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Definition by Tom Mitchell (1998): 

“Machine Learning is the study of 
algorithms that

● improve their performance P

● at a task T

● with experience E

A well-defined learning task is given by 
<P, T, E>.”

What is Machine Learning?
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Types of Machine Learning
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Types of Machine Learning
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● Given      inputs and     outputs, find     such that 

    

Regression vs Classification

      is continuous                                                          is discrete
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Regression Classification

   = blue | red



● We have samples of email labeled as spam or ham:

    

Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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● We have samples of email labeled as spam or not spam (ham):

    

Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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● We have samples of email labeled as spam or not spam (ham):

    

Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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● We have samples of email labeled as spam or not spam (ham):

    

Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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● Find     that separates sample space:

    

Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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Spam
Ham

Chosen from the Hypothesis Space

● Find     that separates sample space:

    



# occurrences of: $, FREE, ...

● New email comes in: unknown label

    

Classification: Spam example

% words in lower-case
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# occurrences of: $, FREE, ...

● New email comes in: unknown label

    

Classification: Spam example

% words in lower-case
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● New email comes in: unknown label → Use model to guess label

    

Classification: Spam example

% words in lower-case

# occurrences of: $, FREE, ...
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● ML algorithms are used to find model 

● Popular algorithms for classification:
○ Naive Bayes

○ Support Vector Machines

○ ID3 (Decision Trees) → Random Forests

○ Neural networks (aka Deep Learning)

○ …

● What is a “good” model?What makes a model “good”?

ML algorithms
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The Bias-Variance trade-off

Based on a figure by: S. Fortmann-Roe
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The Bias-Variance trade-off
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The Bias-Variance trade-off
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Optimism

(Training Error)

Prediction error?

Over-fitted models



Measuring overfitting

● Idea: hold out labeled sample for testing

● Non-parametric technique 

● Accurate if enough data

○ Small dataset → Cross-validation
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● Regularization: additional assumptions that prevent overfitting 
without increasing bias

Mitigating overfitting

Example: add smoothing factor to f(x)
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Metrics for the classifier’s error

- Positive class:

- True Positives (TP)

- False Negatives (FN)

- Negative class:

- True Negatives (TN)

- False Positives (FP)

Image source: Wikimedia
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Metrics for the classifier’s error

Image source: Wikimedia
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How many relevant items 
have been selected?

How many irrelevant 
items have been 
(incorrectly) selected?

How many of the selected 
items are relevant?



• Trade-off between TPR and FPR

• Parametrized decision boundary

• Tuned for application:

– Minimize FPR: Spam 

– Minimize FNR: Disease test
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● Breathalyzer test:

○ 0.88 identifies truly drunk drivers (True Positive Rate)

○ 0.05 sober drivers as drunk (False Positive Rate)

● Alice gives positive in the test

○ What is the probability that she is indeed drunk?

○ Is it 0.95? Is it 0.88? Something in between?

The Base Rate Fallacy (aka Prosecutor’s Fallacy)
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● Breathalyzer test:

○ 0.88 identifies truly drunk drivers (True Positive Rate)

○ 0.05 sober drivers as drunk (False Positive Rate)

● Alice gives positive in the test

○ What is the probability that she is indeed drunk?

○ Is it 0.95? Is it 0.88? Something in between?Only 0.1!
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The Base Rate Fallacy (aka Prosecutor’s Fallacy)



● Circumference represents the 
world of drivers.

● Each dot represents a driver.
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The Base Rate Fallacy (aka Prosecutor’s Fallacy)



● 1% of drivers are driving drunk 
(base rate or prior).
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The Base Rate Fallacy (aka Prosecutor’s Fallacy)



● From drunk people 88% are 
identified as drunk by the test
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The Base Rate Fallacy (aka Prosecutor’s Fallacy)



● From the sober people, 5% 
are erroneously identified as 
drunk
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The Base Rate Fallacy (aka Prosecutor’s Fallacy)



● Alice must be within the 
black circumference

● Ratio of red dots within the 
black circumference:

          Precision = 7/70 = 0.1
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The Base Rate Fallacy (aka Prosecutor’s Fallacy)



● Can you think of other examples where the base rate fallacy 
comes into play?

Other examples
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● Can you think of other examples where the base rate fallacy 
comes into play?

Cases in which the positive class is very unlikely:

- Test a rare disease

- Detect a system intrusion

- Anticipate a terrorist attack

Other examples
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Occurs when a classifier is trained in one area and deployed in 
another.

• Example: Family migration prediction

• Training/Test in Syria

• Yellow = Families that migrate

• Blue = Families that do not migrate

Distributional Shift

Slide credit: C. Troncoso 36



• Example: Family migration 
prediction
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• Blue = Families that do not migrate

 Training/Test in Syria
 Training/Test in Myanmar

Occurs when a classifier is trained in one area and deployed in 
another.

Distributional Shift
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Occurs when a classifier is trained in one area and deployed in 
another.

Distributional Shift

Slide credit: C. Troncoso

• Example: Family migration 
prediction

• Yellow = Families that migrate

• Blue = Families that do not migrate

 Training/Test in Syria
 Training/Test in Myanmar
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Distribution of Errors
Occurs when most mistakes of the classifier are concentrated in a 
subpopulation/group

• Example: Family migration prediction

• Training/Test in Syria

• Yellow = Families that migrate

• Blue = Families that do not migrate

Slide credit: C.Troncoso 39



Distribution of Errors

• Example: Family migration prediction

• Training/Test in Syria

• Yellow = Families that migrate

• Blue = Families that do not migrate

Families with more than one child

Families with one child

Slide credit: C.Troncoso 40

Occurs when most mistakes of the classifier are concentrated in a 
subpopulation/group



What can we do? 

