## Symmetric tensor decomposition

# J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. <br> Mourrain, E. Tsigaridas 

September 21, 2010

## Introduction

We present an algorithm for decomposing a symmetric tensor, of dimension $n$ and order $d$, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms.

## Introduction

## What is symmetric tensor decomposition?

## Introduction

What is symmetric tensor decomposition?

- Let $E$ be a $\mathbb{K}$ vector space of dimension $n$ and of basis $\left(e_{i}\right)_{0 \leq i \leq n-1}$.


## Introduction

What is symmetric tensor decomposition?

- Let $E$ be a $\mathbb{K}$ vector space of dimension $n$ and of basis $\left(e_{i}\right)_{0 \leq i \leq n-1}$.
- A symmetric tensor $v$ of dimension $n$ and of order $d$ is an element of $S^{d} E$ :


## Introduction

## What is symmetric tensor decomposition?

- Let $E$ be a $\mathbb{K}$ vector space of dimension $n$ and of basis $\left(e_{i}\right)_{0 \leq i \leq n-1}$.
- A symmetric tensor $v$ of dimension $n$ and of order $d$ is an element of $S^{d} E$ :

$$
v=\sum_{i_{1}<\ldots<i_{d}} A_{i_{1}, \ldots, i_{d}} e_{i_{1}} \ldots e_{i_{d}} \in \wedge^{d} E
$$

with $A_{i_{1}, \ldots, i_{d}} \in \mathbb{K}$.

## Introduction

## What is symmetric tensor decomposition?

- Let $E$ be a $\mathbb{K}$ vector space of dimension $n$ and of basis $\left(e_{i}\right)_{0 \leq i \leq n-1}$.
- A symmetric tensor $v$ of dimension $n$ and of order $d$ is an element of $S^{d} E$ :

$$
v=\sum_{i_{1}<\ldots<i_{d}} A_{i_{1}, \ldots, i_{d}} e_{i_{1}} \ldots e_{i_{d}} \in \wedge^{d} E
$$

with $A_{i_{1}, \ldots, i_{d}} \in \mathbb{K}$.

- We want to write $v$ as a sum of $d$-th power of linear forms:


## Introduction

## What is symmetric tensor decomposition?

- Let $E$ be a $\mathbb{K}$ vector space of dimension $n$ and of basis $\left(e_{i}\right)_{0 \leq i \leq n-1}$.
- A symmetric tensor $v$ of dimension $n$ and of order $d$ is an element of $S^{d} E$ :

$$
v=\sum_{i_{1}<\ldots<i_{d}} A_{i_{1}, \ldots, i_{d}} e_{i_{1}} \ldots e_{i_{d}} \in \wedge^{d} E
$$

with $A_{i_{1}, \ldots, i_{d}} \in \mathbb{K}$.

- We want to write $v$ as a sum of $d$-th power of linear forms:

$$
v=\sum_{i=1, \ldots, r} \lambda_{i}\left(a_{i, 0} e_{0}+\ldots+a_{i, n-1} e_{n-1}\right)^{d}
$$

## Introduction

## What is symmetric tensor decomposition?

- Let $E$ be a $\mathbb{K}$ vector space of dimension $n$ and of basis $\left(e_{i}\right)_{0 \leq i \leq n-1}$.
- A symmetric tensor $v$ of dimension $n$ and of order $d$ is an element of $S^{d} E$ :

$$
v=\sum_{i_{1}<\ldots<i_{d}} A_{i_{1}, \ldots, i_{d}} e_{i_{1}} \ldots e_{i_{d}} \in \wedge^{d} E
$$

with $A_{i_{1}, \ldots, i_{d}} \in \mathbb{K}$.

- We want to write $v$ as a sum of $d$-th power of linear forms:

$$
v=\sum_{i=1, \ldots, r} \lambda_{i}\left(a_{i, 0} e_{0}+\ldots+a_{i, n-1} e_{n-1}\right)^{d}
$$

- The goal is to find such a decomposition with the minimal $r$.


## Introduction

## Motivations:

- Tensors have been widely used in Electrical Engineering since the 1990s, particularly in Antenna Array Processing and Signal Processing.


## Introduction

## Motivations:

- Tensors have been widely used in Electrical Engineering since the 1990s, particularly in Antenna Array Processing and Signal Processing.
- Earlier in the 1970s tensors have been used in Chemometrics and Psychometrics.


## Introduction

## Motivations:

- Tensors have been widely used in Electrical Engineering since the 1990s, particularly in Antenna Array Processing and Signal Processing.
- Earlier in the 1970s tensors have been used in Chemometrics and Psychometrics.
- Another important application field is Data Analysis, for instance, Independent Component Analysis, originally introduced for symmetric tensors whose rank did not exceed dimension.


## Introduction

## Position :

- The problem of symmetric tensors decomposition extends the Singular Value Decomposition (SVD) for symmetric matrices which is an important tool in numerical linear algebra.


## Introduction

## Position :

- The problem of symmetric tensors decomposition extends the Singular Value Decomposition (SVD) for symmetric matrices which is an important tool in numerical linear algebra.
- Current numerical algorithms are suboptimal (they do not use symmetries, they minimize different successive criteria sequentially or are iterative and do not guarantee a global convergence). In addition they often require the rank to be lower than the generic one.


## Introduction

## Position :

- The problem of symmetric tensors decomposition extends the Singular Value Decomposition (SVD) for symmetric matrices which is an important tool in numerical linear algebra.
- Current numerical algorithms are suboptimal (they do not use symmetries, they minimize different successive criteria sequentially or are iterative and do not guarantee a global convergence). In addition they often require the rank to be lower than the generic one.
- Among these popular methods, we refer to "PARAFAC" techniques, extensively applied to ill-posed problems.


## Introduction

## Contributions :

- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order and dimension into a sum of rank-one terms. The method is inspired by Sylvester's theorem and extends its principle to larger dimensions.


## Introduction

## Contributions :

- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order and dimension into a sum of rank-one terms. The method is inspired by Sylvester's theorem and extends its principle to larger dimensions.
- We give necessary and sufficient condition for the existence of a decomposition of rank $r$, based on rank conditions of Hankel operators or commutation properties.


## Introduction

## Contributions :

- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order and dimension into a sum of rank-one terms. The method is inspired by Sylvester's theorem and extends its principle to larger dimensions.
- We give necessary and sufficient condition for the existence of a decomposition of rank $r$, based on rank conditions of Hankel operators or commutation properties.
- This algorithm is not restricted to strictly sub-generic ranks and fully exploits the symmetries.


## Binary case

## Binary case

## Theorem (Sylvester, 1886)

A binary quantic $p\left(x_{1}, x_{2}\right)=\sum_{i=0}^{d}\binom{d}{i} c_{i} x_{1}^{i} x_{2}^{d-i}$ can be written as a sum of d th powers of $r$ distinct linear forms in $\mathbb{C}$ as:

$$
\begin{equation*}
p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)^{d}, \tag{1}
\end{equation*}
$$

if and only if

## Binary case

## Theorem (Sylvester, 1886)

A binary quantic $p\left(x_{1}, x_{2}\right)=\sum_{i=0}^{d}\binom{d}{i} c_{i} x_{1}^{i} x_{2}^{d-i}$ can be written as a sum of $d^{\text {th }}$ powers of $r$ distinct linear forms in $\mathbb{C}$ as:

$$
\begin{equation*}
p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)^{d} \tag{1}
\end{equation*}
$$

if and only if $(\mathbf{i})$ there exists a vector $\mathbf{q}=\left(q_{l}\right)_{l=0}^{r}$, such that

$$
\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{r}  \tag{2}\\
\vdots & & & \vdots \\
c_{d-r} & \cdots & c_{d-1} & c_{d}
\end{array}\right] \mathbf{q}=\mathbf{0}
$$

## Binary case

## Theorem (Sylvester, 1886)

A binary quantic $p\left(x_{1}, x_{2}\right)=\sum_{i=0}^{d}\binom{d}{i} c_{i} x_{1}^{i} x_{2}^{d-i}$ can be written as a sum of $d^{\text {th }}$ powers of $r$ distinct linear forms in $\mathbb{C}$ as:

$$
\begin{equation*}
p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)^{d} \tag{1}
\end{equation*}
$$

if and only if $(\mathbf{i})$ there exists a vector $\mathbf{q}=\left(q_{l}\right)_{l=0}^{r}$, such that

$$
\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{r}  \tag{2}\\
\vdots & & & \vdots \\
c_{d-r} & \cdots & c_{d-1} & c_{d}
\end{array}\right] \mathbf{q}=\mathbf{0}
$$

and (ii) the polynomial $q\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} q_{l} x_{1}^{\prime} x_{2}^{r-l}$ admits $r$ distinct roots, i.e. can be written as $q\left(x_{1}, x_{2}\right)=\prod_{j=1}^{r}\left(\beta_{j}^{*} x_{1}-\alpha_{j}^{*} x_{2}\right)$.

