Machine Learning and Security

Marc Juarez

imec-COSIC KU Leuven

Brussels School of Competition, 10th May 2019, Brussels

Outline

- 1. Introduction
- 2. Issues with deploying ML
- 3. Applications of ML to cybersecurity
- 4. Security of the ML system

Outline

1. Introduction

- 2. Issues with deploying ML
- 3. Applications of ML to cybersecurity
- 4. Security of the ML system

What is Machine Learning?

Definition by Tom Mitchell (1998):

"Machine Learning is the study of algorithms that

- improve their performance P
- at a task T
- with experience E

A well-defined learning task is given by <P, T, E>."

Types of Machine Learning

Types of Machine Learning

Regression vs Classification

ullet Given x inputs and y outputs, find f such that $f(x) \sim y$

We have samples of email labeled as spam or ham:

We have samples of email labeled as spam or not spam (ham):

We have samples of email labeled as spam or not spam (ham):

We have samples of email labeled as spam or not spam (ham):

 \bullet Find f that separates sample space:

 \bullet Find f that separates sample space:

New email comes in: unknown label

New email comes in: unknown label

New email comes in: unknown label → Use model to guess label

ML algorithms

- ullet ML algorithms are used to find model f
- Popular algorithms for classification:
 - Naive Bayes
 - Support Vector Machines
 - ID3 (Decision Trees) → Random Forests
 - Neural networks (aka Deep Learning)
 - o ...
- What is a "good" model?What makes a model "good"?

The Bias-Variance trade-off

The Bias-Variance trade-off

The Bias-Variance trade-off

Measuring overfitting

- Idea: hold out labeled sample for testing
- Non-parametric technique
- Accurate if enough data
 - Small dataset → Cross-validation

Mitigating overfitting

 Regularization: additional assumptions that prevent overfitting without increasing bias

Example: add smoothing factor to f(x)

Metrics for the classifier's error

- Positive class:
 - True Positives (TP)
 - False Negatives (FN)
- Negative class:
 - True Negatives (TN)
 - False Positives (FP)

$$Accuracy = \frac{TP + TN}{TOTAL}$$

Metrics for the classifier's error

How many *relevant* items have been selected?

How many of the selected items are *relevant*?

How many *irrelevant* items have been (incorrectly) selected?

ROC curve

- Trade-off between TPR and FPR
- Parametrized decision boundary
- Tuned for application:
 - Minimize FPR: Spam
 - Minimize FNR: Disease test

Outline

- 1. Introduction
- 2. Issues with deploying ML
- 3. Applications of ML to cybersecurity
- 4. Security of the ML system

- Breathalyzer test:
 - 0.88 identifies truly drunk drivers (True Positive Rate)
 - 0.05 sober drivers as drunk (False Positive Rate)
- Alice gives positive in the test
 - What is the probability that she is indeed drunk?
 - Is it 0.95? Is it 0.88? Something in between?

- Breathalyzer test:
 - 0.88 identifies truly drunk drivers (True Positive Rate)
 - 0.05 sober drivers as drunk (False Positive Rate)
- Alice gives positive in the test
 What is the probability
 Is it 0.95? Is it
 Only 0.1!

 Circumference represents the world of drivers.

Each dot represents a driver.

• 1% of drivers are driving drunk (base rate or prior).

 From drunk people 88% are identified as drunk by the test

 From the sober people, 5% are erroneously identified as drunk

- Alice must be within the black circumference
- Ratio of red dots within the black circumference:

Precision = 7/70 = 0.1

Other examples

• Can you think of other examples where the base rate fallacy comes into play?

Other examples

 Can you think of other examples where the base rate fallacy comes into play?

Cases in which the positive class is very unlikely:

- Test a rare disease
- Detect a system intrusion
- Anticipate a terrorist attack

Distributional Shift

Occurs when a classifier is trained in one area and deployed in another.

- Example: Family migration prediction
- Training/Test in Syria
- Yellow = Families that migrate
- Blue = Families that do not migrate

Distributional Shift

Occurs when a classifier is trained in one area and deployed in another.

- Example: Family migration prediction
- Yellow = Families that migrate
- Blue = Families that do not migrate

Distributional Shift

Occurs when a classifier is trained in one area and deployed in another.

- Example: Family migration prediction
- Yellow = Families that migrate
- Blue = Families that do not migrate

Distribution of Errors

Occurs when most mistakes of the classifier are concentrated in a **subpopulation/group**

- Example: Family migration prediction
- Training/Test in Syria
- Yellow = Families that migrate
- Blue = Families that do not migrate

Distribution of Errors

Occurs when most mistakes of the classifier are concentrated in a **subpopulation/group**

- Example: Family migration prediction
- Training/Test in Syria
- Yellow = Families that migrate
- Blue = Families that do not migrate
 - Families with more than one child
 - Families with one child

What can we do?

