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Introduction

We present an algorithm for decomposing a symmetric tensor, of dimension n and
order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester
devised in 1886 for binary forms.
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What is symmetric tensor decomposition?

- Let E be a K vector space of dimension n and of basis (e;)o<i<n—1-
- A symmetric tensor v of dimension n and of order d is an element of SYE:

d
V= Z A,‘Mm_r,-de,}...e,-d eNE
i<y

with A; i, €K
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Introduction

What is symmetric tensor decomposition?

- Let E be a K vector space of dimension n and of basis (e;)o<i<n—1-
- A symmetric tensor v of dimension n and of order d is an element of SYE:

d
V= Z A,‘Mm_r,-de,}...e,-d eNE
i<y

with A; i, €K

- We want to write v as a sum of d-th power of linear forms:
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Introduction

What is symmetric tensor decomposition?

- Let E be a K vector space of dimension n and of basis (e;)o<i<n—1-
- A symmetric tensor v of dimension n and of order d is an element of SYE:

d
V= Z A,‘Mm_r,-de,}...e,-d eNE
i<y

with A; i, €K
- We want to write v as a sum of d-th power of linear forms:

V= Z )\.,‘(3,‘7090 + ...+ ajn—16n—1 )d

i=1,...,r
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Introduction

What is symmetric tensor decomposition?

- Let E be a K vector space of dimension n and of basis (e;)o<i<n—1-
- A symmetric tensor v of dimension n and of order d is an element of SYE:

d
V= Z A,‘Mm_r,-de,}...e,-d eNE
i<y

with A; i, €K

- We want to write v as a sum of d-th power of linear forms:

V= Z )\.,‘(3,‘7090 + ...+ ajn—16n—1 )d

i=1,...,r

- The goal is to find such a decomposition with the minimal r.
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Introduction

Motivations :
- Tensors have been widely used in Electrical Engineering since the 1990s,
particularly in Antenna Array Processing and Signal Processing.
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Introduction

Motivations :
- Tensors have been widely used in Electrical Engineering since the 1990s,
particularly in Antenna Array Processing and Signal Processing.

- Earlier in the 1970s tensors have been used in Chemometrics and Psychometrics.
- Another important application field is Data Analysis, for instance, Independent

Component Analysis, originally introduced for symmetric tensors whose rank did not
exceed dimension.
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Introduction

Position :

- The problem of symmetric tensors decomposition extends the Singular Value
Decomposition (SVD) for symmetric matrices which is an important tool in numerical
linear algebra.
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Introduction

Position :
- The problem of symmetric tensors decomposition extends the Singular Value
Decomposition (SVD) for symmetric matrices which is an important tool in numerical

linear algebra.

- Current numerical algorithms are suboptimal (they do not use symmetries, they
minimize different successive criteria sequentially or are iterative and do not
guarantee a global convergence). In addition they often require the rank to be lower
than the generic one.
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Introduction

Position :

- The problem of symmetric tensors decomposition extends the Singular Value
Decomposition (SVD) for symmetric matrices which is an important tool in numerical
linear algebra.

- Current numerical algorithms are suboptimal (they do not use symmetries, they
minimize different successive criteria sequentially or are iterative and do not
guarantee a global convergence). In addition they often require the rank to be lower
than the generic one.

- Among these popular methods, we refer to “PARAFAC* techniques, extensively
applied to ill-posed problems.
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Introduction

Contributions :
- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order

and dimension into a sum of rank-one terms. The method is inspired by Sylvester’s
theorem and extends its principle to larger dimensions.
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Introduction

Contributions :

- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order
and dimension into a sum of rank-one terms. The method is inspired by Sylvester’s
theorem and extends its principle to larger dimensions.

- We give necessary and sufficient condition for the existence of a decomposition of
rank r, based on rank conditions of Hankel operators or commutation properties.
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Introduction

Contributions :

- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order
and dimension into a sum of rank-one terms. The method is inspired by Sylvester’s
theorem and extends its principle to larger dimensions.

- We give necessary and sufficient condition for the existence of a decomposition of
rank r, based on rank conditions of Hankel operators or commutation properties.