## Binary case

The Sylvester's theorem yields the following algorithm:
Input : Given a binary polynomial $p\left(x_{1}, x_{2}\right)$ of degree $d$ with coefficients $a_{i}=\binom{d}{i} c_{i}$, $0 \leq i \leq d$, define the Hankel matrix $H[r]$ of dimensions $d-r+1 \times r+1$ with entries $H[r]_{i j}=c_{i+j-2}:$

$$
H[r]=\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{r}  \tag{3}\\
\vdots & & & \vdots \\
c_{d-r} & \cdots & c_{d-1} & c_{d}
\end{array}\right]
$$

## Binary case

The Sylvester's theorem yields the following algorithm:
Input : Given a binary polynomial $p\left(x_{1}, x_{2}\right)$ of degree $d$ with coefficients $a_{i}=\binom{d}{i} c_{i}$, $0 \leq i \leq d$, define the Hankel matrix $H[r]$ of dimensions $d-r+1 \times r+1$ with entries $H[r]_{i j}=c_{i+j-2}:$

$$
H[r]=\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{r}  \tag{3}\\
\vdots & & & \vdots \\
c_{d-r} & \cdots & c_{d-1} & c_{d}
\end{array}\right]
$$

Output : A decomposition of $p$ as $p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j} \mathbf{k}_{\mathbf{j}}(\mathbf{x})^{\mathbf{d}}$ with minimal $r$.

## Binary case

1 Initialize $r=0$

## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$

## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[\mathrm{r}]$ has full column rank, then go to step 2

## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[r]$ has full column rank, then go to step 2
4 Else compute a basis $\left\{\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{1}}\right\}$ of the right kernel of $H[r]$.

## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[r]$ has full column rank, then go to step 2
4 Else compute a basis $\left\{\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{1}}\right\}$ of the right kernel of $H[r]$.
5 Specialization:
■ Take a generic vector $\mathbf{q}$ in the kernel, e.g. $\mathbf{q}=\sum_{\mathbf{i}} \mu_{\mathbf{i}} \mathbf{k}_{\mathbf{i}}$

## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[r]$ has full column rank, then go to step 2
4 Else compute a basis $\left\{\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{1}}\right\}$ of the right kernel of $H[r]$.
5 Specialization:
$\square$ Take a generic vector $\mathbf{q}$ in the kernel, e.g. $\mathbf{q}=\sum_{i} \mu_{\mathbf{i}} \mathbf{k}_{\mathbf{i}}$

- Compute the roots of the associated polynomial $q\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} q_{l} x_{1}^{l} x_{2}^{d-l}$. Denote them $\left(\beta_{j},-\alpha_{j}\right)$, where $\left|\alpha_{j}\right|^{2}+\left|\beta_{j}\right|^{2}=1$.


## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[r]$ has full column rank, then go to step 2
4 Else compute a basis $\left\{\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{1}}\right\}$ of the right kernel of $H[r]$.
5 Specialization:
$\square$ Take a generic vector $\mathbf{q}$ in the kernel, e.g. $\mathbf{q}=\sum_{i} \mu_{i} \mathbf{k}_{\mathbf{i}}$
$■$ Compute the roots of the associated polynomial $q\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} q_{l} x_{1}^{l} x_{2}^{d-l}$. Denote them $\left(\beta_{j},-\alpha_{j}\right)$, where $\left|\alpha_{j}\right|^{2}+\left|\beta_{j}\right|^{2}=1$.

- If the roots are not distinct in $\mathbb{P}^{2}$, try another specialization. If distinct roots cannot be obtained, go to step 2.


## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[r]$ has full column rank, then go to step 2
4 Else compute a basis $\left\{\mathbf{k}_{1}, \ldots, \mathbf{k}_{1}\right\}$ of the right kernel of $H[r]$.
5 Specialization:
$\square$ Take a generic vector $\mathbf{q}$ in the kernel, e.g. $\mathbf{q}=\sum_{i} \mu_{\mathbf{i}} \mathbf{k}_{\mathbf{i}}$

- Compute the roots of the associated polynomial $q\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} q_{l} x_{1}^{l} x_{2}^{d-l}$. Denote them $\left(\beta_{j},-\alpha_{j}\right)$, where $\left|\alpha_{j}\right|^{2}+\left|\beta_{j}\right|^{2}=1$.
■ If the roots are not distinct in $\mathbb{P}^{2}$, try another specialization. If distinct roots cannot be obtained, go to step 2.
- Else if $q\left(x_{1}, x_{2}\right)$ admits $r$ distinct roots then compute coefficients $\lambda_{j}, 1 \leq j \leq r$, by solving the linear system below, where $a_{i}$ denotes $\binom{d}{i} c_{i}$

$$
\left[\begin{array}{ccc}
\alpha_{1}^{d} & \cdots & \alpha_{r}^{d} \\
\alpha_{1}^{d-1} \beta_{1} & \cdots & \alpha_{r}^{d-1} \beta_{r} \\
\alpha_{1}^{d-2} \beta_{1}^{2} & \cdots & \alpha_{r}^{d-1} \beta_{r}^{2} \\
: & : & : \\
\beta_{1}^{d} & \cdots & \beta_{r}^{d}
\end{array}\right] \lambda=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
: \\
a_{d}
\end{array}\right]
$$

## Binary case

1 Initialize $r=0$
2 Increment $r \leftarrow r+1$
3 If the matrix $\mathrm{H}[r]$ has full column rank, then go to step 2
4 Else compute a basis $\left\{\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{1}}\right\}$ of the right kernel of $H[r]$.
5 Specialization:
$\square$ Take a generic vector $\mathbf{q}$ in the kernel, e.g. $\mathbf{q}=\sum_{i} \mu_{\mathbf{i}} \mathbf{k}_{\mathbf{i}}$

- Compute the roots of the associated polynomial $q\left(x_{1}, x_{2}\right)=\sum_{l=0}^{r} q_{l} x_{1}^{\prime} x_{2}^{d-l}$. Denote them $\left(\beta_{j},-\alpha_{j}\right)$, where $\left|\alpha_{j}\right|^{2}+\left|\beta_{j}\right|^{2}=1$.
- If the roots are not distinct in $\mathbb{P}^{2}$, try another specialization. If distinct roots cannot be obtained, go to step 2.
■ Else if $q\left(x_{1}, x_{2}\right)$ admits $r$ distinct roots then compute coefficients $\lambda_{j}, 1 \leq j \leq r$, by solving the linear system below, where $a_{i}$ denotes $\binom{d}{i} c_{i}$

$$
\left[\begin{array}{ccc}
\alpha_{1}^{d} & \ldots & \alpha_{r}^{d} \\
\alpha_{1}^{d-1} \beta_{1} & \ldots & \alpha_{r}^{d-1} \beta_{r} \\
\alpha_{1}^{d-2} \beta_{1}^{2} & \ldots & \alpha_{r}^{d-1} \beta_{r}^{2} \\
: & : & : \\
\beta_{1}^{d} & \cdots & \beta_{r}^{d}
\end{array}\right] \lambda=\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
: \\
a_{d}
\end{array}\right]
$$

6 The decomposition is $p\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j} \mathbf{k}_{\mathbf{j}}(\mathbf{x})^{\mathbf{d}}$, where $\mathbf{k}_{\mathbf{j}}(\mathbf{x})=\left(\alpha_{\mathrm{j}} \mathbf{x}_{1}+\beta_{\mathrm{j}} \mathbf{x}_{2}\right)$.

