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Introduction

We present an algorithm for decomposing a symmetric tensor, of dimension n and
order d , as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester
devised in 1886 for binary forms.
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Introduction

What is symmetric tensor decomposition?

- Let E be a K vector space of dimension n and of basis (ei )0≤i≤n−1.
- A symmetric tensor v of dimension n and of order d is an element of Sd E :

v = ∑
i1<...<id

Ai1,...,id ei1 ...eid ∈ ∧
d E

with Ai1,...,id ∈K.

- We want to write v as a sum of d-th power of linear forms:

v = ∑
i=1,...,r

λi (ai,0e0 + ...+ ai,n−1en−1)d .

- The goal is to find such a decomposition with the minimal r .
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Introduction

Motivations :
- Tensors have been widely used in Electrical Engineering since the 1990s,
particularly in Antenna Array Processing and Signal Processing.

- Earlier in the 1970s tensors have been used in Chemometrics and Psychometrics.

- Another important application field is Data Analysis, for instance, Independent
Component Analysis, originally introduced for symmetric tensors whose rank did not
exceed dimension.
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Introduction

Position :
- The problem of symmetric tensors decomposition extends the Singular Value
Decomposition (SVD) for symmetric matrices which is an important tool in numerical
linear algebra.

- Current numerical algorithms are suboptimal (they do not use symmetries, they
minimize different successive criteria sequentially or are iterative and do not
guarantee a global convergence). In addition they often require the rank to be lower
than the generic one.

- Among these popular methods, we refer to “PARAFAC“ techniques, extensively
applied to ill-posed problems.
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Introduction

Contributions :
- We describe a new algorithm that decomposes a symmetric tensor of arbitrary order
and dimension into a sum of rank-one terms. The method is inspired by Sylvester’s
theorem and extends its principle to larger dimensions.

- We give necessary and sufficient condition for the existence of a decomposition of
rank r , based on rank conditions of Hankel operators or commutation properties.

- This algorithm is not restricted to strictly sub-generic ranks and fully exploits the
symmetries.
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Binary case

Theorem (Sylvester, 1886)

A binary quantic p(x1,x2) = ∑
d
i=0

(d
i

)
ci x i

1 xd−i
2 can be written as a sum of d th powers

of r distinct linear forms in C as:

p(x1,x2) =
r

∑
j=1

λj (αj x1 + βj x2)d , (1)

if and only if (i) there exists a vector q = (ql )
r
l=0, such that c0 c1 · · · cr

...
...

cd−r · · · cd−1 cd

 q = 0. (2)

and (ii) the polynomial q(x1,x2) = ∑
r
l=0 ql x l

1 x r−l
2 admits r distinct roots, i.e. can be

written as q(x1,x2) = ∏
r
j=1(β∗j x1−α∗j x2).
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Binary case

The Sylvester’s theorem yields the following algorithm:

Input : Given a binary polynomial p(x1,x2) of degree d with coefficients ai =
(d

i

)
ci ,

0≤ i ≤ d , define the Hankel matrix H[r ] of dimensions d− r + 1× r + 1 with entries
H[r ]ij = ci+j−2:

H[r ] =

 c0 c1 · · · cr
...

...
cd−r · · · cd−1 cd

 . (3)

Output : A decomposition of p as p(x1,x2) = ∑
r
j=1 λj kj(x)d with minimal r .
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Binary case

1 Initialize r = 0

2 Increment r ← r + 1
3 If the matrix H[r] has full column rank, then go to step 2
4 Else compute a basis {k1, . . . ,kl} of the right kernel of H[r ].

5 Specialization:
Take a generic vector q in the kernel, e.g. q = ∑i µiki
Compute the roots of the associated polynomial q(x1,x2) = ∑

r
l=0 ql x l

1 xd−l
2 . Denote

them (βj ,−αj ), where |αj |2 + |βj |2 = 1.
If the roots are not distinct in P2, try another specialization. If distinct roots cannot be
obtained, go to step 2.
Else if q(x1,x2) admits r distinct roots then compute coefficients λj , 1≤ j ≤ r , by
solving the linear system below, where ai denotes

(d
i

)
ci

αd
1 . . . αd

r
α

d−1
1 β1 . . . αd−1

r βr

α
d−2
1 β2

1 . . . αd−1
r β2

r
: : :

βd
1 . . . βd

r

 λ =


a0
a1
a2
:

ad


6 The decomposition is p(x1,x2) = ∑

r
j=1 λj kj(x)d, where kj(x) = (αj x1 + βj x2).
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r
l=0 ql x l

1 xd−l
2 . Denote

them (βj ,−αj ), where |αj |2 + |βj |2 = 1.
If the roots are not distinct in P2, try another specialization. If distinct roots cannot be
obtained, go to step 2.

