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Why tensors?

 Tensor-based signal processing techniques offer fundamental 
advantages over their matrix-based counterparts

 Identifiability

• the tensor rank can largely exceed its dimensions

• more sources than sensors can be identified

Uniqueness

• bilinear (matrix) decomposition: requires constraints for 
uniqueness, such as orthogonality (SVD)

• trilinear/multilinear (tensor) decomposition: 
essentially unique up to permutation and scaling

– columns of mixing matrix can be identified individually

– blind source separation
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Why tensors (cont.)?

 Tensor-based signal processing offers fundamental advantages over 
matrix-based techniques

Multilinear rank reduction

• More efficient denoising: exploiting the structure, therefore more 
noise is suppressed

• many applications, e.g., chemometrics, psychometrics, computer 
vision, watermarking, data mining, array processing, ICA, …

 Improved subspace estimate

• multidimensional subspace-based parameter estimation schemes: 
can be improved by using the multilinear rank reduction

• yields an improved subspace estimate, therefore a higher accuracy

• many applications, e.g., channel modeling, surveillance RADAR, 
microwave imaging, positioning, blind channel estimation, …

• goal of this talk: quantify this improvement analytically

• for simplicity: 2-D case only, generalization to R-D straightforward
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What is a tensor?

 Strictly speaking: An outer (tensor) product of R linear spaces.

 like a matrix is an outer product of two linear spaces

engineers typically work with coordinate representations

• are obtained by fixing the bases of all spaces

 for simplicity, we assimilate tensors with their coordinate 
representations

• R-way arrays

Scalars Vectors Matrices Order-3-tensors Order-4-tensors

?

…
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Tensor algebra

 3-D tensor = 3-way array

 n-mode products between                          and

 Unfoldings

M1

M2

M3

“1-mode vectors”

“2-mode vectors”

“3-mode vectors”

i.e., all the n-mode vectors 
multiplied from the left-hand-side 
by

1 2
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Higher-Order SVD (HOSVD)

 Singular Value Decomposition  Higher-Order SVD (orth. Tucker3) [LMV00]

“Full HOSVD”

Low-rank approximation (truncated HOSVD)

“Economy size HOSVD”

“Full SVD”

“Economy size SVD”

Low-rank approximation

L. de Lathauwer, B. de Moor, and J. Vanderwalle, “A multilinear 
singular value decomposition”, SIAM J. Matrix Anal. Appl., vol. 
21, no. 4, 2000.
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Example for R-D harmonic retrieval: 
Channel Sounding

Receive array: 1-D or 2-D

Frequency

Time

Transmit array: 1-D or 2-D

Direction of Arrival (DOA)

Delay

Doppler shift

Direction of Departure (DOD)
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Existing Approaches

High-resolution parameter estimation

 Maximum-Likelihood
SAGE [Fessler et al. 1994]

Extensions [Fleury et al. 1999, Pederson et al. 2000, Thomä et al. 2004]

 Subspace-based
MUSIC [Schmidt 1979], 
Root MUSIC [Barabell 1983]

ESPRIT [Roy et al. 1986], R-D Unitary ESPRIT [Haardt et al. 1998]

RARE (Rank reduction estimator) [Pesavento et al. 2004]

MDF (Multidimensional folding) [Mokios et al. 2004]

(many more)

R-D Standard Tensor-ESPRIT
R-D Unitary Tensor-ESPRIT

Enhanced signal subspace estimation
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Channel Sounding

R-D parameter estimation

Spatial dimensions RX  Direction of Arrival

Spatial dimensions TX  Direction of Departure

Frequency  Delay

Time  Doppler shift

R-D measurements (R-D harmonic retrieval)

Model: superposition of 
d undamped exponentials
sampled on an 
R-dimensional grid and 
observed at 
N subsequent time instances.