## Reformulations

## Reformulations

1) Polynomial decomposition:
J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas

## Reformulations

1) Polynomial decomposition:

A symmetric tensor $\left[a_{j}, \ldots, j_{n-1}\right]$ of order $d$ and dimension $n$ can be associated to a homogeneous polynomial $f(\mathbf{x}) \in \mathbf{S}_{\mathbf{d}}$ :

$$
\begin{equation*}
f(\mathbf{x})=\sum_{\mathbf{j}_{0}+\mathrm{j}_{1}+\cdots+\mathrm{j}_{\mathrm{n}-1}=\mathrm{d}} \mathbf{a}_{\mathrm{j}_{0}, \mathrm{j}_{1}, \ldots, \mathrm{j}_{n-1}} \mathbf{x}_{0}^{\mathrm{j}_{0}} \mathbf{x}_{1}^{\mathrm{j}_{1}} \cdots \mathbf{x}_{\mathrm{n}-1}^{\mathrm{j}_{\mathrm{n}-1}} . \tag{4}
\end{equation*}
$$

## Reformulations

1) Polynomial decomposition:

A symmetric tensor $\left[a_{j 0, \ldots, j_{n-1}}\right.$ ] of order $d$ and dimension $n$ can be associated to a homogeneous polynomial $f(\mathbf{x}) \in \mathbf{S}_{\mathbf{d}}$ :

Our goal is to compute a decomposition of $f$ as a sum of $d^{\text {th }}$ powers of linear forms, i.e.

$$
\begin{equation*}
f(x)=\sum_{i=1}^{r} \lambda_{i}\left(k_{i, 0} x_{0}+k_{i, 1} x_{1}+\cdots+k_{i, n-1} x_{n-1}\right)^{d}=\lambda_{1} k_{1}(x)^{d}+\lambda_{2} k_{2}(x)^{d}+\cdots+\lambda_{r} k_{r}(x)^{d} \tag{5}
\end{equation*}
$$

where $\lambda_{i} \neq 0, \mathbf{k}_{\mathbf{i}} \neq \mathbf{0}$, and $r$ is the smallest possible.

## Reformulations

1) Polynomial decomposition:

A symmetric tensor $\left[a_{j 0, \ldots, j_{n-1}}\right.$ ] of order $d$ and dimension $n$ can be associated to a homogeneous polynomial $f(\mathbf{x}) \in \mathbf{S}_{\mathbf{d}}$ :

Our goal is to compute a decomposition of $f$ as a sum of $d^{\text {th }}$ powers of linear forms, i.e.

$$
\begin{equation*}
f(x)=\sum_{i=1}^{r} \lambda_{i}\left(k_{i, 0} x_{0}+k_{i, 1} x_{1}+\cdots+k_{i, n-1} x_{n-1}\right)^{d}=\lambda_{1} k_{1}(x)^{d}+\lambda_{2} k_{2}(x)^{d}+\cdots+\lambda_{r} k_{r}(x)^{d} \tag{5}
\end{equation*}
$$

where $\lambda_{i} \neq 0, \mathbf{k}_{\mathbf{i}} \neq \mathbf{0}$, and $r$ is the smallest possible.
This minimal $r$ is called the rank of $f$.

## Reformulations

2) Veronese and secant varieties:

## Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space $\mathbb{P}^{n-1}$ to the projective space of symmetric tensors:

$$
\begin{array}{llll}
v: & \mathbb{P}\left(S_{1}\right) & \rightarrow \mathbb{P}\left(S_{d}\right) \\
& \mathbf{k}(\mathbf{x}) & \mapsto & \mathbf{k}(\mathbf{x})^{\mathbf{d}}
\end{array}
$$

## Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space $\mathbb{P}^{n-1}$ to the projective space of symmetric tensors:

$$
\begin{array}{rlll}
v: \mathbb{P}\left(S_{1}\right) & \rightarrow \mathbb{P}\left(S_{d}\right) \\
\mathbf{k}(\mathbf{x}) & \mapsto & \mathbf{k}(\mathbf{x})^{d}
\end{array}
$$

The image of $v$ is called the Veronese variety.

## Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space $\mathbb{P}^{n-1}$ to the projective space of symmetric tensors:

$$
\begin{aligned}
& v: \mathbb{P}\left(S_{1}\right) \rightarrow \mathbb{P}\left(S_{d}\right) \\
& \mathbf{k}(\mathbf{x}) \mapsto \\
& \mathbf{k}(\mathbf{x})^{\mathrm{d}}
\end{aligned}
$$

The image of $v$ is called the Veronese variety. A tensor of rank 1 is a point of the Veronese.

## Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space $\mathbb{P}^{n-1}$ to the projective space of symmetric tensors:

$$
\begin{aligned}
& v: \mathbb{P}\left(S_{1}\right) \rightarrow \mathbb{P}\left(S_{d}\right) \\
& \mathbf{k}(\mathbf{x}) \mapsto \\
& \mathbf{k}(\mathbf{x})^{\mathrm{d}}
\end{aligned}
$$

The image of $v$ is called the Veronese variety.
A tensor of rank 1 is a point of the Veronese.
A tensor of rank $r$ is in the linear space spanned by $r$ points of the Veronese variety.

## Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space $\mathbb{P}^{n-1}$ to the projective space of symmetric tensors:

$$
\begin{array}{lll}
v: \mathbb{P}\left(S_{1}\right) & \rightarrow \mathbb{P}\left(S_{d}\right) \\
& \mathbf{k}(\mathbf{x}) & \mapsto \\
\mathbf{k}(\mathbf{x})^{\mathrm{d}}
\end{array}
$$

The image of $v$ is called the Veronese variety.
A tensor of rank 1 is a point of the Veronese.
A tensor of rank $r$ is in the linear space spanned by $r$ points of the Veronese variety. The closure of the $r$-dimensional linear space spanned by $r$ points of the Veronese is called the $r-1$ secant variety.

## Reformulations

3) Decomposition using duality:

## Reformulations

3) Decomposition using duality:

Let $f, g \in S_{d}$, where $f=\sum_{|\alpha|=d} f_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$ and $g=\sum_{|\alpha|=d} g_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$.

## Reformulations

3) Decomposition using duality:

Let $f, g \in S_{d}$, where $f=\sum_{|\alpha|=d} f_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$ and $g=\sum_{|\alpha|=d} g_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$. We define the apolar inner product on $S_{d}$ as

$$
\langle f, g\rangle=\sum_{|\alpha|=d} f_{\alpha} g_{\alpha}\binom{d}{\alpha_{0}, \ldots, \alpha_{n-1}}^{-1}
$$

## Reformulations

3) Decomposition using duality:

Let $f, g \in S_{d}$, where $f=\sum_{|\alpha|=d} f_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$ and $g=\sum_{|\alpha|=d} g_{\alpha} x_{0}^{\alpha_{0}} \cdots x_{n-1}^{\alpha_{n-1}}$. We define the apolar inner product on $S_{d}$ as

$$
\langle f, g\rangle=\sum_{|\alpha|=d} f_{\alpha} g_{\alpha}\binom{d}{\alpha_{0}, \ldots, \alpha_{n-1}}^{-1}
$$

Using this non-degenerate inner product, we can associate an element of $S_{d}$ with an element $S_{d}^{*}$, through the following map:

$$
\begin{aligned}
\tau: S_{d} & \rightarrow S_{d}^{*} \\
f & \mapsto f^{*},
\end{aligned}
$$

where the linear form $f^{*}$ is defined as $f^{*}: g \mapsto\langle f, g\rangle$.

