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Introduction

Motivation

◮ Booming demand: grouping multi-view data for better partition
(Web mining, Social network, Literature analysis).

◮ Clustering methods
◮ Most methods: single-view data
◮ Hybrid clustering: multi-view data

◮ Tensor methods
◮ powerful tool to handle multi-way data sources.
◮ multi-linear singular value decomposition (MLSVD) (Tucker, 1964 &

1966; De Lathauwer et al, 2000a)
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Figure: Demo of a hybrid clustering by MLSVD on synthetic 3D data sets



Introduction

Related work

◮ Hybrid clustering: multiple kernel fusion (MKF)(Joachims et al,
2001) and clustering ensemble (Strehl & Ghosh, 2002)

◮ MLSVD based clustering on image recognition (Huang & Ding,
2008)

◮ Multi-way latent semantic analysis (Sun et al, 2006)
◮ CANDECOMP/PARAFAC (CP): Scientific publication data with

multiple linkage (Dunlavy, Kolda, et al, 2006; Selee, Kolda et al,
2007)



Introduction

Main contributions

◮ An extendable framework of hybrid clustering based on MLSVD
◮ Modelling the multi-view data as a tensor
◮ Seeking a joint optimal subspace by tensor analysis

◮ Two novel clustering algorithms: AHC-MLSVD and WHC-HOOI.
◮ Experiments on both synthetic data and real Application on Web

of Science (WoS) journal database.
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Hybrid clustering

Spectral clustering

Given S ∈ R
N×N , the affine matrix (similarity matrix) of a graph G; D,

the degree matrix; our Laplacian matrix

L = D−1/2SD−1/2 (1)

Let an relaxed indicator matrix be U, U ∈ R
N×M , M is the number of

clusters

max
U

tr(UT LU),

s.t. UT U = I.
(2)

Eigenvalue decomposition of matrix L: the solution of spectral
clustering (Luxburg, 2007)



Hybrid clustering
Concept overview
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Hybrid clustering

Laplacian tensor

From a set of K Laplacian matrices L(i) ∈ R
N×N

, i = 1, ..., K to a
Laplacian tensor A ∈ R

N×N×K
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Figure: The formulation of a Laplacian tensor



Hybrid clustering

AHC-MLSVD

Averaging multi-view data for joint analysis:
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Figure: Average hybrid clustering of multi-view data

U ∈ R
N×M , the joint optimal subspace

I ∈ R
K×K , an indentity matrix.



Hybrid clustering

AHC-MLSVD

The optimization of average hybrid clustering,

max
U

‖A×1 UT ×2 UT ×3 I‖
2
F ,

s.t. UT U = I.
(3)

The solution of MLSVD (Tucker, 1964 & 1966; De Lathauwer et al,
2000a)

◮ An approximate solution
◮ Usually satisfied results
◮ An upper bound on the approximation error



Hybrid clustering

WHC-HOOI

Taking the effect of each single-view data into account
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Figure: Weighted hybrid clustering of multi-view data

W = {α1, α2, · · · , αK}
T : the weighting factor of each view.



Hybrid clustering

WHC-HOOI

The equivalent optimization of weighted hybrid clustering

max
U,W

‖A×1 UT ×2 UT ×3 W T ‖
2
F ,

s.t. UT U = I and W T W = 1.

(4)

The solution of higher-order orthogonal iteration (HOOI)
(Kroonenberg & De Leeuw, 1980; De Lathauwer et al, 2000b)

◮ An optimal solution
◮ An appropriate weight for each view data
◮ Other tensor methods
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Experiments
Clustering of a multiplex network

Multiplex network: a group of networks which share the same nodes
but multiple types of links (Mucha et al, 2010)
The synthetic multiplex network:

◮ Three clusters with each having 50,100, 200 members
respectively

◮ Three views generated by different noise
◮ Three interaction matrices from each view =⇒ a tensor

Figure: The adjacent matrices from a synthetic multiplex network



Clustering of a multiplex network
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Experiments

Application on Web of Science (WoS) journal database

◮ Objective: Obtain a good scientific mapping from the WoS
journals

◮ Integrating two view data: textual information and journal
cross-citations. N = 8, 305 and dtext = 669, 700

◮ Cosine similarity matrix of both text and cross-citation



Experiments

Clustering evaluation measures

◮ Standard categories: Essential Science Indicator (ESI) from WoS
◮ Normalized mutual information (NMI)

NMI =
2 × H({ci}), {li}
H({ci})H({li})

(5)

where H({ci}, {li}) is the mutual information between clustering
labels {ci}

n
i=1 and reference category indicators li

n
i=1, H({ci})

and H({li}) are their entropies.
◮ Cognitive analysis by a bibliometrist



Experiments
Clustering performance
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Figure: NMI validation of various clustering methods on WoS journal
database (Cluster number:22)



Experiments
Visualization of the journal clusters obtained by HC-MLSVD
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Figure: Visualization of 22 clusters on the WoS journal database (the node:
the journal clusters where the circle size is proportional to its scale; the
edge: cross-citation between two journal clusters; the annotated terms: the
top three text terms within each journal clusters)
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Discussion and outlook

Discussion

◮ Extendable hybrid clustering framework:
◮ Other learning tasks of multi-view data ( classification, spectral

embedding, collaborative filtering)
◮ Other tensor based solutions
◮ Other matrices (similarity matices, modularity matrices)
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Discussion and outlook

Outlook

◮ Scalable issue: large-scale database and efficient
implementation

◮ Multiple-model tensor (Currently 3-model): dynamic data
analysis

◮ Other potential tensor methods (CP, INDSCAL,DEDICOM)
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