Detect bias in ML models:

IBM Bias Assessment Toolkit

- Transparency: explainable ML
- Anonymity does not help: bias not stem from identity

Outline

- 1. Introduction
- 2. Issues with deploying ML
- 3. Applications of ML to cybersecurity
- 4. Security of the ML system

Machine Learning is becoming ubiquitous

Self-driving Cars

Healthcare

Cybersecurity

Facial Recognition

Speech Recognition

Machine Learning is becoming ubiquitous

Self-driving Cars

Healthcare

Cybersecurity

Facial Recognition

Speech Recognition

ML applications for cybersecurity

Spam Filtering

Malware Detection

Biometrics ID

Traffic Analysis: Website Fingerprinting

Traffic Analysis: Website Fingerprinting

Website Fingerprinting takeaways

- Deployment issues:
 - Dynamism of pages: distributional shift over time
 - If IP anonymized/domain encrypted: base rate fallacy comes into play
- What's the cost to the adversary?
- Website Fingerprinting defenses
 - Effectiveness of attacks and defenses depends on the security of ML!

Outline

- 1. Introduction
- 2. Issues with deploying ML
- 3. Applications of ML to cybersecurity
- 4. Security of the ML system

Security and Privacy in the ML workflow

Confidentiality: membership inference attacks

ML as a Service (MLaaS)

 Key insight: overfit model classifies instances in the training set with high confidence

 Model extraction: steal the model!

 What is more valuable, the model or the training set?

Integrity: poisoning and evasion attacks

- Adversary's goal is to induce misclassifications:
 - Poisoning (during training): compromise data collection, subvert the learning process, facilitate future evasion (backdoor attacks), ...
 - Evasion (during testing): find blind spots of the ML model in order to evade it.

Adversarial examples in ML applications

1. Self-driving cars [1]

Before: Stop After: 45 mph 2. Healthcare

Before: Severe symptoms

After: No symptoms

Why do adversarial examples exist?

- Deep Learning is especially vulnerable due to its complexity.
- Early attempts at explaining this phenomenon focused on nonlinearity and overfitting.
- Linear behavior in high-dimensional spaces is sufficient to cause adversarial examples [1]

---- Task decision boundary

Model decision boundary

Adversarial example for class 1

- Training points for class 1
- Training points for class 2

Test point for class 1

- Test point for class 2
- Adversarial example for class 2

[1] Goodfellow et al. "Explaining and Harnessing Adversarial Examples", 2016

More examples

- Speech recognition: Alexa case [1] and Dolphinattack [2]
- "Attacks" might be perceptible: circumvent face recognition [3]

^[1] https://qz.com/880541/amazons-amzn-alexa-accidentally-ordered-a-ton-of-dollhouses-across-san-diego/

^[2] Zhang et al. CCS 2017

^[3] Sharif et al. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition

Universal adversarial perturbations

- In the most extreme case, it is possible to construct a single perturbation that will fool a model when added to any image!
- Attackers need minimal resources to attack your system!

Transferability property

- Adversarial examples transfer between different models.
- An adversarial example crafted against one model will generally fool other models.
- Attackers do not need repeated access to your system to attack it!

Deep Learning and GDPR

GDPR, Art. 22 (on Automated decision-making): "The data subject shall have the right not to be subject to a decision based solely on automated processing, including profiling, which produces legal effects concerning him or her or similarly significantly affects him or her."

- Except in case that it is necessary to fulfill the contract or data owner gives consent.
- Even in that case, the data controller shall explain the basis on what the decision has been taken (e.g., to rule out discrimination).
- How can we do that with black-box models such as DL?

Availability: downgrade performance

- An adversary can easily adapt adversarial examples to downgrade performance of the model, for example:
 - Poison the dataset to reduce the accuracy for a certain class.
 - Force ML to take low-performance decisions
- Harder to detect than a system failure

Countermeasures

- Membership inference: avoid overfitting!
- Adversarial Examples: very recent (2015) and still not well understood
 - Data augmentation: re-train on (virtual) adversarial examples
 - Pre-processing: sequeeze features and add variable noise to inputs.
 - GANs: used to attack and defend.

Takeaways

- 1. ML might be secure and work in the lab but still fail when deployed
- 2. Dual use of ML: it can be used for to defend but also to attack
- 3. ML itself is vulnerable: attacks exist against all security properties of ML
- Security of ML adds another dimension to cybersecurity: both attacks and defenses depend on the security of ML itself.

Thanks!