## Reformulations

## Proposition

Let $f=\left(a_{0} x_{0}+\ldots+a_{n-1} x_{n-1}\right)^{d} \in S_{d}$, then

$$
f^{*}(g)=\langle f, g\rangle=g\left(a_{0}, \ldots, a_{n-1}\right)=\mathbf{e v}_{A}(g)
$$

with $A=\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{K}^{n-1}, g \in S_{d}$ and $\mathbf{e v}_{A}$ is the evaluation in $A$.

## Reformulations

The decomposition problem can be reformulated as follows:

Given $f^{*} \in S_{d}^{*}$, find the minimal number of non-zero points $\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{r}} \in \mathbb{K}^{\mathbf{n}}$ and non-zero scalars $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{K}-\{0\}$ such that

$$
f^{*}=\sum_{i=1}^{r} \lambda_{i} \mathbf{e v}_{\mathbf{k}_{\mathbf{i}}}
$$

## Reformulations

The decomposition problem can be reformulated as follows:

Given $f^{*} \in S_{d}^{*}$, find the minimal number of non-zero points $\mathbf{k}_{\mathbf{1}}, \ldots, \mathbf{k}_{\mathbf{r}} \in \mathbb{K}^{\mathbf{n}}$ and non-zero scalars $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{K}-\{0\}$ such that

$$
f^{*}=\sum_{i=1}^{r} \lambda_{i} \mathbf{e v}_{\mathbf{k}_{i}}
$$

Note that by a generic change of variables, we can assume that all the coordinates $\mathbf{k}_{\mathbf{i}, 0}$ are equal to 1 .

## Hankel operators and quotient algebras

## Definition

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n-1}\right]$ be the polynomial ring in $n-1$ variables and $\Lambda \in R^{*}$ be a linear form. We define the Hankel operator $H_{\Lambda}$ from $R$ to $R^{*}$ as

$$
\begin{aligned}
H_{\Lambda}: & R \rightarrow R^{*} \\
& p \mapsto p \star \Lambda
\end{aligned}
$$

with

$$
\begin{aligned}
p \star \Lambda: & R \rightarrow \mathbb{K} \\
& f \mapsto \Lambda(p . f) .
\end{aligned}
$$

## Hankel operators and quotient algebras

## Definition

Let $R=\mathbb{K}\left[x_{1}, \ldots, x_{n-1}\right]$ be the polynomial ring in $n-1$ variables and $\Lambda \in R^{*}$ be a linear form. We define the Hankel operator $H_{\wedge}$ from $R$ to $R^{*}$ as

$$
\begin{aligned}
H_{\Lambda}: & R \rightarrow R^{*} \\
& p \mapsto p \star \Lambda
\end{aligned}
$$

with

$$
\begin{aligned}
p \star \Lambda: & R \rightarrow \mathbb{K} \\
& f \mapsto \Lambda(p . f) .
\end{aligned}
$$

## Definition

We denote by $\mathbb{H}_{\Lambda}$ the matrix of $H_{\Lambda}$ in the basis $\left\{x^{\alpha}\right\}$ and $\left\{\mathbf{d}^{\alpha}\right\}$ (where $\left\{\mathbf{d}^{\alpha}\right\}$ is the dual basis of the monomial basis $\left\{x^{\alpha}\right\}$ ). Thus

$$
\mathbb{H}_{\Lambda}=\left(\Lambda\left(x^{\alpha+\beta}\right)\right)_{\alpha, \beta}
$$

## Hankel operators and quotient algebras

## Proposition

Let $I_{\Lambda}$ be the kernel of $H_{\Lambda}$. Then, $I_{\Lambda}$ is an ideal of $R$.

## Hankel operators and quotient algebras

## Proposition

Let $I_{\Lambda}$ be the kernel of $H_{\Lambda}$. Then, $I_{\Lambda}$ is an ideal of $R$.

## Definition

Let $\mathscr{A}_{\Lambda}:=R / I_{\Lambda}$ be the quotient algebra of polynomials modulo the ideal $I_{\Lambda}$.

## Hankel operators and quotient algebras

## Definition

- Let $a \in R$ be a polynomial. Let $M_{a}$ be the multiplication by $a$ in $\mathcal{A}_{\Lambda}$ :

$$
\begin{aligned}
M_{a}: & \mathcal{A}_{\Lambda} \rightarrow \mathcal{A}_{\Lambda} \\
& b \mapsto b a .
\end{aligned}
$$

## Hankel operators and quotient algebras

## Definition

- Let $a \in R$ be a polynomial. Let $M_{a}$ be the multiplication by $a$ in $\mathcal{A}_{\Lambda}$ :

$$
\begin{aligned}
M_{a}: & \mathcal{A}_{\Lambda} \rightarrow \mathcal{A}_{\Lambda} \\
& b \mapsto b a .
\end{aligned}
$$

- Let $M_{a}^{t}$ be the be its transposed operator:

$$
\begin{aligned}
M_{a}^{t}: & \mathscr{A}_{\wedge}^{*} \rightarrow \mathscr{A}_{\wedge}^{*} \\
& \gamma \mapsto a \star \gamma .
\end{aligned}
$$

## Hankel operators and quotient algebras

## Definition

- Let $a \in R$ be a polynomial. Let $M_{a}$ be the multiplication by $a$ in $\mathcal{A}_{\Lambda}$ :

$$
\begin{aligned}
M_{a}: & \mathcal{A}_{\Lambda} \rightarrow \mathcal{A}_{\Lambda} \\
& b \mapsto b a .
\end{aligned}
$$

- Let $M_{a}^{t}$ be the be its transposed operator:

$$
\begin{aligned}
M_{a}^{t}: & \mathscr{A}_{\wedge}^{*} \rightarrow \mathscr{A}_{\wedge}^{*} \\
& \gamma \mapsto a \star \gamma .
\end{aligned}
$$

Note that, by definition, we have

$$
H_{a \star \Lambda}=M_{a}^{t} \circ H_{\Lambda}
$$

## Hankel operators and quotient algebras

## Theorem <br> If $\operatorname{rank}\left(H_{\Lambda}\right)=r<\infty$, then

## Hankel operators and quotient algebras

## Theorem

If $\operatorname{rank}\left(H_{\Lambda}\right)=r<\infty$, then

- $\mathcal{A}_{\Lambda}$ is of dimension $r$ over $\mathbb{K}$ and the set of roots $Z\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \subset \mathbb{K}^{n}$ is finite with $d \leq r$,


## Hankel operators and quotient algebras

## Theorem

If $\operatorname{rank}\left(H_{\Lambda}\right)=r<\infty$, then

- $\mathcal{A}_{\Lambda}$ is of dimension $r$ over $\mathbb{K}$ and the set of roots $Z\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \subset \mathbb{K}^{n}$ is finite with $d \leq r$,
- there exist $p_{i} \in \mathbb{K}\left[\partial_{1}, \ldots, \partial_{n}\right]$, such that

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{d} \mathbf{e v}_{\zeta_{i}} \circ p_{i}(\partial) \tag{6}
\end{equation*}
$$

Moreover the multiplicity of $\zeta_{i}$ is the dimension of the vector space spanned by the inverse system generated by $\mathbf{e v}_{\zeta_{i}} \circ p_{i}(\partial)$.

## Hankel operators and quotient algebras

## Theorem

If $\operatorname{rank}\left(H_{\Lambda}\right)=r<\infty$, then

- $\mathcal{A}_{\Lambda}$ is of dimension $r$ over $\mathbb{K}$ and the set of roots $Z\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \subset \mathbb{K}^{n}$ is finite with $d \leq r$,
- there exist $p_{i} \in \mathbb{K}\left[\partial_{1}, \ldots, \partial_{n}\right]$, such that

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{d} \mathbf{e} \mathbf{v}_{\zeta_{i}} \circ p_{i}(\partial) \tag{6}
\end{equation*}
$$

Moreover the multiplicity of $\zeta_{i}$ is the dimension of the vector space spanned by the inverse system generated by $\mathbf{e v}_{\zeta_{i}} \circ p_{i}(\partial)$.

