invariant complement.

> aT-invariant subspace V is irreducible if its only I'-invariant subspaces
are {0} and V,

» for every I there are only finitely many types of irreducible subspaces.

> Hence

V,p) = @(V,’, 0i) (isotypical decomposition)
i

n;
= @ (@(V,"j,ﬂ,‘)) . (17; irreducible)
i j

=(V;,pi)

An equivariant map L will not split an irreducible subspace!
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Recall:

V= ((R[X1,...,X4]>>

0<deg(m)<(2)

a 15 dimensional vector space with permutation action of I' = Sym(4).

1 1

X1+ X2 + X3+ Xq ~ [X1+X2+X3+X4]
X1X2 + X1X3 + X1X4 + X2X3 + XoX4 + X3X4 - [x1xz + X1X3 + X1X4 + X2X3 + XoX4 + X3x,.]
B +x3 %+ x2

Vi=

20232 2
[x1 +X5 + X3 +x,,]



Example (continued)
Recall:

V= ((R[X1,...,X4]>>

0<deg(m)<(2)

a 15 dimensional vector space with permutation action of I' = Sym(4).

1

X1+ X2 + X3 + Xq4
Vi =

X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4

B +x3 %+ x2

X1 — X4
X2 — X4
X3 — X4
X3 -x2
Vo = x% - xf
25

X1X2 — X3X4

X1X3 — X2X4

1X4 — X2X31

1

n

[ ']
[X1 + X2 + X3 +X4]

[X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4]
[xf +x2 +x3 +x£]

X1 — X4
X2 — X4
X3 — X4

X3 —x2
5 2
x5 —x%
3 —x;

X1X2 — X3X4
X1X3 — X2 X4

X1X4 — X2X3



Example (continued)
Recall:

V= ((R[X1,...,X4]>>

0<deg(m)<(2)

a 15 dimensional vector space with permutation action of I' = Sym(4).

1
X1+ X2 + X3 + Xq4
X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4
B +x3 %+ x2

Vi=

X1 — X4
X2 — X4
X3 — X4
X3 -x2
Vo = x% - xf
25
X1X2 — X3X4
X1X3 — X2X4
1X4 — X2X3

_ X1X2 — X1X4 — X2X3 + X3X4
9= X1X3 — X1X4 — X2X3 + X2 X4

}

1

n

[ ']
[X1 + X2 + X3 +X4]
[X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4]

[xf +x2 +x3 +x£]
X1 — X4
X2 — X4
X3 — X4

X3 —x2
5 2
x5 —x%
3 —x;

X1X2 — X3X4
X1X3 — X2 X4

X1X4 — X2X3

X1X3 — X1X4 — X2X3 + X2X4

[MXZ — X1X4 — X2X3 + X3X4]:|
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Diagonalization ala Schur

Lemma (Schur)
Let L: (A, 1) — (A,, T02) be a I'-equivariant map of irreducible
representations. Then

> if (A, TT7) ¢ (A;, T13) (they are of different types), then L = 0.
> if (A, 117) = (A3, T12) (they are of same type), then either L = 0, or L is an
isomorphism.
vV, p)

> (V,p) = P;i(V;, pi) (isotypical)
> (W, 0) = @;W,, ) (isotypical)

(W, 0)
> If Ljj: Vi = W, then by Schur
Lij=0wheni=+j.

Projections to isotypical components (V; or W;) can be expressed in a base-free (hence

matrix-free!) form as elements of group algebra.
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Group algebra and projections

Definition
Group algebra R[G]

> eclements of R[G] are (finitely supported) functions a: G — R, usually
written as a = 35 agg

> multiplication is convolution: if a = 3\, agg and b = > bgg then
ab=> > agh-1bng
g h
eg (le—2g)(g +3g 'h?) =1g — 2g®> + 3g 'h? — 6h?.

Fact:
Projections onto isotypical subspaces live in R[G] in a matrix-free form.

— Pp3=—|132-042)-(1,43) +1,3) (24~

X1X2 — X1Xy — X2 X3 + X3X4
12 \ (1,2,3) +2(1,4)(2,3) - (1,2,4) — (1,3,4)

1 ( 2() — (2,4,3) — (2,3,4) +2(1,2)(3,4)— )
X1X3 — X1Xy — XoX3 + Xo X4
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Let L: (A, ™) — (A;, T1;) be a I'-equivariant map of irreducible
representations.

> .

> If (A, ) = (Ay,T12) (they are of equal), then L = Al for a scalar A.
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Lemma (Schur cd)
Let L: (A, ™) — (A;, T1;) be a I'-equivariant map of irreducible
representations.

> .

> If (A, ) = (Ay,T12) (they are of equal), then L = Al for a scalar A.

Vi, pi)

dy xdy "
y Schur 2
(Wi, ) —

2

v, = 1 (X1X2X1X4X2X3+X3XA+> —qgs3-ps wheregs = % (() +(3,4))

X1X3 —X1X4 —X2X3 X2 X4



Example: SymbolicWedderburn. j1

#[... 1]
symmetry_adapted_basis(Rational{Int}, G, VariablePermutation(), basis
[, semisimple=false])

Simple blocks when acting on basis:

1
X1+ X2 +X3 + X4

X1X2 + X1X3 + X1X4 + X2X3 + X2X4 + X3X4
2 2 2
X7+ x5+ x5+ X

(3x 1 *Xz X3 = X4)
(3x1 —x5 7)% 7)(%)
X1X2 + X1X3 + X1X4 — X2X3 — X2X4 — X3X44

=~
N<\

Il
W= =

’
V3 = [%(2)(1)(2 — X1X3 — X1X4 — X2X3 — X2X4 + ZX3>(4)]

Reduction: 15X 15 — (4 X 4,9 X 9,2 X2) — (4 X 4,3 X 3,1 X 1)-psd constraints.
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Large scale example

Optimization problem from geometric group theory':

Estimate the spectral gap of the group Laplacian for Aut(Fs)
If A2 — AA > 0 then (0,A) is not in the spectrum.

relax A2 — AA > 0 as sum of squares problem:
psd-constraint of size 4641 X 4641, 1.1- 107 constraints
symmetry group: S, 1 Ss (3840 elements)

After symmetrization:

> 29-blocks (largest: 58 x 58) (13232 variables in total)
» 7230 constraints

vy VvV Yy

v

Solvable in 20 minutes to € ~ 10721

TKaluba, M., Nowak, PW. & Ozawa, N. Aut(Fs) has property (T). Math. Ann. 375, 1169-1191 (2019).
https://doi.org/10.1007/500208-019-01874-9
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.« diagonalized psd (C 448 x 448)

Original psd constraint (4 641 X 4 641)
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