- This algorithm is not restricted to strictly sub-generic ranks and fully exploits the
symmetries.
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Binary case

Theorem (Sylvester, 1886)

d
i

d—i

A binary quantic p(xi,x2) = Y%, (9) ci x| x§ ' can be written as a sum of d powers

of r distinct linear forms in C as:

p(x1,x2) = ¥ A (04 x1 +Bjx2)?, (1)
=

if and only if
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Binary case

Theorem (Sylvester, 1886)

A binary quantic p(x1,x2) = £, (9) cix| 3~ can be written as a sum of d™ powers

1
of r distinct linear forms in C as:

p(x1,x2) = ¥ A (04 x1 +Bjx2)?, (1)
=

if and only if (i) there exists a vector q = (qj)]_,., such that

Co C1 coo Cr

Cd—r *** Cd—1 Cd
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Binary case

Theorem (Sylvester, 1886)

A binary quantic p(x1,x2) = £, (9) cix| 3~ can be written as a sum of d™ powers

I
of r distinct linear forms in C as:
r
p(x1,x2) = ¥ A (04 x1 +Bjx2)?, (1)
j=1
if and only if (i) there exists a vector q = (qj)]_,., such that
Co C1 coo Cr
q=0. (2

Cd—r *** Cd—1 Cd

and (ii) the polynomial q(x1,x2) = Y] Qi x| xz’” admits r distinct roots, i.e. can be
written as q(xq,x2) = H]f:1 (B/* x| — oc;-‘ X2).
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Binary case

The Sylvester’s theorem yields the following algorithm:

Input : Given a binary polynomial p(x1, x2) of degree d with coefficients &; = (¢) c;,
0 < i< d, define the Hankel matrix H[r] of dimensions d — r+1 x r + 1 with entries
HIrlj = citj—2:

Hi=| - @)
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Binary case

The Sylvester’s theorem yields the following algorithm:

Input : Given a binary polynomial p(x1, x2) of degree d with coefficients &; = (¢) c;,
0 < i< d, define the Hankel matrix H[r] of dimensions d — r+1 x r + 1 with entries
HIrlj = citj—2:
Co Ci e cr
H[r]l = : - (3)
Cd—r -+ Cd—1 Cd

Output : A decomposition of p as p(x1,x2) = Y/}, kj(x)9 with minimal r.

J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas

Symmetric tensor decomposition



Binary case

Initialize r =10
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Initialize r =10
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Binary case

Initialize r =10
Increment r < r+1
If the matrix H[r] has full column rank, then go to step 2
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Binary case

Initialize r =0

Increment r < r+1

If the matrix H[r] has full column rank, then go to step 2
Else compute a basis {ki, ...k} of the right kernel of H[r].
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Binary case

Initialize r =0

Increment r < r+1

If the matrix H[r] has full column rank, then go to step 2
Else compute a basis {ki, ...k} of the right kernel of H[r].

Specialization:
m Take a generic vector q in the kernel, e.g. q = Y; uik;
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Binary case

Initialize r =0

Increment r < r+1

If the matrix H[r] has full column rank, then go to step 2
Else compute a basis {ki, ...k} of the right kernel of H[r].

Specialization:
m Take a generic vector q in the kernel, e.g. q = Y; uik;
m Compute the roots of the associated polynomial g(x1,X2) = Y/_o q x1’ xg”. Denote
them (B;, —oy), where |ay| + |B;|? = 1.
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Binary case

Initialize r =0

Increment r < r+1

If the matrix H[r] has full column rank, then go to step 2
Else compute a basis {ki, ...k} of the right kernel of H[r].

Specialization:
m Take a generic vector q in the kernel, e.g. q = Y; uik;
m Compute the roots of the associated polynomial g(x1,X2) = Y/_o q x1’ xg”. Denote
them (B;, —oy), where |ay|2 + |B;|? = 1.
m If the roots are not distinct in P2, try another specialization. If distinct roots cannot be
obtained, go to step 2.
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Binary case

Initialize r =10

Increment r < r+1

If the matrix H[r] has full column rank, then go to step 2
Else compute a basis {ki, ...k} of the right kernel of H[r].