- the eigenvalues of the operators $M_{a}$ and $M_{a}^{t}$, are given by $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{d}\right)\right\}$.


## Hankel operators and quotient algebras

## Theorem

If $\operatorname{rank}\left(H_{\Lambda}\right)=r<\infty$, then

- $\mathcal{A}_{\Lambda}$ is of dimension $r$ over $\mathbb{K}$ and the set of roots $Z\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{d}\right\} \subset \mathbb{K}^{n}$ is finite with $d \leq r$,
- there exist $p_{i} \in \mathbb{K}\left[\partial_{1}, \ldots, \partial_{n}\right]$, such that

$$
\begin{equation*}
\Lambda=\sum_{i=1}^{d} \mathbf{e} \mathbf{v}_{\zeta_{i}} \circ p_{i}(\partial) \tag{6}
\end{equation*}
$$

Moreover the multiplicity of $\zeta_{i}$ is the dimension of the vector space spanned by the inverse system generated by $\mathbf{e v}_{\zeta_{i}} \circ p_{i}(\partial)$.

- the eigenvalues of the operators $M_{a}$ and $M_{a}^{t}$, are given by $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{d}\right)\right\}$.
- the common eigenvectors of the operators $\left(M_{x_{i}}^{t}\right)_{1 \leq i \leq n}$ are (up to scalar) $\mathbf{e v}_{\zeta_{i}}$.


## Hankel operators and quotient algebras

## Theorem

Let $\Lambda \in R^{*} . \Lambda=\sum_{i=1}^{r} \lambda_{i} \mathbf{e v} \zeta_{i}$ with $\lambda_{i} \neq 0$ and $\zeta_{i}$ distinct points of $\mathbb{K}^{n}$, iff rank $H_{\Lambda}=r$ and $I_{\Lambda}$ is a radical ideal.

## Truncated Hankel operators

The problem of decomposition can be reformulated as follows :

Given $f^{*} \in R_{d}^{*}$ find the smallest $r$ such that there exists $\Lambda \in R^{*}$ which extends $f^{*}$ with $H_{\Lambda}$ of rank $r$ and $I_{\Lambda}$ a radical ideal.

## Truncated Hankel operators

## Definition

Given $f^{*} \in R_{d}^{*}$ a linear form and $B$ a set of monomials of degree at most $d$, we define the Hankel operator $\Lambda_{f^{*}}(\mathbf{h})$ by:

## Truncated Hankel operators

## Definition

Given $f^{*} \in R_{d}^{*}$ a linear form and $B$ a set of monomials of degree at most $d$, we define the Hankel operator $\Lambda_{f^{*}}(\mathbf{h})$ by:
$-\Lambda_{f^{*}}(\mathbf{h})\left(x^{\alpha}\right)=f^{*}\left(x^{\alpha}\right)$ if $|\alpha| \leq d$,

## Truncated Hankel operators

## Definition

Given $f^{*} \in R_{d}^{*}$ a linear form and $B$ a set of monomials of degree at most $d$, we define the Hankel operator $\Lambda_{f^{*}}(\mathbf{h})$ by:
$-\Lambda_{f^{*}}(\mathbf{h})\left(x^{\alpha}\right)=f^{*}\left(x^{\alpha}\right)$ if $|\alpha| \leq d$,
$-\Lambda_{f^{*}}(\mathbf{h})\left(x^{\alpha}\right)=h_{\alpha}$ a variable (the set of all these variables is denoted by $\mathbf{h}$ ).

## Truncated Hankel operators

## Definition

Given $f^{*} \in R_{d}^{*}$ a linear form and $B$ a set of monomials of degree at most $d$, we define the Hankel operator $\Lambda_{f^{*}}(\mathbf{h})$ by:
$-\Lambda_{f^{*}}(\mathbf{h})\left(x^{\alpha}\right)=f^{*}\left(x^{\alpha}\right)$ if $|\alpha| \leq d$,

- $\Lambda_{f^{*}}(\mathbf{h})\left(x^{\alpha}\right)=h_{\alpha}$ a variable (the set of all these variables is denoted by $\mathbf{h}$ ).

We denote by $\mathcal{H}_{\Lambda_{f^{*}}}^{B}(\mathbf{h})$ its matrix:

$$
\mathcal{H}_{\Lambda_{f^{*}}}^{B}(\mathbf{h})=\left(h_{\alpha+\beta}\right)_{\alpha, \beta \in B} .
$$

## Truncated Hankel operators

## Definition

If $\mathcal{H}_{\Lambda_{f^{*}}}^{B}(\mathbf{h})$ is invertible in $\mathbb{K}(\mathbf{h})$ (that is the rational polynomial functions in $\mathbf{h}$ ), then we define the multiplication operators

$$
\mathcal{M}_{i}^{B}(\mathbf{h}):=\left(\mathcal{H}_{\Lambda_{f^{*}}}^{B}(\mathbf{h})\right)^{-1} \mathcal{H}_{x_{i} \star \Lambda_{f^{*}}}^{B}(\mathbf{h}) .
$$

## Truncated Hankel operators

## Definition

If $\mathcal{H}_{\Lambda_{f^{*}}}^{B}(\mathbf{h})$ is invertible in $\mathbb{K}(\mathbf{h})$ (that is the rational polynomial functions in $\mathbf{h}$ ), then we define the multiplication operators

$$
\mathcal{M}_{i}^{B}(\mathbf{h}):=\left(\mathcal{H}_{\Lambda_{f^{*}}}^{B}(\mathbf{h})\right)^{-1} \mathcal{H}_{x_{i} \star \Lambda_{f^{*}}}^{B}(\mathbf{h}) .
$$

## Definition

Let $B$ be a subset of monomials in $R$. We say that $B$ is connected to 1 if :
$-1 \in B$,

- $\forall m \neq 1 \in B$ there exists $i \in[1, n]$ and $m^{\prime} \in B$ such that $m=x_{i} m^{\prime}$.


## Truncated Hankel operators

## Theorem

-Let $B=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$ be a set of monomials of degree at most $d$, connected to 1 .

## Truncated Hankel operators

## Theorem

-Let $B=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$ be a set of monomials of degree at most $d$, connected to 1 .
-Let $f^{*}$ be a linear form in $\left\langle B \cdot B^{+}\right\rangle_{d}^{*}$.

## Truncated Hankel operators

## Theorem

-Let $B=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$ be a set of monomials of degree at most $d$, connected to 1 .
-Let $f^{*}$ be a linear form in $\left\langle B \cdot B^{+}\right\rangle_{d}^{*}$.
-Let $\Lambda_{f^{*}}(\mathbf{h})$ be the linear form of $\left\langle B \cdot B^{+}\right\rangle^{*}$ defined by $\Lambda_{f^{*}}(\mathbf{h})\left(\mathbf{x}^{\alpha}\right)=f^{*}\left(\mathbf{x}^{\alpha}\right)$ if $|\alpha|$ is at most $d$ and $h_{\alpha} \in \mathbb{K}$ otherwise.

## Truncated Hankel operators

## Theorem

-Let $B=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$ be a set of monomials of degree at most d, connected to 1 .
-Let $f^{*}$ be a linear form in $\left\langle B \cdot B^{+}\right\rangle_{d}^{*}$.
-Let $\Lambda_{f^{*}}(\mathbf{h})$ be the linear form of $\left\langle B \cdot B^{+}\right\rangle^{*}$ defined by $\Lambda_{f^{*}}(\mathbf{h})\left(\mathbf{x}^{\alpha}\right)=f^{*}\left(\mathbf{x}^{\alpha}\right)$ if $|\alpha|$ is at most $d$ and $h_{\alpha} \in \mathbb{K}$ otherwise.