Else if q(x1,x2) admits r distinct roots then compute coefficients λj , 1≤ j ≤ r , by
solving the linear system below, where ai denotes

(d
i

)
ci

αd
1 . . . αd

r
α

d−1
1 β1 . . . αd−1

r βr

α
d−2
1 β2

1 . . . αd−1
r β2

r
: : :

βd
1 . . . βd

r

 λ =


a0
a1
a2
:

ad


6 The decomposition is p(x1,x2) = ∑

r
j=1 λj kj(x)d, where kj(x) = (αj x1 + βj x2).
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Reformulations

1) Polynomial decomposition:

A symmetric tensor [aj0,...,jn−1 ] of order d and dimension n can be associated to a
homogeneous polynomial f (x) ∈ Sd:

f (x) = ∑
j0+j1+···+jn−1=d

aj0,j1,...,jn−1 xj0
0 xj1

1 · · ·x
jn−1
n−1. (4)

Our goal is to compute a decomposition of f as a sum of d th powers of linear forms,
i.e.

f (x) =
r

∑
i=1

λi (ki,0x0 + ki,1x1 + · · ·+ ki,n−1xn−1)d = λ1 k1(x)d +λ2 k2(x)d +· · ·+λr kr(x)d,

(5)
where λi 6= 0, ki 6= 0, and r is the smallest possible.
This minimal r is called the rank of f .
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Reformulations

2) Veronese and secant varieties:

Consider the following map from the projective space Pn−1 to the projective space of
symmetric tensors:

ν : P(S1) → P(Sd )
k(x) 7→ k(x)d.

The image of ν is called the Veronese variety.
A tensor of rank 1 is a point of the Veronese.
A tensor of rank r is in the linear space spanned by r points of the Veronese variety.
The closure of the r -dimensional linear space spanned by r points of the Veronese is
called the r-1 secant variety.
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Reformulations

3) Decomposition using duality:

Let f ,g ∈ Sd , where f = ∑|α|=d fαxα0
0 · · ·x

αn−1
n−1 and g = ∑|α|=d gαxα0

0 · · ·x
αn−1
n−1 . We

define the apolar inner product on Sd as

〈f ,g〉= ∑
|α|=d

fα gα

(
d

α0, . . . ,αn−1

)−1

.

Using this non-degenerate inner product, we can associate an element of Sd with an
element S∗d , through the following map:

τ : Sd → S∗d
f 7→ f ∗,

where the linear form f ∗ is defined as f ∗ : g 7→ 〈f ,g〉.
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Reformulations

Proposition

Let f = (a0x0 + ...+ an−1xn−1)d ∈ Sd , then

f ∗(g) = 〈f ,g〉= g(a0, ...,an−1) = evA(g)

with A = (a0, ...,an−1) ∈Kn−1, g ∈ Sd and evA is the evaluation in A.
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Reformulations

The decomposition problem can be reformulated as follows:

Given f ∗ ∈ S∗d , find the minimal number of non-zero points k1, . . . ,kr ∈Kn

and non-zero scalars λ1, . . . ,λr ∈K−{0} such that

f ∗ =
r

∑
i=1

λi evki .

Note that by a generic change of variables, we can assume that all the coordinates
ki,0 are equal to 1.
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Hankel operators and quotient algebras

Definition

Let R = K[x1, ...,xn−1] be the polynomial ring in n−1 variables and Λ ∈ R∗ be a
linear form. We define the Hankel operator HΛ from R to R∗ as

HΛ : R→ R∗

p 7→ p ?Λ

with
p ?Λ : R→K

f 7→ Λ(p.f ).