Specialization:

m Take a generic vector q in the kernel, e.g. q = Y; uik;

m Compute the roots of the associated polynomial g(x1,X2) = Y/_o q x1’ xg”. Denote
them (B;, —oy), where |ay|2 + |B;|? = 1.

m If the roots are not distinct in P2, try another specialization. If distinct roots cannot be
obtained, go to step 2.

m Else if g(xy, x2) admits r distinct roots then compute coefficients A;, 1 <j < r, by
solving the linear system below, where a; denotes (¢) c;

doc? al a
0€2;2[31 B i a
B (A= | a
B .. B a
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Binary case

Initialize r =10

Increment r < r+1

If the matrix H[r] has full column rank, then go to step 2
Else compute a basis {ki, ...k} of the right kernel of H[r].

Specialization:

m Take a generic vector q in the kernel, e.g. q = Y; uik;

m Compute the roots of the associated polynomial g(x1,X2) = Y/_o q x1’ xg”. Denote
them (B;, —oy), where |ay|2 + |B;|? = 1.

m If the roots are not distinct in P2, try another specialization. If distinct roots cannot be
obtained, go to step 2.

m Else if g(xy, x2) admits r distinct roots then compute coefficients A;, 1 <j < r, by
solving the linear system below, where a; denotes (¢) c;

doc? al a
0€2;2[31 B i a
B (A= | a
B .. B a

@ The decomposition is p(x1,x2) = ¥Y/_q A, kj(x)9, where kj(x) = (04 X1 + Bjx2).
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1) Polynomial decomposition:
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Reformulations

1) Polynomial decomposition:

A symmetric tensor [a;,....;, ,] of order d and dimension n can be associated to a
homogeneous polynomial f(X) € Sq:

_ . joy i1 in—1
f(X) = Z Ao jr,..in1 X0 X9 'xr;'—1' (4)
jotitt-+in-1=d
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Reformulations

1) Polynomial decomposition:

A symmetric tensor [a;,....;, ,] of order d and dimension n can be associated to a
homogeneous polynomial f(X) € Sq:

_ Jo jn—1
f(X) = Z Qo j1,.in1 XI;JX11 o 'xr;'—1' (4)
jotitt-+in-1=d

Our goal is to compute a decomposition of f as a sum of ath powers of linear forms,
i.e.
r
F(x) =Y i (KioXo +kiX1 + -+ Kin—1Xn—1)* = A1 kg (%) 4+ Ao ko (x)? +- -+ Ar ke (x)9,

i=1
(5)
where A; # 0, ki # 0, and r is the smallest possible.
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Reformulations

1) Polynomial decomposition:

A symmetric tensor [a;,....;, ,] of order d and dimension n can be associated to a
homogeneous polynomial f(X) € Sq:

_ Jo jn—1
f(X) = Z Qo j1,.in1 XI;JX11 o 'xr;'—1' (4)
jotitt-+in-1=d

Our goal is to compute a decomposition of f as a sum of ath powers of linear forms,
i.e.
r
F(x) =Y i (KioXo +kiX1 + -+ Kin—1Xn—1)* = A1 kg (%) 4+ Ao ko (x)? +- -+ Ar ke (x)9,

i=1
(5)
where A; # 0, ki # 0, and r is the smallest possible.
This minimal r is called the rank of f.
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Reformulations

2) Veronese and secant varieties:
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Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space P"~! to the projective space of
symmetric tensors:
v o P(S1) — P(Sy)
k(x) — k(x)4.
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Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space P"~! to the projective space of
symmetric tensors:
v o P(S1) — P(Sy)
k(x) — k(x)4.

The image of v is called the Veronese variety.
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Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space P"~! to the projective space of
symmetric tensors:
v o P(S1) — P(Sy)
k(x) — k(x)4.
The image of v is called the Veronese variety.
A tensor of rank 1 is a point of the Veronese.

J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas
Symmetric tensor decomposition



Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space P"~! to the projective space of
symmetric tensors:
v o P(S1) — P(Sy)
k(x) — k(x)4.

The image of v is called the Veronese variety.
A tensor of rank 1 is a point of the Veronese.
A tensor of rank ris in the linear space spanned by r points of the Veronese variety.
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Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space P"~! to the projective space of
symmetric tensors:
v o P(S1) — P(Sy)
k(x) — k(x)4.

The image of v is called the Veronese variety.

A tensor of rank 1 is a point of the Veronese.