Then $\Lambda_{f^{*}}(\mathbf{h})$ admits an extension $\tilde{\Lambda} \in R^{*}$ such that $H_{\tilde{\Lambda}}$ is of rank $r$ with $B$ a basis of $A_{\tilde{n}}$ iff

$$
\begin{equation*}
\mathcal{M}_{i}^{B}(\mathbf{h}) \circ \mathcal{M}_{j}^{B}(\mathbf{h})-\mathcal{M}_{j}^{B}(\mathbf{h}) \circ \mathscr{M}_{i}^{B}(\mathbf{h})=0 \quad(1 \leq i<j \leq n) \tag{7}
\end{equation*}
$$

and $\operatorname{det}\left(\mathcal{H}_{\Lambda_{f^{*}}}^{B}\right)(\mathbf{h}) \neq 0$. Moreover, such a $\tilde{\Lambda}$ is unique.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;


## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- $r:=1$;


## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- r:=1;
- Repeat

1 Compute a set $B$ of monomials of degree at most $d$ connected to one with $|B|=r$;

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- $r:=1$;
- Repeat

1 Compute a set $B$ of monomials of degree at most $d$ connected to one with $|B|=r$;
2 Find parameters $\mathbf{h}$ s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $\mathbb{M}_{i}=\mathbb{H}_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- $r:=1$;
- Repeat

1 Compute a set $B$ of monomials of degree at most $d$ connected to one with $|B|=r$;
2 Find parameters $\mathbf{h}$ s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $\mathbb{M}_{i}=\mathbb{H}_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3 If there is no solution, restart the loop with $r:=r+1$.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- $r:=1$;
- Repeat

1 Compute a set $B$ of monomials of degree at most $d$ connected to one with $|B|=r$;
2 Find parameters $\mathbf{h}$ s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $\mathbb{M}_{i}=\mathbb{H}_{x_{i} \wedge \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3 If there is no solution, restart the loop with $r:=r+1$.
4 Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors $\mathbf{v}_{j}$ s.t. $\mathbb{M}_{i} \mathbf{v}_{j}=\zeta_{i, j} \mathbf{v}_{j}$, $i=1, \ldots, n, j=1, \ldots, r$.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- $r:=1$;
- Repeat

1 Compute a set $B$ of monomials of degree at most $d$ connected to one with $|B|=r$;
2 Find parameters $\mathbf{h}$ s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $\mathbb{M}_{i}=\mathbb{H}_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3 If there is no solution, restart the loop with $r:=r+1$.
4 Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors $\mathbf{v}_{j}$ s.t. $\mathbb{M}_{i} \mathbf{v}_{j}=\zeta_{i, j} \mathbf{v}_{j}$, $i=1, \ldots, n, j=1, \ldots, r$.
until the eigenvalues are simple.

## Algorithm

Input A homogeneous polynomial $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of degree $d$.
Output A decomposition of $f$ as $f=\sum_{i=1}^{r} \lambda_{i} \mathbf{k}_{i}(\mathbf{x})^{d}$ with $r$ minimal.

- Compute the coefficients of $f^{*}: c_{\alpha}=a_{\alpha}\binom{d}{\alpha}^{-1}$, for $|\alpha| \leq d$;
- $r:=1$;
- Repeat

1 Compute a set $B$ of monomials of degree at most $d$ connected to one with $|B|=r$;
2 Find parameters $\mathbf{h}$ s.t. $\operatorname{det}\left(\mathbb{H}_{\Lambda}^{B}\right) \neq 0$ and the operators $\mathbb{M}_{i}=\mathbb{H}_{x_{i} \star \Lambda}^{B}\left(\mathbb{H}_{\Lambda}^{B}\right)^{-1}$ commute.
3 If there is no solution, restart the loop with $r:=r+1$.
4 Else compute the $n \times r$ eigenvalues $\zeta_{i, j}$ and the eigenvectors $\mathbf{v}_{j}$ s.t. $\mathbb{M}_{i} \mathbf{v}_{j}=\zeta_{i, j} \mathbf{v}_{j}$, $i=1, \ldots, n, j=1, \ldots, r$.
until the eigenvalues are simple.

- Solve the linear system in $\left(c_{j}\right)_{j=1, \ldots, k}: \Lambda=\sum_{j=1}^{r} c_{j} \mathbf{e v}_{\zeta_{j}}$ where $\zeta_{j} \in \mathbb{K}^{n}$ are the eigenvectors found in step 4.


## Example

Assume that a tensor of dimension three and order 5 corresponds to the following homogeneous polynomial:

$$
\begin{aligned}
& f=-1549440 x_{0} x_{1} x_{2}{ }^{3}+2417040 x_{0} x_{1}{ }^{2} x_{2}{ }^{2}+166320 x_{0}{ }^{2} x_{1} x_{2}{ }^{2}-829440 x_{0} x_{1}{ }^{3} x_{2}- \\
& 5760 x_{0}^{3} x_{1} x_{2}-222480 x_{0}{ }^{2} x_{1}^{2} x_{2}+38 x_{0}^{5}-497664 x_{1}^{5}-1107804 x_{2}^{5}-120 x_{0}{ }^{4} x_{1}+ \\
& 180 x_{0}{ }^{4} x_{2}+12720 x_{0}{ }^{3} x_{1}{ }^{2}+8220 x_{0}^{3} x_{2}{ }^{2}-34560 x_{0}{ }^{2} x_{1}{ }^{3}-59160 x_{0}{ }^{2} x_{2}{ }^{3}+ \\
& 831840 x_{0} x_{1}^{4}+442590 x_{0} x_{2}^{4}-5591520 x_{1}^{4} x_{2}+7983360 x_{1}{ }^{3} x_{2}{ }^{2}- \\
& 9653040 x_{1}{ }^{2} x_{2}{ }^{3}+5116680 x_{1} x_{2}{ }^{4} .
\end{aligned}
$$

## Example

Assume that a tensor of dimension three and order 5 corresponds to the following homogeneous polynomial:

$$
\begin{aligned}
& f=-1549440 x_{0} x_{1} x_{2}{ }^{3}+2417040 x_{0} x_{1}{ }^{2} x_{2}{ }^{2}+166320 x_{0}{ }^{2} x_{1} x_{2}{ }^{2}-829440 x_{0} x_{1}{ }^{3} x_{2}- \\
& 5760 x_{0}^{3} x_{1} x_{2}-222480 x_{0}{ }^{2} x_{1}^{2} x_{2}+38 x_{0}^{5}-497664 x_{1}^{5}-1107804 x_{2}^{5}-120 x_{0}{ }^{4} x_{1}+ \\
& 180 x_{0}^{4} x_{2}+12720 x_{0}^{3} x_{1}{ }^{2}+8220 x_{0}^{3} x_{2}{ }^{2}-34560 x_{0}{ }^{2} x_{1}{ }^{3}-59160 x_{0}^{2} x_{2}^{3}+ \\
& 831840 x_{0} x_{1}{ }^{4}+442590 x_{0} x_{2}^{4}-5591520 x_{1}^{4} x_{2}+7983360 x_{1}{ }^{3} x_{2}{ }^{2}- \\
& 9653040 x_{1}{ }^{2} x_{2}{ }^{3}+5116680 x_{1} x_{2}{ }^{4} .
\end{aligned}
$$

The minimum decomposition of the polynomial as a sum of powers of linear forms is

$$
\left(x_{0}+2 x_{1}+3 x_{2}\right)^{5}+\left(x_{0}-2 x_{1}+3 x_{2}\right)^{5}+\frac{1}{3}\left(x_{0}-12 x_{1}-3 x_{2}\right)^{5}+\frac{1}{5}\left(x_{0}+12 x_{1}-13 x_{2}\right)^{5}
$$

that is, the corresponding tensor is of rank 4.