Definition

We denote by HΛ the matrix of HΛ in the basis {xα} and {dα} (where {dα} is the
dual basis of the monomial basis {xα}). Thus

HΛ = (Λ(xα+β))α,β.
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Hankel operators and quotient algebras

Proposition

Let IΛ be the kernel of HΛ. Then, IΛ is an ideal of R.

Definition

Let AΛ := R/IΛ be the quotient algebra of polynomials modulo the ideal IΛ.
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Hankel operators and quotient algebras

Definition

- Let a ∈ R be a polynomial. Let Ma be the multiplication by a in AΛ:

Ma : AΛ→ AΛ

b 7→ ba.

- Let M t
a be the be its transposed operator:

M t
a : A∗Λ→ A∗Λ

γ 7→ a? γ.

Note that, by definition, we have

Ha?Λ = M t
a ◦HΛ
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Hankel operators and quotient algebras

Theorem

If rank(HΛ) = r < ∞, then

AΛ is of dimension r over K and the set of roots Z(IΛ) = {ζ1, . . . ,ζd} ⊂Kn is
finite with d ≤ r ,

there exist pi ∈K[∂1, . . . ,∂n], such that

Λ =
d

∑
i=1

evζi
◦pi (∂) (6)

Moreover the multiplicity of ζi is the dimension of the vector space spanned by
the inverse system generated by evζi

◦pi (∂).

the eigenvalues of the operators Ma and M t
a, are given by {a(ζ1), . . . ,a(ζd )}.

the common eigenvectors of the operators (M t
xi

)1≤i≤n are (up to scalar) evζi
.
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Hankel operators and quotient algebras
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Hankel operators and quotient algebras

Theorem

Let Λ ∈ R∗. Λ = ∑
r
i=1 λi evζi

with λi 6= 0 and ζi distinct points of Kn, iff rankHΛ = r
and IΛ is a radical ideal.

J. Brachat GALAAD, INRIA, Sophia Antipolis Joint work with P. Comon, B. Mourrain, E. Tsigaridas

Symmetric tensor decomposition



Truncated Hankel operators

The problem of decomposition can be reformulated as follows :

Given f ∗ ∈ R∗d find the smallest r such that there exists Λ ∈ R∗ which
extends f ∗ with HΛ of rank r and IΛ a radical ideal.
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Truncated Hankel operators

Definition

Given f ∗ ∈ R∗d a linear form and B a set of monomials of degree at most d , we define
the Hankel operator Λf ∗(h) by:

- Λf ∗(h)(xα) = f ∗(xα) if |α| ≤ d ,

- Λf ∗(h)(xα) = hα a variable (the set of all these variables is denoted by h).
We denote by H B

Λf∗
(h) its matrix:

H B
Λf∗

(h) = (hα+β)α,β∈B .
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Truncated Hankel operators

Definition

If H B
Λf∗

(h) is invertible in K(h) (that is the rational polynomial functions in h), then we
define the multiplication operators

M B
i (h) := (H B

Λf∗
(h))−1H B

xi?Λf∗
(h).

Definition

Let B be a subset of monomials in R. We say that B is connected to 1 if:
- 1 ∈ B,
- ∀m 6= 1 ∈ B there exists i ∈ [1,n] and m′ ∈ B such that m = xi m′.
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Truncated Hankel operators

Theorem

-Let B = {xβ1 , ...,xβr } be a set of monomials of degree at most d, connected to 1.

-Let f ∗ be a linear form in 〈B ·B+〉∗d .

-Let Λf ∗(h) be the linear form of 〈B ·B+〉∗ defined by Λf ∗(h)(xα) = f ∗(xα) if |α| is at
most d and hα ∈K otherwise.

Then Λf ∗(h) admits an extension Λ̃ ∈ R∗ such that HΛ̃ is of rank r with B a basis of
AΛ̃ iff

M B
i (h)◦M B

j (h)−M B
j (h)◦M B

i (h) = 0 (1≤ i < j ≤ n) (7)

and det(H B
Λf∗

)(h) 6= 0. Moreover, such a Λ̃ is unique.
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Algorithm

Input A homogeneous polynomial f (x0,x1, . . . ,xn) of degree d .