Spatial frequencies
 one to one mapping to

physical parameters
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Channel Sounding (R = 2)

2-D measurements

Spatial frequencies
 one to one mapping to

physical parameters
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Data model for 2-D harmonic retrieval

Matrix case

in case of uniform linear arrays: 
Vandermonde structured 
array steering vectors
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Data model for 2-D harmonic retrieval

Matrix case

Tensor case

1 2
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Data Model

Example:

m1

1
2
3
4

m2

1 2 3
n1

2
3

4
5

4

3

1
2
3
1

2
3
1
2
3
1
2
3

m2

1
1
1
2

2
2
3
3
3
4
4
4

m1

n 1 2 3 4 5

More natural 
representation 
of sampled 2-D 

signal
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R-D Tensor-ESPRIT-type methods

Matrix case Tensor case
measurements

1) Signal subspace estimation

[RHD08] M. Haardt, F. Roemer, and G. Del Galdo, “Higher-order SVD based subspace estimation to
improve the parameter estimation accuracy in multi-dimensional harmonic retrieval problems,”
IEEE Transactions on Signal Processing, vol. 56, pp. 3198 - 3213, July 2008. 
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Signal Subspace Estimation

Matrix case

signal part noise part

rank d Basis for the signal subspace

Tensor case

signal part noise part

rank d

 and        span the same column space

 spaces spanned by the 1-mode vectors
and the 2-mode vectors are equal

Basis for the signal subspace
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Matrix case Tensor case
measurements

1) Signal subspace estimation

R-D Tensor-ESPRIT-type methods

we have observed that                                           represents an

improved signal subspace estimate, provided that 

whereas

otherwise it can be shown that: 
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Perturbation analysis for the matrix case

 Unperturbed subspaces

 In the presence of noise

 First order perturbation analysis

models the perturbation of 
the signal subspace [LLV93]

models the perturbation of the individual vectors within the signal 
subspace  no impact on the performance of ESPRIT [LLM08]
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Perturbation analysis for the matrix case

 Unperturbed subspaces

 In the presence of noise

 First order perturbation analysis

models the perturbation of 
the signal subspace [LLV93]

models the perturbation of the individual vectors within the signal 
subspace  no impact on the performance of ESPRIT [LLM08]

[LLM08] J. Liu, X. Liu, and X. Ma, “First-order perturbation analysis of singular vectors in singular value
decomposition”, IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 3044–3049, July 2008.

[LLV93] F. Li, H. Liu, and R. J. Vaccaro, “Performance analysis for DOA estimation algorithms: Unification,
simplifications, and observations”, IEEE Transactions on Aerospace and Electronic Systems, vol.
29, no. 4, pp. 1170–1184, Oct. 1993.
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Extension to the tensor case (2-D)

 Signal subspace estimates:

 A link between the SVD-based and the HOSVD-based subspace estimate

 “projection onto the Kronecker structure”

do not need the core tensor or a perturbation analysis for it!

different from [HRD08]

HOSVD

SVD

is the improved signal subspace estimate, replaces

improvement only if <
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Relation between matrix subspace and tensor subspace

(1)

(1)

(2)

full HOSVD

truncated core tensor 

estimated signal subspace tensor
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Relation between matrix subspace and tensor subspace

(3)

(4)

(2)

(3)

(4)

matrix-based subspace estimate

relation between matrix- and 
tensor-based subspace estimate

truncated SVDs
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Extension to the tensor case (2-D)

 Link between the SVD-based and the HOSVD-based subspace estimate

we never need to explicitly compute the core tensor, only the 
dominant left singular vectors of all three unfoldings

• major impact on subspace tracking

• facilitates the performance analysis

performance analysis for matrix subspace can be reused

• we also need a first-order perturbation expansion for the 
projectors T1 and T2
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Extension to the tensor case (2-D)

 Perturbation for the projection matrices

 For          : we can apply the perturbation theory to

 Insert into previous relation, neglect all higher-order terms

using only [LLV93], for the
projectors, the [LLM08]

term cancels!
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Matrix case Tensor case
measurements