## Example

The whole matrix is $21 \times 21$. We show only the $10 \times 10$ principal minor.
$\left[\begin{array}{c|rrrrrrrrrr} & 1 & x_{1} & x_{2} & x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} & x_{1}^{3} & x_{1}^{2} x_{2} & x_{1} x_{2}^{2} & x_{2}^{3} \\ \hline 1 & 38 & -24 & 36 & 1272 & -288 & 822 & -3456 & -7416 & 5544 & -5916 \\ x_{1} & -24 & 1272 & -288 & -3456 & -7416 & 5544 & 166368 & -41472 & 80568 & -77472 \\ x_{2} & 36 & -288 & 822 & -7416 & 5544 & -5916 & -41472 & 80568 & -77472 & 88518 \\ x_{1}^{2} & 1272 & -3456 & -7416 & 166368 & -41472 & 80568 & -497664 & -1118304 & 798336 & -965304 \\ x_{1} x_{2} & -288 & -7416 & 5544 & -41472 & 80568 & -77472 & -1118304 & 798336 & -965304 & 1023336 \\ x_{2}^{2} & 822 & 5544 & -5916 & 80568 & -77472 & 88518 & 798336 & -965304 & 1023336 & -1107804 \\ x_{1}^{3} & -3456 & 166368 & -41472 & -497664 & -1118304 & 798336 & h_{6,0,0} & h_{5,1,0} & h_{4,2,0} & h_{3,3,0} \\ x_{1}^{2} x_{2} & -7416 & -41472 & 80568 & -1118304 & 798336 & -965304 & h_{5,1,0} & h_{4,2,0} & h_{3,3,0} & h_{2,4,0} \\ x_{1} x_{2}^{2} & 5544 & 80568 & -77472 & 798336 & -965304 & 1023336 & h_{4,2,0} & h_{3,3,0} & h_{2,4,0} & h_{1,5,0} \\ x_{2}^{3} & -5916 & -77472 & 88518 & -965304 & 1023336 & -1107804 & h_{3,3,0} & h_{2,4,0} & h_{1,5,0} & h_{0,6,0}\end{array}\right]$

Notice that we do not know the elements in some positions of the matrix.

## Example

In our example the $4 \times 4$ principal minor is of full rank, so there is no need for re-arranging the matrix. The matrix $\mathbb{H}^{B}{ }_{\Lambda}$ is

$$
\mathbb{H}_{\Lambda}^{B}=\left[\begin{array}{rrrr}
38 & -24 & 36 & 1272 \\
-24 & 1272 & -288 & -3456 \\
36 & -288 & 822 & -7416 \\
1272 & -3456 & -7416 & 166368
\end{array}\right]
$$

with monomial basis $B$ equal to $\left\{1, x_{1}, x_{2}, x_{1}^{2}\right\}$.

## Example

The shifted matrix $\mathbb{H}_{X_{1} \star \Lambda}^{B}$ is

$$
\mathbb{H}_{X_{1} \Lambda}^{B}=\left[\begin{array}{rrrr}
-24 & 1272 & -288 & -3456 \\
1272 & -3456 & -7416 & 166368 \\
-288 & -7416 & 5544 & -41472 \\
-3456 & 166368 & -41472 & -497664
\end{array}\right]
$$

## Example

The shifted matrix $\mathbb{H}_{X_{1} \star \Lambda}^{B}$ is

$$
\mathbb{H}_{X_{1} \Lambda}^{B}=\left[\begin{array}{rrrr}
-24 & 1272 & -288 & -3456 \\
1272 & -3456 & -7416 & 166368 \\
-288 & -7416 & 5544 & -41472 \\
-3456 & 166368 & -41472 & -497664
\end{array}\right]
$$

We check the commutations relations.

## Example

We solve the generalized eigenvalue/eigenvector problem $\left(\mathbb{H}_{X_{i} \star \Lambda}-\lambda \mathbb{H}_{\Lambda}\right) X=0$ for $i=1,2$.

## Example

We get the common eigenvectors in the basis $B=\left\{1, x_{1}, x_{2}, x_{1}^{2}\right\}$

$$
\left[\begin{array}{r}
1 \\
-12 \\
-3 \\
144
\end{array}\right],\left[\begin{array}{r}
1 \\
12 \\
-13 \\
144
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

## Example

We get the common eigenvectors in the basis $B=\left\{1, x_{1}, x_{2}, x_{1}^{2}\right\}$

$$
\left[\begin{array}{r}
1 \\
-12 \\
-3 \\
144
\end{array}\right],\left[\begin{array}{r}
1 \\
12 \\
-13 \\
144
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Thus, we can deduce the roots and write the following decomposition:
$f=c_{1}\left(x_{0}+2 x_{1}+3 x_{2}\right)^{5}+c_{2}\left(x_{0}-2 x_{1}+3 x_{2}\right)^{5}+c_{3}\left(x_{0}-12 x_{1}-3 x_{2}\right)^{5}+c_{4}\left(x_{0}+12 x_{1}-13 x_{2}\right)^{5}$

## Example

We get the common eigenvectors in the basis $B=\left\{1, x_{1}, x_{2}, x_{1}^{2}\right\}$

$$
\left[\begin{array}{r}
1 \\
-12 \\
-3 \\
144
\end{array}\right],\left[\begin{array}{r}
1 \\
12 \\
-13 \\
144
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Thus, we can deduce the roots and write the following decomposition:
$f=c_{1}\left(x_{0}+2 x_{1}+3 x_{2}\right)^{5}+c_{2}\left(x_{0}-2 x_{1}+3 x_{2}\right)^{5}+c_{3}\left(x_{0}-12 x_{1}-3 x_{2}\right)^{5}+c_{4}\left(x_{0}+12 x_{1}-13 x_{2}\right)^{5}$

It remains to compute $c_{i}$ 's. We get that: $c_{1}=1, c_{2}=1, c_{3}=1 / 3$ and $c_{4}=1 / 5$.

## Example

Consider a tensor of dimension three and order 4, that corresponds to the following homogeneous polynomial

$$
f=79 x_{0} x_{1}^{3}+56 x_{0}^{2} x_{2}^{2}+49 x_{1}^{2} x_{2}^{2}+4 x_{0} x_{1} x_{2}^{2}+57 x_{0}^{3} x_{1}
$$

the rank of which is 6 .