A tensor of rank r is in the linear space spanned by r points of the Veronese variety.
The closure of the r-dimensional linear space spanned by r points of the Veronese is
called the r-1 secant variety.
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Reformulations

3) Decomposition using duality:
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Reformulations

3) Decomposition using duality:

Let f,g € Sy, where f =¥ 1g—q fouxg® - ‘xgj]‘ and g =Y |¢—q JoXg® - -xgﬁ]‘ i
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Reformulations

3) Decomposition using duality:

Let f,g € Sy, where f =¥ 1g—q faxg" . ‘xgj]‘ and g = Y |g|—q gaxg" . -xgﬁ]‘ . We
define the apolar inner product on Sy as

—1
d
f,g) = f .
< g> Z aga(oco,...,(x,,,1>

|o|=d
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Reformulations

3) Decomposition using duality:

Let f,g € Sy, where f =¥ 1g—q faxg" . ‘xgj]‘ and g = Y |g|—q gaxg" . -xgﬁ]‘ . We
define the apolar inner product on Sy as

d -1
f,g) = f .
(f.g) az_daga(ao7~-~7(xn1>

Using this non-degenerate inner product, we can associate an element of Sy with an
element S}, through the following map:

T:5y HS;

fo—f

where the linear form f* is defined as f* : g — (f, g).
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Reformulations

Letf = (apXo + ... +an_1xn_1)? € Sy, then
*(g) = (f,g) = 9(a0, ....,an—1) = eva(g)

with A= (ap, ...,an—1) € K"™", g € Sy and evy is the evaluation in A.
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Reformulations

The decomposition problem can be reformulated as follows:

Given f* € Sy, find the minimal number of non-zero points ky,...,k, € K"
and non-zero scalars A1,..., A € K— {0} such that
r
f* = Z Ajevy,.

i=1

J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas
Symmetric tensor decomposition



Reformulations

The decomposition problem can be reformulated as follows:

Given f* € Sy, find the minimal number of non-zero points ky,...,k, € K"
and non-zero scalars A1,..., A € K— {0} such that
r
f* = Z Ajevy,.

i=1

Note that by a generic change of variables, we can assume that all the coordinates
ki o are equal to 1.
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Hankel operators and quotient algebras

Let R =K][xy, ..., Xp—1] be the polynomial ring in n— 1 variables and A € R* be a
linear form. We define the Hankel operator Hy from R to R* as

Hy : R—R*
p— p*/\
with
pxAN : R—K
f— A(p.f).
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Hankel operators and quotient algebras

Let R=K][x,...,Xn—1] be the polynomial ring in n— 1 variables and A € R* be a
linear form. We define the Hankel operator Hy from R to R* as

Hy : R—R*
p»—>p*/\
with
pxN : R—K
f— A(p.f).

We denote by Hip the matrix of Hy in the basis {x*} and {d*} (where {d®} is the
dual basis of the monomial basis {x*}). Thus

Hp = (AC*P)) .-
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Hankel operators and quotient algebras

Let Ip be the kernel of Hy. Then, Ip is an ideal of R.
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Hankel operators and quotient algebras

Let Ip be the kernel of Hy. Then, Ip is an ideal of R.

Let 45 := R/ Iy be the quotient algebra of polynomials modulo the ideal /.
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Hankel operators and quotient algebras

- Let a € R be a polynomial. Let M, be the multiplication by ain Ax:

Ma : Ap— Ap
b +— ba.
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Hankel operators and quotient algebras

- Let a € R be a polynomial. Let M, be the multiplication by ain Ax:

Ma : Ap— Ap
b +— ba.

- Let M}, be the be its transposed operator:

M, Ak — A
Y axy.
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Hankel operators and quotient algebras

- Let a € R be a polynomial. Let M, be the multiplication by ain Ax:

Ma : Ap— Ap
b +— ba.

- Let M}, be the be its transposed operator:

M, Ak — A
Y axy.

Note that, by definition, we have

Han = MLo Hp
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Hankel operators and quotient algebras

Ifrank(Hp) = r < oo, then
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Hankel operators and quotient algebras

Ifrank(Hp) = r < oo, then

m 4, is of dimension r over K and the set of roots Z(Ip) = {C41,...,Ca} CK" is
finite withd <'r,
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Hankel operators and quotient algebras

Ifrank(Hp) = r < oo, then

m 4, is of dimension r over K and the set of roots Z(Ip) = {C41,...,Ca} CK" is
finite withd <'r,

m there exist p; € K[01,...,05], such that
d
A=) evg opi(9) (6)
=1

Moreover the multiplicity of C; is the dimension of the vector space spanned by
the inverse system generated by evy, o pi(9).
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Hankel operators and quotient algebras

