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Introduction

» Booming demand: grouping multi-view data for better partition
(Web mining, Social network, Literature analysis).
» Clustering methods
» Most methods: single-view data
» Hybrid clustering: multi-view data
» Tensor methods

» powerful tool to handle multi-way data sources.
» multi-linear singular value decomposition (MLSVD) (Tucker, 1964 &
1966; De Lathauwer et al, 2000a)
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Figure: Demo of a hybrid clustering by MLSVD on synthetic 3D data sets



Introduction

Related work

» Hybrid clustering: multiple kernel fusion (MKF)(Joachims et al,
2001) and clustering ensemble (Strehl & Ghosh, 2002)

» MLSVD based clustering on image recognition (Huang & Ding,
2008)

» Multi-way latent semantic analysis (Sun et al, 2006)
» CANDECOMP/PARAFAC (CP): Scientific publication data with

multiple linkage (Dunlavy, Kolda, et al, 2006; Selee, Kolda et al,
2007)



Introduction

Main contributions

» An extendable framework of hybrid clustering based on MLSVD
» Modelling the multi-view data as a tensor
» Seeking a joint optimal subspace by tensor analysis

» Two novel clustering algorithms: AHC-MLSVD and WHC-HOOI.

» Experiments on both synthetic data and real Application on Web
of Science (WoS) journal database.
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Hybrid clustering

Spectral clustering
Given S € RN*N 'the affine matrix (similarity matrix) of a graph G; D,
the degree matrix; our Laplacian matrix

L =D 2sD~%/2 (1)

Let an relaxed indicator matrix be U, U € RN*M "M is the number of
clusters

max tr(UTLU),

(2
st UTU = 1.

Eigenvalue decomposition of matrix L: the solution of spectral
clustering (Luxburg, 2007)
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Hybrid clustering

Laplacian tensor

From a set of K Laplacian matrices L() e RN*N j =1, ... Ktoa
Laplacian tensor A € RN*NxK
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Figure: The formulation of a Laplacian tensor



Hybrid clustering

AHC-MLSVD
Averaging multi-view data for joint analysis:
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Figure: Average hybrid clustering of multi-view data

U € RN*M the joint optimal subspace
| € RK>K | an indentity matrix.



Hybrid clustering

AHC-MLSVD
The optimization of average hybrid clustering,

max||A x; UT x, UT ><3I||,2:,
v (3
st. UTU = I.

The solution of MLSVD (Tucker, 1964 & 1966; De Lathauwer et al,
2000a)

» An approximate solution

» Usually satisfied results

» An upper bound on the approximation error



Hybrid clustering

WHC-HOOI

Taking the effect of each single-view data into account
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Figure: Weighted hybrid clustering of multi-view data

W = {az,az, -+ ,ax }T: the weighting factor of each view.



Hybrid clustering

WHC-HOOI
The equivalent optimization of weighted hybrid clustering

max ||.A X1 u' X2 u' X3 WT|||2:7
u,w (4)
stUTU=landW'W = 1.

The solution of higher-order orthogonal iteration (HOOI)
(Kroonenberg & De Leeuw, 1980; De Lathauwer et al, 2000b)

» An optimal solution
» An appropriate weight for each view data
» Other tensor methods
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Experiments
Clustering of a multiplex network

Multiplex network: a group of networks which share the same nodes
but multiple types of links (Mucha et al, 2010)
The synthetic multiplex network:

» Three clusters with each having 50,100, 200 members
respectively

» Three views generated by different noise
» Three interaction matrices from each view — a tensor
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Figure: The adjacent matrices from a synthetic multiplex network
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Experiments

Application on Web of Science (WoS) journal database

» Objective: Obtain a good scientific mapping from the WoS
journals

» Integrating two view data: textual information and journal
cross-citations. N = 8,305 and diext = 669, 700

» Cosine similarity matrix of both text and cross-citation



Experiments

Clustering evaluation measures

» Standard categories: Essential Science Indicator (ESI) from WoS
» Normalized mutual information (NMI)

_ 2xH({c}), {h}
MT(CHET(R
where H({c;}, {li}) is the mutual information between clustering

labels {c;}I"_, and reference category indicators lii_,, H({ci})
and H({l;}) are their entropies.

» Cognitive analysis by a bibliometrist

®)
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Clustering performance

NMI Index
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Figure: NMI validation of various clustering methods on WoS journal
database (Cluster number:22)



Experiments
Visualization of th al clusters obtained by HC-MLSVD
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Figure: Visualization of 22 clusters on the WoS journal database (the node:
the journal clusters where the circle size is proportional to its scale; the
edge: cross-citation between two journal clusters; the annotated terms: the
top three text terms within each journal clusters)
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Discussion and outlook

Discussion

» Extendable hybrid clustering framework:
» Other learning tasks of multi-view data ( classification, spectral
embedding, collaborative filtering)

» Other tensor based solutions

» Other matrices (similarity matices, modularity matrices)
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Discussion and outlook

» Scalable issue: large-scale database and efficient
implementation

» Multiple-model tensor (Currently 3-model): dynamic data
analysis

» Other potential tensor methods (CP, INDSCAL,DEDICOM)
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