Arvind Narayanan: Tutorial: 21 fairness definitions and their politics 

● Detect bias in ML models:

● Transparency: explainable ML

● Anonymity does not help: bias                                                    does 
not stem from identity

Based on slides by: C. Troncoso 41

IBM Bias Assessment Toolkit 

https://www.youtube.com/watch?v=jIXIuYdnyyk
https://github.com/IBM/AIF360
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Based on slides by: S. Kundu 43

Machine Learning is becoming ubiquitous



Based on slides by: S. Kundu 44

Machine Learning is becoming ubiquitous



ML applications for cybersecurity

45
Slide credit: S. Kundu



Traffic Analysis: Website Fingerprinting

Adapted from: C. Diaz and B. Overdorf



Traffic Analysis: Website Fingerprinting

Adapted from: C. Diaz and B. Overdorf

- Naive Bayes

- Support Vector Machine (SVM)

- Random Forests

- Neural Networks

- ...
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Website Fingerprinting takeaways
● Deployment issues:

- Dynamism of pages: distributional shift over time

- If IP anonymized/domain encrypted: base rate fallacy comes into play

● What’s the cost to the adversary?

● Website Fingerprinting defenses

- Effectiveness of attacks and defenses depends on the security of ML!
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50

Security and Privacy in the ML workflow

Slide credit: S. Kundu
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Confidentiality: membership inference attacks

Shokri et al. IEEE S&P 2017

● ML as a Service (MLaaS)

● Key insight: overfit model classifies 
instances in the training set with 
high confidence

● Model extraction: steal                      
the model!

● What is more valuable,                  
the model or the training set?

Is it in the 
training set?
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Integrity: poisoning and evasion attacks

Adapted from: S. Kundu and J. Hayes

● Adversary’s goal is to induce misclassifications:

○ Poisoning (during training): compromise data collection, subvert the learning 
process, facilitate future evasion (backdoor attacks), ...

○ Evasion (during testing): find blind spots of the ML model in order to evade it.

[GSS15] Goodfellow et al. Explaining and Harnessing Adversarial Examples

Panda Adversarial 
Perturbation

Cat



1. Self-driving cars [1]                         2. Healthcare     

             Before: Stop                                      Before: Severe symptoms
          After: 45 mph                                     After: No symptoms

[1] Evtimov et al., 2017
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Adversarial examples in ML applications

Adapted from: J. Hayes
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Why do adversarial examples exist?

http://www.cleverhans.io/security/privacy/ml/2016/12/16/breaking-things-is-easy.html

● Deep Learning is especially vulnerable 
due to its complexity.

● Early attempts at explaining this 
phenomenon focused on nonlinearity and 
overfitting.

● Linear behavior in high-dimensional 
spaces is sufficient to cause adversarial 
examples [1]

[1] Goodfellow et al. “Explaining and Harnessing Adversarial 
Examples”, 2016

http://www.cleverhans.io/security/privacy/ml/2016/12/16/breaking-things-is-easy.html


● Speech recognition: Alexa case [1] and Dolphinattack [2]

● “Attacks” might be perceptible: circumvent face recognition [3]

[1] https://qz.com/880541/amazons-amzn-alexa-accidentally-ordered-a-ton-of-dollhouses-across-san-diego/
[2] Zhang et al. CCS 2017
[3] Sharif et al. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition 55Adapted from: J. Hayes

More examples

https://qz.com/880541/amazons-amzn-alexa-accidentally-ordered-a-ton-of-dollhouses-across-san-diego/


● In the most extreme case, it is 
possible to construct a single 
perturbation that will fool a 
model when added to any 
image!

● Attackers need minimal  
resources to attack your system!

[GSS15] Goodfellow et al. Explaining and Harnessing Adversarial Examples
[MFF16] Moosavi-Dezfooli et al. Universal adversarial perturbations.

Banana Truck

Cat Hammer

Dog Football

56Adapted from: J. Hayes

Universal adversarial perturbations



● Adversarial examples transfer between different models.

● An adversarial example crafted against one model will generally fool 
other models.

● Attackers do not need repeated access to your system to attack it!

  Model 1

Adversarial Example
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Transferability property

Adapted from: J. Hayes

  Model 2



GDPR, Art. 22 (on Automated decision-making): “The data subject shall have the right not to be 
subject to a decision based solely on automated processing, including profiling, which produces 
legal effects concerning him or her or similarly significantly affects him or her.”

● Except in case that it is necessary to fulfill the contract or data owner gives consent.

● Even in that case, the data controller shall explain the basis on what the decision has 
been taken (e.g., to rule out discrimination).

● How can we do that with black-box models such as DL?
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Deep Learning and GDPR

Adapted from: J. Hayes
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Availability: downgrade performance 

● An adversary can easily adapt adversarial examples to downgrade 
performance of the model, for example:

○ Poison the dataset to reduce the accuracy for a certain class.

○ Force ML to take low-performance decisions

● Harder to detect than a system failure



Countermeasures
● Membership inference: avoid 

overfitting!

● Adversarial Examples: very 
recent (2015) and still not well 
understood

○ Data augmentation: re-train on 
(virtual) adversarial examples

○ Pre-processing: sequeeze features 
and add variable noise to inputs.

○ GANs: used to attack and defend.
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Takeaways

1. ML might be secure and work in the lab but still fail when deployed

2. Dual use of ML: it can be used for to defend but also to attack

3. ML itself is vulnerable: attacks exist against all security properties of ML

4. Security of ML adds another dimension to cybersecurity: both attacks and 
defenses depend on the security of ML itself.



Thanks!
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