Ifrank(Hp) = r < oo, then

m 4, is of dimension r over K and the set of roots Z(Ip) = {C41,...,Ca} CK" is
finite withd <'r,

m there exist p; € K[01,...,05], such that

d
N= Z er_ o p,'(a) (6)
=1

]

Moreover the multiplicity of C; is the dimension of the vector space spanned by
the inverse system generated by evy, o pi(9).

m the eigenvalues of the operators M, and M., are given by {a((1),-..,a(Cq)}-
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Hankel operators and quotient algebras

Ifrank(Hp) = r < oo, then

m 4, is of dimension r over K and the set of roots Z(Ip) = {C41,...,Ca} CK" is
finite withd <'r,

m there exist p; € K[01,...,05], such that

]

d
N= Z er_ o p,'(a) (6)
=1

Moreover the multiplicity of C; is the dimension of the vector space spanned by
the inverse system generated by evy, o pi(9).

m the eigenvalues of the operators M, and M., are given by {a((1),-..,a(Cq)}-
m the common eigenvectors of the operators (M,{’_)1 <i<n are (up to scalar) ev,.
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Hankel operators and quotient algebras

LetAe R*. A=Y (A evy, with Ai # 0 and {; distinct points of K", iff rankHp = r
and Iy is a radical ideal.
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Truncated Hankel operators

The problem of decomposition can be reformulated as follows :

Given f* € Ry find the smallest r such that there exists A € R* which
extends * with Hp of rank r and /5 a radical ideal.
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Truncated Hankel operators

itio

Given f* € R} alinear form and B a set of monomials of degree at most d, we define
the Hankel operator A (h) by:
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Truncated Hankel operators

Given f* € R} alinear form and B a set of monomials of degree at most d, we define
the Hankel operator A (h) by:

- A (h)(x®) = F*(x*) if |of < d,
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Truncated Hankel operators

Given f* € R} alinear form and B a set of monomials of degree at most d, we define
the Hankel operator A (h) by:

- A (h)(x®) = F*(x*) if |of < d,

- Ay (h)(x*) = hqy a variable (the set of all these variables is denoted by h).
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Truncated Hankel operators

Given f* € R} alinear form and B a set of monomials of degree at most d, we define
the Hankel operator A (h) by:

- A (h)(x®) = F*(x*) if |of < d,

- Ay (h)(x*) = hy a variable (the set of all these variables is denoted by h).
We denote by 7y (h) its matrix:

}[/\Bp (h) = (hoH»[i)oc.BeB'
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Truncated Hankel operators

If 5-[/\5,* (h) is invertible in K(h) (that is the rational polynomial functions in h), then we
define the multiplication operators

ME(h) == (3. (W) H . (h).
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Truncated Hankel operators

If 5-[/\5,* (h) is invertible in K(h) (that is the rational polynomial functions in h), then we
define the multiplication operators

ME(h) == (3. (W) H . (h).

Definition

Let B be a subset of monomials in R. We say that B is connected to 1 if:
-1€8B,
-Vm+# 1 € Bthere exists i € [1,n] and m’ € B such that m = x; .
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Truncated Hankel operators

-Let B= {xﬁ1 3000 xﬁf} be a set of monomials of degree at most d, connected to 1.
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Truncated Hankel operators

-Let B= {xﬁ1 3000 xﬁf} be a set of monomials of degree at most d, connected to 1.

-Let f* be a linear form in (B- BT)%.

J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas

Symmetric tensor decomposition



Truncated Hankel operators

-Let B= {xﬁ1 3000 xﬁf} be a set of monomials of degree at most d, connected to 1.

-Let f* be a linear form in (B- BT)%.

-Let \¢-(h) be the linear form of (B- Bt)* defined by A¢(h)(x*) = *(x%) if |ol| is at
most d and hy, € K otherwise.
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Truncated Hankel operators

-Let B= {xﬁ1 3000 xﬁf} be a set of monomials of degree at most d, connected to 1.

-Let f* be a linear form in (B- BT)%.

-Let \¢-(h) be the linear form of (B- Bt)* defined by A¢(h)(x*) = *(x%) if |ol| is at
most d and hy, € K otherwise.