## Example

|  | 1 | $x_{1}$ | $x_{2}$ | $x_{1}^{2}$ | $x_{1} x_{2}$ | $x_{2}^{2}$ | $x_{1}^{3}$ | $x_{1}^{2} x_{2}$ | $x_{1} x_{2}^{2}$ | $x_{2}^{3}$ | $x_{1}^{4}$ | $x_{1}^{3} x_{2}$ | $x_{1}^{2} x_{2}^{2}$ | $x_{1} x_{2}^{3}$ | $\chi_{2}^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | $\frac{57}{4}$ | 0 | 0 | 0 | $\frac{28}{3}$ | $\frac{79}{4}$ | 0 | $\frac{1}{3}$ | 0 | 0 | 0 | $\frac{49}{6}$ | 0 | 0 |
| $x_{1}$ | $\frac{57}{4}$ | 0 | 0 | $\frac{79}{4}$ | 0 | $\frac{1}{3}$ | 0 | 0 | $\frac{49}{6}$ | 0 | $h_{500}$ | $h_{410}$ | $h_{320}$ | $h_{230}$ | $h_{140}$ |
| $x_{2}$ | 0 | 0 | $\frac{28}{3}$ | 0 | $\frac{1}{3}$ | 0 | 0 | $\frac{49}{6}$ |  | 0 | $h_{410}$ | $h_{320}$ | $h_{230}$ | $h_{140}$ | $h_{050}$ |
| $x_{1}^{2}$ | 0 | $\frac{79}{4}$ | 0 | 0 | 0 | $\frac{49}{6}$ | $h_{500}$ | $h_{410}$ | $h_{320}$ | $h_{230}$ | $h_{600}$ | $h_{510}$ | $h_{420}$ | $h_{330}$ | $h_{240}$ |
| $x_{1} x_{2}$ | 0 | 0 | $\frac{1}{3}$ | 0 | $\frac{49}{6}$ | 0 | $h_{410}$ | $h_{320}$ | $h_{230}$ | $h_{140}$ | $h_{510}$ | $h_{420}$ | $h_{330}$ | $h_{240}$ | $h_{150}$ |
| $x_{2}^{2}$ | $\frac{28}{3}$ | $\frac{1}{3}$ | 0 | $\frac{49}{6}$ | 0 | 0 | $h_{320}$ | $h_{230}$ | $h_{140}$ | $h_{050}$ | $h_{420}$ | $h_{330}$ | $h_{240}$ | $h_{150}$ | $h_{060}$ |
| $x_{1}^{3}$ | $\frac{79}{4}$ | 0 | 0 | $h_{500}$ | $h_{410}$ | $h_{320}$ | ${ }_{6} 600$ | $h_{510}$ | $h_{420}$ | $h_{330}$ | $h_{700}$ | $h_{610}$ | $h_{520}$ | $h_{430}$ | $h_{340}$ |
| $x_{1}^{2} x_{2}$ | 0 | 0 | $\frac{49}{6}$ | $h_{410}$ | $h_{320}$ | $h_{230}$ | $h_{510}$ | $h_{420}$ | $h_{330}$ | $h_{240}$ | $h_{610}$ | $h_{520}$ | $h_{430}$ | $h_{340}$ | $h_{250}$ |
| $x_{1} x_{2}^{2}$ | $\frac{1}{3}$ | $\frac{49}{6}$ | 0 | $h_{320}$ | $h_{230}$ | $h_{140}$ | $h_{420}$ | $h_{330}$ | $h_{240}$ | $h_{150}$ | $h_{520}$ | $h_{430}$ | $h_{340}$ | $h_{250}$ | $h_{160}$ |
| $x_{2}^{3}$ | 0 | 0 | 0 | $h_{230}$ | $h_{140}$ | $n_{050}$ | $h_{330}$ | $h_{240}$ | $h_{150}$ | $h_{060}$ | $h_{430}$ | $h_{340}$ | $h_{250}$ | $h_{160}$ | $h_{070}$ |
| $x_{1}^{4}$ | 0 | $h_{500}$ | $h_{410}$ | $h_{600}$ | $h_{510}$ | $h_{420}$ | $h_{700}$ | $h_{610}$ | $h_{520}$ | $h_{430}$ | $h_{800}$ | $h_{710}$ | $h_{620}$ | $h_{530}$ | $h_{440}$ |
| $x_{1}^{3} x_{2}$ | 0 | $h_{410}$ | $h_{320}$ | $h_{510}$ | $h_{420}$ | $h_{330}$ | $h_{610}$ | $h_{520}$ | $h_{430}$ | $h_{340}$ | $h_{710}$ | $h_{620}$ | $h_{530}$ | $h_{440}$ | $h_{350}$ |
| $x_{1}^{2} x_{2}^{2}$ | $\frac{49}{6}$ | $h_{320}$ | $h_{230}$ | $h_{420}$ | $h_{330}$ | $h_{240}$ | $h_{520}$ | $h_{430}$ | $\mathrm{h}_{340}$ | $h_{250}$ | $h_{620}$ | $h_{530}$ | $h_{440}$ | $h_{350}$ | $h_{260}$ |
| $x_{1} x_{2}^{3}$ | . | $h_{230}$ | $h_{140}$ | $h_{330}$ | $h_{240}$ | $h_{150}$ | $h_{430}$ | $h_{340}$ | $h_{250}$ | $h_{160}$ | $h_{530}$ | $h_{440}$ | $h_{350}$ | $h_{260}$ | $h_{170}$ |
| $\times_{2}^{4}$ | 0 | $h_{140}$ | $h_{050}$ | $h_{240}$ | $h_{150}$ | $h_{060}$ | $h_{340}$ | $h_{250}$ | $h_{160}$ | $h_{070}$ | $h_{440}$ | $h_{350}$ | $h_{260}$ | $h_{170}$ | $h_{080}$ |

## Example

In our example the $6 \times 6$ principal minor is of full rank. The matrix $\mathbb{H}_{\Lambda}$ is

$$
\mathbb{H}_{\Lambda}=\left[\begin{array}{cccccc}
0 & \frac{57}{4} & 0 & 0 & 0 & \frac{28}{3} \\
\frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} \\
0 & 0 & \frac{28}{3} & 0 & \frac{1}{3} & 0 \\
0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{28}{3} & \frac{1}{3} & 0 & \frac{49}{6} & 0 & 0
\end{array}\right]
$$

The columns (and the rows) of the matrix correspond to the monomials $\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\}$.

## Example

The shifted matrix $\mathbb{H}_{X_{1} \star \Lambda}$ is

$$
\mathbb{H}_{x_{1} \star \Lambda}=\left[\begin{array}{cccccc}
\frac{57}{4} & 0 & 0 & \frac{79}{4} & 0 & \frac{1}{3} \\
0 & \frac{79}{4} & 0 & 0 & 0 & \frac{49}{6} \\
0 & 0 & \frac{1}{3} & 0 & \frac{49}{6} & 0 \\
\frac{79}{4} & 0 & 0 & h_{500} & h_{410} & h_{320} \\
0 & 0 & \frac{49}{6} & h_{410} & h_{320} & h_{230} \\
\frac{1}{3} & \frac{49}{6} & 0 & h_{320} & h_{230} & h_{140}
\end{array}\right]
$$

Since not all the entries of $\mathbb{H}_{x_{1} \Lambda}$ are known, we need to compute them in order to proceed further.

## Example

Since we have only two variables, there is only one matrix equation,

$$
\mathbb{M}_{x_{i}} \mathbb{M}_{x_{j}}-\mathbb{M}_{x_{j}} \mathbb{M}_{x_{i}}=\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda}-\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \Lambda}=\mathbb{O}
$$

## Example

Since we have only two variables, there is only one matrix equation,

$$
\mathbb{M}_{x_{i}} \mathbb{M}_{x_{j}}-\mathbb{M}_{x_{j}} \mathbb{M}_{x_{i}}=\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda}-\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \Lambda}=\mathbb{O}
$$

Many of the resulting equations are trivial. After discarding them, we have 6 unknonws $\left\{h_{500}, h_{410}, h_{320}, h_{230}, h_{140}, h_{050}\right\}$ and 15 equations.

## Example

Since we have only two variables, there is only one matrix equation,

$$
\mathbb{M}_{x_{i}} \mathbb{M}_{x_{j}}-\mathbb{M}_{x_{j}} \mathbb{M}_{x_{i}}=\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda}-\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \Lambda}=\mathbb{O}
$$

Many of the resulting equations are trivial. After discarding them, we have 6 unknonws $\left\{h_{500}, h_{410}, h_{320}, h_{230}, h_{140}, h_{050}\right\}$ and 15 equations.
A solution of the system is the following

$$
\left\{h_{500}=1, h_{410}=2, h_{320}=3, h_{230}=1.5060, h_{140}=4.960, h_{050}=0.056\right\}
$$

## Example

Since we have only two variables, there is only one matrix equation,

$$
\mathbb{M}_{x_{i}} \mathbb{M}_{x_{j}}-\mathbb{M}_{x_{j}} \mathbb{M}_{x_{i}}=\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda}-\mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{2} \star \Lambda} \mathbb{H}_{\Lambda}^{-1} \mathbb{H}_{x_{1} \Lambda}=\mathbb{O}
$$

Many of the resulting equations are trivial. After discarding them, we have 6 unknonws $\left\{h_{500}, h_{410}, h_{320}, h_{230}, h_{140}, h_{050}\right\}$ and 15 equations.
A solution of the system is the following

$$
\left\{h_{500}=1, h_{410}=2, h_{320}=3, h_{230}=1.5060, h_{140}=4.960, h_{050}=0.056\right\}
$$

We subsitute these values to $\mathbb{H}_{X_{1} \wedge}$ and we continue the algorithm as in the previous example.