Output A decomposition of f as f = ∑
r
i=1 λi ki (x)d with r minimal.

– Compute the coefficients of f ∗: cα = aα

(d
α

)−1
, for |α| ≤ d ;

– r := 1;
– Repeat

1 Compute a set B of monomials of degree at most d connected to one with |B|= r ;
2 Find parameters h s.t. det(HB

Λ) 6= 0 and the operators Mi = HB
xi ?Λ(HB

Λ)−1 commute.
3 If there is no solution, restart the loop with r := r + 1.
4 Else compute the n× r eigenvalues ζi,j and the eigenvectors vj s.t. Mi vj = ζi,j vj ,

i = 1, . . . ,n, j = 1, . . . , r .

until the eigenvalues are simple.

– Solve the linear system in (cj )j=1,...,k : Λ = ∑
r
j=1 cj evζj

where ζj ∈Kn are the
eigenvectors found in step 4.
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Example

Assume that a tensor of dimension three and order 5 corresponds to the following
homogeneous polynomial:
f =−1549440x0x1x2

3 + 2417040x0x1
2x2

2 + 166320x0
2x1x2

2−829440x0x1
3x2−

5760x0
3x1x2−222480x0

2x1
2x2 + 38x0

5−497664x1
5−1107804x2

5−120x0
4x1 +

180x0
4x2 + 12720x0

3x1
2 + 8220x0

3x2
2−34560x0

2x1
3−59160x0

2x2
3 +

831840x0x1
4 + 442590x0x2

4−5591520x1
4x2 + 7983360x1

3x2
2−

9653040x1
2x2

3 + 5116680x1x2
4.

The minimum decomposition of the polynomial as a sum of powers of linear forms is

(x0 + 2x1 + 3x2)5 + (x0−2x1 + 3x2)5 +
1
3

(x0−12x1−3x2)5 +
1
5

(x0 + 12x1−13x2)5,

that is, the corresponding tensor is of rank 4.
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Example

The whole matrix is 21×21. We show only the 10×10 principal minor.

1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1 x2 x1x2
2 x3

2
1 38 −24 36 1272 −288 822 −3456 −7416 5544 −5916

x1 −24 1272 −288 −3456 −7416 5544 166368 −41472 80568 −77472
x2 36 −288 822 −7416 5544 −5916 −41472 80568 −77472 88518
x2
1 1272 −3456 −7416 166368 −41472 80568 −497664 −1118304 798336 −965304

x1x2 −288 −7416 5544 −41472 80568 −77472 −1118304 798336 −965304 1023336
x2
2 822 5544 −5916 80568 −77472 88518 798336 −965304 1023336 −1107804

x3
1 −3456 166368 −41472 −497664 −1118304 798336 h6,0,0 h5,1,0 h4,2,0 h3,3,0

x2
1 x2 −7416 −41472 80568 −1118304 798336 −965304 h5,1,0 h4,2,0 h3,3,0 h2,4,0

x1x2
2 5544 80568 −77472 798336 −965304 1023336 h4,2,0 h3,3,0 h2,4,0 h1,5,0

x3
2 −5916 −77472 88518 −965304 1023336 −1107804 h3,3,0 h2,4,0 h1,5,0 h0,6,0


Notice that we do not know the elements in some positions of the matrix.
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In our example the 4×4 principal minor is of full rank, so there is no need for
re-arranging the matrix. The matrix HB

Λ is

HB
Λ =


38 −24 36 1272

−24 1272 −288 −3456

36 −288 822 −7416

1272 −3456 −7416 166368


with monomial basis B equal to {1,x1,x2,x2

1}.
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The shifted matrix HB
x1?Λ is

HB
x1Λ =


−24 1272 −288 −3456

1272 −3456 −7416 166368

−288 −7416 5544 −41472

−3456 166368 −41472 −497664



We check the commutations relations.
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We solve the generalized eigenvalue/eigenvector problem (Hxi?Λ−λHΛ)X = 0 for
i = 1,2.
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We get the common eigenvectors in the basis B = {1,x1,x2,x2
1}