1) Signal subspace estimation

2a) Shift invariance equations

R-D Tensor-ESPRIT-type methods
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Shift Invariance Equations



Shift invariance

Tensor case Matrix case

d ≥ 1

2-D

Ilmenau University of Technology
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Shift Invariance Equations

 shift invariance equations
in terms of the estimated
signal subspace

 can be solved for 

spatial frequencies



16

Ilmenau University of Technology
Communications Research Laboratory

Matrix case Tensor case
measurements

1) Signal subspace estimation

2a) Shift invariance equations

2b) Least Squares method

3) Joint diagonalization / Simultaneous Schur decomposition (SSD)

R-D Tensor-ESPRIT-type methods
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Performance Analysis for ESPRIT

 First order expansion for the estimation error in standard ESPRIT [LLV93]

 Extension R-D standard ESPRIT

 Shift invariance equations are solved independently!

 Extension to R-D standard Tensor-ESPRIT

(1)

(2)
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Forward-Backward Averaging

 To assess Unitary (Tensor-) ESPRIT, we need forward-backward averaging

 Using the same reasoning as before we obtain

 Similarly, in the tensor case (2-D)
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Statistical Expectation (2-D)

R-D standard ESPRIT (SE) R-D standard Tensor-ESPRIT (STE)

R-D Unitary ESPRIT (UE) R-D Unitary Tensor-ESPRIT (UTE)

 Performing statistical expectation over white complex (Gaussian) noise

(commutation matrix)

variance of the noise samples

(3)

(4)

(5)

(6)

R = 2
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Special case: single source (2-D)

 For d = 1 (single source) and an M1 x M2 uniform rectangular array (URA)

 Deterministic Cramér-Rao Bound

 Asymptotic efficiency

depends only on M1 and M2!

 M1 M2

(7)

(8)
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[LLM08]

Simulations: 4 uncorrelated sources,
2-D Standard ESPRIT vs. 2-D Standard Tensor-ESPRIT
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[LLM08]

Simulations: 3 correlated sources,
2-D Standard ESPRIT vs. 2-D Standard Tensor-ESPRIT
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Simulations: 2 close sources,
2-D Standard ESPRIT vs. 2-D Standard Tensor-ESPRIT
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Simulations: Single source (2-D)

no improvement from using tensors for a single source

asymptotically efficient for 

(1): function of noise realization

(3): statistical expectation

(7),(8): compact closed-form 
expressions for d = 1
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Simulations: Two correlated sources (2-D)

significant improvement from using tensors for correlated sources

(1),(2): function of noise realization

(3),(4),(5),(6): statistical expectation
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Conclusions (1)

 Tensor-based signal processing has many key advantages
uniqueness of trilinear (multilinear) decomposition
 improved identifiability
 focus of this talk: enhanced subspace estimate achieved through 

multilinear rank reduction via the Higher-Order SVD (HOSVD)
• can be used to improve any multidimensional subspace-based 

estimation technique
 Established the fundamental link between the SVD- and the HOSVD-

based subspace estimates
projection of the matrix-based estimate onto the Kronecker structure 

of the estimated r-mode subspaces (r = 1, 2, …, R)
no need to calculate the core tensor explicitly

 Analytical perturbation expansion
allows to quantify the improvement in the subspace estimate
can, for example, be used to obtain analytical MSE expressions for 

Tensor-ESPRIT-type algorithms
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Conclusions (2)

 Closed-form expressions for the statistical expectation with respect to 
white (Gaussian) noise

 These results allow us to reliably assess the performance of 
R-D Standard Tensor-ESPRIT and R-D Unitary Tensor-ESPRIT

by computing analytically

• to what extend and 

• under which conditions 

Tensor-ESPRIT-type algorithms outperform matrix-based algorithms

• no improvement for a single source and for

• particularly strong improvement for correlated sources and 
small number of snapshots

 Enables us to compute the asymptotic efficiency analytically

only depending on the array size in case of a single source
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