Then Ay« (h) admits an extension A € R* such that H is of rank r with B a basis of
Ay iff
B B B B
M;”(h) o M;>(h) — M7 (h) o M"(h) =0 (1 <i<j<n) 7

and det(?ﬁe* )(h) # 0. Moreover, such a A\ is unique.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

—1
— Compute the coefficients of f*: ¢y = aq, (g) , for o] < d;
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

—1
— Compute the coefficients of f*: ¢y = aq, (g) , for o] < d;

- r:=1;
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.
—1
— Compute the coefficients of f*: ¢y = aq, (g) , for o] < d;
- r:=1;

— Repeat
Compute a set B of monomials of degree at most d connected to one with |B| = r;
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

—1
— Compute the coefficients of f*: cq = ay (g) , for || < d
- r:=1;
- Repeat

Compute a set B of monomials of degree at most d connected to one with |B| = r;
Find parameters h s.t. det(HR) # 0 and the operators M; = HZ ,\ (HY) " commute.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

- —1
— Compute the coefficients of f*: ¢y, = aq, (g) , for o] < d;
- r:=1;
— Repeat
Compute a set B of monomials of degree at most d connected to one with |B| = r;

Find parameters h s.t. det(HR) # 0 and the operators M; = HZ ,\ (HIY) " commute.
If there is no solution, restart the loop with r :=r+1.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

- —1
— Compute the coefficients of f*: ¢y, = aq, (g) , for o] < d;
- r:=1;
— Repeat
Compute a set B of monomials of degree at most d connected to one with |B| = r;
Find parameters h s.t. det(HR) # 0 and the operators M; = HZ ,\ (HIY) " commute.
If there is no solution, restart the loop with r :=r+1.

Else compute the n x r eigenvalues {;; and the eigenvectors v; s.t. Mv; = {; v,
i=1,...,nj=1,....r.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

—1

— Compute the coefficients of f*: cq = ay (g) , for || < d
- r:=1;

- Repeat

Compute a set B of monomials of degree at most d connected to one with |B| = r;

Find parameters h s.t. det(HR) # 0 and the operators M; = HZ ,\ (HIY) " commute.
If there is no solution, restart the loop with r :=r+1.

Else compute the n x r eigenvalues {;; and the eigenvectors v; s.t. Mv; = {; v,
i=1,...,nj=1,....r.

until the eigenvalues are simple.
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Algorithm

Input A homogeneous polynomial f(xo, x1, ..., Xn) of degree d.

Output A decomposition of f as f = Y/_; A; k;(x)? with r minimal.

- —1
— Compute the coefficients of f*: ¢y, = aq, (g) , for o] < d;
- r:=1;
— Repeat
Compute a set B of monomials of degree at most d connected to one with |B| = r;
Find parameters h s.t. det(HR) # 0 and the operators M; = HZ ,\ (HIY) " commute.
If there is no solution, restart the loop with r :=r+1.

Else compute the n x r eigenvalues {;; and the eigenvectors v; s.t. Mv; = {; v,
i=1,...,nj=1,....r.

until the eigenvalues are simple.

— Solve the linear system in (¢j)j=1,...k: A = Lj_; cjeve, where {; € K" are the
eigenvectors found in step 4.
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Assume that a tensor of dimension three and order 5 corresponds to the following
homogeneous polynomial:

f = —1549440 xg X1 x2°2 + 2417040 Xox1 2x22 + 166320 x02x1 Xo2 — 829440 xox13x2 —
5760 xp3x1 X2 — 222480 x02x1 2xp + 38 xo — 497664 x1° — 1107804 x2° — 120 x0* X1 +
180 x0% %2 + 12720 x03x12 + 8220 X03x02 — 34560 x02x13 591 60 X02x2% +

831840 xpx1* 4 442590 xpx* — 5591 520 x1%xo 4 7983360 x4 3 xp2 —

9653040 x4 X% + 5116680 x4 x2*.
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Assume that a tensor of dimension three and order 5 corresponds to the following
homogeneous polynomial:

f = —1549440 xg X1 x2°2 + 2417040 Xox1 2x22 + 166320 x02x1 Xo2 — 829440 xox13x2 —
5760 xp3x1 X2 — 222480 x02x1 2xp + 38 xo — 497664 x1° — 1107804 x2° — 120 x0* X1 +
180 x0% %2 + 12720 x03x12 + 8220 X03x02 — 34560 x02x13 591 60 X02x2% +

831840 xgx1* + 442590 xpx2* — 5591 520 x1%xp 4 7983360 x4 3 xp2 —

9653040 x12x° + 5116680 X1 Xo*.