1
−12
−3
144

 ,


1

12
−13
144

 ,


1
−2

3
4

 ,


1
2
3
4



Thus, we can deduce the roots and write the following decomposition:

f = c1(x0 +2x1 +3x2)5 +c2(x0−2x1 +3x2)5 +c3(x0−12x1−3x2)5 +c4(x0 +12x1−13x2)5

It remains to compute ci ’s. We get that: c1 = 1, c2 = 1, c3 = 1/3 and c4 = 1/5.
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Consider a tensor of dimension three and order 4, that corresponds to the following
homogeneous polynomial

f = 79x0x3
1 + 56x2

0 x2
2 + 49x2

1 x2
2 + 4x0x1x2

2 + 57x3
0 x1,

the rank of which is 6.
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1 x1 x2 x2
1 x1x2 x2

2 x3
1 x2

1 x2 x1x2
2 x3

2 x4
1 x3

1 x2 x2
1 x2

2 x1x3
2 x4

2
1 0 57

4 0 0 0 28
3

79
4 0 1

3 0 0 0 49
6 0 0

x1
57
4 0 0 79

4 0 1
3 0 0 49

6 0 h500 h410 h320 h230 h140
x2 0 0 28

3 0 1
3 0 0 49

6 0 0 h410 h320 h230 h140 h050
x2
1 0 79

4 0 0 0 49
6 h500 h410 h320 h230 h600 h510 h420 h330 h240

x1x2 0 0 1
3 0 49

6 0 h410 h320 h230 h140 h510 h420 h330 h240 h150
x2
2

28
3

1
3 0 49

6 0 0 h320 h230 h140 h050 h420 h330 h240 h150 h060
x3
1

79
4 0 0 h500 h410 h320 h600 h510 h420 h330 h700 h610 h520 h430 h340

x2
1 x2 0 0 49

6 h410 h320 h230 h510 h420 h330 h240 h610 h520 h430 h340 h250
x1x2

2
1
3

49
6 0 h320 h230 h140 h420 h330 h240 h150 h520 h430 h340 h250 h160

x3
2 0 0 0 h230 h140 h050 h330 h240 h150 h060 h430 h340 h250 h160 h070

x4
1 0 h500 h410 h600 h510 h420 h700 h610 h520 h430 h800 h710 h620 h530 h440

x3
1 x2 0 h410 h320 h510 h420 h330 h610 h520 h430 h340 h710 h620 h530 h440 h350

x2
1 x2

2
49
6 h320 h230 h420 h330 h240 h520 h430 h340 h250 h620 h530 h440 h350 h260

x1x3
2 0 h230 h140 h330 h240 h150 h430 h340 h250 h160 h530 h440 h350 h260 h170

x4
2 0 h140 h050 h240 h150 h060 h340 h250 h160 h070 h440 h350 h260 h170 h080
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In our example the 6×6 principal minor is of full rank. The matrix HΛ is

HΛ =



0 57
4 0 0 0 28

3
57
4 0 0 79

4 0 1
3

0 0 28
3 0 1

3 0
0 79

4 0 0 0 49
6

0 0 1
3 0 49

6 0
28
3

1
3 0 49

6 0 0


The columns (and the rows) of the matrix correspond to the monomials
{1,x1,x2,x2

1 ,x1x2,x2
2}.
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The shifted matrix Hx1?Λ is

Hx1?Λ =



57
4 0 0 79

4 0 1
3

0 79
4 0 0 0 49

6
0 0 1

3 0 49
6 0

79
4 0 0 h500 h410 h320

0 0 49
6 h410 h320 h230

1
3

49
6 0 h320 h230 h140


Since not all the entries of Hx1Λ are known, we need to compute them in order to
proceed further.
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Since we have only two variables, there is only one matrix equation,

Mxi Mxj −Mxj Mxi = H−1
Λ Hx1?ΛH−1

Λ Hx2?Λ−H−1
Λ Hx2?ΛH−1

Λ Hx1Λ = O.

Many of the resulting equations are trivial. After discarding them, we have 6
unknonws {h500,h410,h320,h230,h140,h050} and 15 equations.
A solution of the system is the following

{h500 = 1,h410 = 2,h320 = 3,h230 = 1.5060,h140 = 4.960,h050 = 0.056}.

We subsitute these values to Hx1Λ and we continue the algorithm as in the previous
example.
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