The minimum decomposition of the polynomial as a sum of powers of linear forms is

1 1
(Xo+2X1 —|—3X2)5-|—(X0 —2Xq +3X2)5+ §(X° —12x4 —3X2)5+ g(Xo+12X1 — 13X2)57

that is, the corresponding tensor is of rank 4.
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The whole matrix is 21 x 21.

We show only the 10 x 10 principal minor.

Notice that we do not know the elements in some positions of the matrix.

Brach: /ALAAD, INRIA, Sophia Antipoli

Symmetric tensor decomposition

int work with P. Comon

Tsigaridas

B 1 Xq X2 x12 X1 Xp x22 x? x12 X Xq x22 xg
1 38 —24 36 1272 —288 822 3456 7416 5544 ~5916

Xq —24 1272 —288 —3456 —7416 5544 166368 —41472 80568 —77472

X 36 —288 822 —7416 5544 —5916 —41472 80568 —77472 88518

X12 1272 —3456 —7416 166368 —41472 80568 —497664 —1118304 798336 —965304

X1 X —288 —7416 5544 —41472 80568 —77472 —1118304 798336 —965304 1023336

X3 822 5544 —5916 80568 —77472 88518 798336 —965304 1023336 —1107804

x? 3456 166368  —41472  —497664 1118304 798336 he.0.0 hs1.0 420 h33.0

x12 X2 7416 —41472 80568  —1118304 798336 — 965304 hs10 h4 20 h3 30 h2.4.0
x1x3 5544 80568 77472 798336 —965304 1023336 ha0 h33.0 hoap hy 50

L 3 5916 77472 88518 —965304 1023336 1107804 h33.0 240 M50 ho.6.0




In our example the 4 x 4 principal minor is of full rank, so there is no need for
re-arranging the matrix. The matrix HZ is

38 —24 36 1272
—24 1272 —288 —3456
36  —288 822 7416
1272 —3456 —7416 166368

with monomial basis B equal to {1, xq ,xz,xf}.
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The shifted matrix HE _, is

—24 1272 —288 —3456
1272 3456  —7416 166368
—288 —7416 5544  —41472
—3456 166368 —41472 —497664
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The shifted matrix HE _, is

—24 1272 —288 —3456
1272 3456  —7416 166368
—288 —7416 5544  —41472
—3456 166368 —41472 —497664

We check the commutations relations.
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We solve the generalized eigenvalue/eigenvector problem (H,, . — AHA)X = 0 for
i=1,2.

J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas
Symmetric tensor decomposition



We get the common eigenvectors in the basis B = {1,x1,x2, x2}

1 1 1 1
—-12 12 —2 2
-3 || —18 |’ 3’| 3
144 144 4 4
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We get the common eigenvectors in the basis B = {1,x1,x2, x2}

1 1 1 1
—-12 12 —2 2
-3 || —18 |’ 3’| 3
144 144 4 4

Thus, we can deduce the roots and write the following decomposition:

f=rcq (XO +2x4 +3X2)5+02(X0—2X1 +3X2)5+C3(X0—12X1 —3X2)5+C4(X0—|—12X1 —13X2)5
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We get the common eigenvectors in the basis B = {1,x1,x2, x2}

1 1 1 1
—-12 12 —2 2
-3 || —18 |’ 3’| 3
144 144 4 4

Thus, we can deduce the roots and write the following decomposition:

f=rcq (XO +2x4 +3X2)5+02(X0—2X1 +3X2)5+C3(X0—12X1 —3X2)5+C4(X0—|—12X1 —13X2)5

It remains to compute c;’s. We getthat: ¢ =1,c0 =1, c3 = 1/3 and ¢4 =1/5.
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Consider a tensor of dimension three and order 4, that corresponds to the following
homogeneous polynomial

f=79 xox13 + 56 xgxz2 + 49x12x22 + 4 XoXx1 x22 + 57xgx1 R

the rank of which is 6.
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1 xq Xp x12 X{ X2 ;% X13 x12 Xp Xq x22 xg X? x? Xp X12 x22 Xq x3 xg
1 0 4 0 0 0 K ] 0 4% 0 0 0 g 0 0
X1 7 0 o 7 0 3 0 0 2 0 hsoo  h4to  hs0  h230 M40
x2 0 0 2 0 3 0 0 2 0 0 hgro hs20 M3 Mao  hoso
oz 0 2 0 0 0 2 hsoo  h4to M0 h230  heoo  hsto hazo  hszo  hedo
x1x2 0 o 3 0 e 0 ha1o  hs20 Mo M40 hsio ha20  h3zo h2a0  Miso
2 % 3 o S 0 0 h320  h23o P40 hoso  ha20  h3z0  h240  Mso  hoso
X13 T 0 0 hsoo  hato  h320  heoo hs10 ha20 h3zo0  h700 hg10 hs20 hazo  ha4o
Zxp 0 0 £ h4to hs20  h230  hsto  ha20  hszo  fe40  Meto hs20 M4z hsao heso
X8 3 b o h32o  h2zo M40  ha20  h3zo  Meao Mso  hs20  haso hsao heso Mieo
X% 0 0 0 h23o  Mao  hoso  hszo  he4o  hiso hoso  Maso Mo heso Meo  hozo
X 0 hsoo  hato heoo  hsto  ha20  h7o0  heto  hs20  haso Moo P70 Pe20 M50 hado
Bx 0 hgr0 P30 hsto ha20 M3 heto hMs20  hazo 340 P70 Me20 hs3o haso hsso
xq X§ %5 hs2o  haso  ha2o  hsso  hMeao  hs20  haso hsao heso Me20  Msso hado hsso h2so
X X3 0 h23o M40 h3z0  Meao  hiso hazo h340 hasg higo  hs30 haao h3s0 hogo P70
Xg 0 h40  hoso  h2ao  hiso hoso P340 hasg higo ho70  haso h3sg h2g0 M70  hoso

INRIA, Sophia Antipoli

int work with P. Comon, B. Mourrain, E. Tsigaridas
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In our example the 6 x 6 principal minor is of full rank. The matrix Hp is

Hp =

wo o osgo
w—= o nld o onlg
cw-ouwRo o
oo o orldo
o ool ow-wy

ool ow—~o o

The columns (and the rows) of the matrix correspond to the monomials
{1,x1,%2, x1 , X1 Xo, x2}
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The shifted matrix H,y, . is

H)q *N\ =

w—=osldo oY

Since not all the entries of H,, A are known, we need to compute them in order to

proceed further.
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oo o orldo

ool ow—~0o ©

20

0 0

o %
hsoo  ha1o
hg10  hazo
hazo  h2so

O o|fwi—~

hazo
ho3o
h140



Since we have only two variables, there is only one matrix equation,

Mx, Mx,- - MX/MX, = H/_\1 H)q */\H/_\1 sz*/\ - H/_\1 HXQ*/\H/_\1 H)q/\ =0.
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Since we have only two variables, there is only one matrix equation,

M, ML, — My My, = Hy "Hy oaHy  Hyyon — Hy 'Hy, oaHy ' Hyp = O.

Many of the resulting equations are trivial. After discarding them, we have 6
unknonws {h500, /’141()7 hgg()7 h230, h140, h050} and 15 equations.
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Since we have only two variables, there is only one matrix equation,

M, ML, — My My, = Hy "Hy oaHy  Hyyon — Hy 'Hy, oaHy ' Hyp = O.

Many of the resulting equations are trivial. After discarding them, we have 6
unknonws {h500, /’141()7 hgg()7 h230, h140, h050} and 15 equations.
A solution of the system is the following

{h500 =1,h410 = 2, h3o0 = 3, hogg = 1.5060, h140 = 4.960, hp50 = 0.056}.
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Since we have only two variables, there is only one matrix equation,

M, ML, — My My, = Hy "Hy oaHy  Hyyon — Hy 'Hy, oaHy ' Hyp = O.

Many of the resulting equations are trivial. After discarding them, we have 6
unknonws {h500, /’741()7 hgg()7 h230, h140, h050} and 15 equations.
A solution of the system is the following

{h500 =1,h410 = 2, h3o0 = 3, hogg = 1.5060, h140 = 4.960, hp50 = 0.056}.

We subsitute these values to H,, o and we continue the algorithm as in the previous
example.
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