I am director of
the
KU Leuven ELLIS unit and a fellow
in the ELLIS Health
program, part of the European Laboratory
for Learning and
Intelligent Systems.
I am a Core PI in the Flanders AI Research Program,
and workpackage lead for (i) Decision Support
Systems
and (ii) Medical Imaging.
I am a member of the KU Leuven
Institute for Artificial
Intelligence and one of the leaders of the working group on
Machine Learning and Data Science.
If you are interested in a PhD position, please email your CV
and a short motivation.
Technology developed in my research is incorporated into MONA, software for ophthalmic image
analysis.
I co-organized the Commands
4 Autonomous Vehicles workshop and challenge at ECCV
2020.
I co-organized the 2nd Learning from Limited Labeled
Data (LLD) Workshop: Representation Learning for Weak Supervision and
Beyond at ICLR 2019.
I co-organized the NIPS 2017 workshop on Learning with Limited
Labeled Data: Weak Supervision and Beyond.
Education:
(Mathematics Genealogy)
I would like to thank the following funding sources for supporting my research:
Teaching:
Students and researchers:
- Marco Mezzina, KU Leuven, Ph.D. student.
- Mingshi
Li, KU Leuven, M.Sc. 2022, Ph.D. student.
- Wangduo
Xie, KU Leuven, Ph.D. student.
- Karel
Moens, KU Leuven, Ph.D. student.
- Chang Tian, KU Leuven, Ph.D. student.
- Klara
Gawor, KU Leuven, Ph.D. student.
- Margot
Verhulst, KU Leuven, Ph.D. student.
- Huy
Hoang Nguyen, University of Oulu, Ph.D. student.
- Christos
Theodoropoulos, KU Leuven, Ph.D. student.
- Han
Zhou,
KU Leuven, Ph.D. student.
- Teodora
Popordanoska, KU Leuven, Ph.D. student.
- Zifu
Wang, KU Leuven, Ph.D. student.
- Junyi
Zhu, KU Leuven, Ph.D. student.
- Jordy
Van Landeghem, KU Leuven, Ph.D. 2024.
Thesis: Intelligent
Automation for AI-driven Document Understanding.
- Dušan
Grujičić, KU Leuven, M.Sc. 2018, Ph.D. 2022,
Postdoc 2022-2023.
Thesis: Spatial
Representation in Models of Images and Text with Applications to
Medical Document Indexing and Autonomous Driving.
- Wim Looijmans, KU Leuven, M.Sc. 2023.
- Andrei Dragomir, KU Leuven, M.Sc. 2023.
- Yingshuo Xi, KU Leuven, M.Sc. 2023.
- Rik Bossuyt, KU Leuven, M.Sc. 2023.
- Ciem Cornelissen, KU Leuven, M.Sc. 2023.
- Zhongxi Li, KU Leuven, M.Sc. 2023.
- Xingchen
Ma, KU Leuven, Ph.D. 2023.
Thesis: Uncertainty Estimation in
Machine Learning: Applications in Neural Network Compression and Calibration
- Giorgia Milli, KU Leuven, M.Sc. 2022.
- An Elen, KU Leuven, M.Sc. 2022.
- Arno Leenknegt, KU Leuven, M.Sc. 2022.
- Mahmoud Ibrahim, KU Leuven, M.Sc. 2022.
- Roberto Hernández Ruiz, KU Leuven, M.Sc. 2022.
- Raphael
Sayer, KU Leuven, Research Assistant 2021-2022.
- Charalampos Kalavrytinos, KU Leuven, M.Sc. 2022.
- Ruben
Hemelings, KU Leuven, M.Sc. 2017 [video], Ph.D.
2021.
Thesis: Deep
Learning in Glaucoma.
- Jonathan Lowe, KU Leuven, M.Sc. 2021.
- Gwenaël Van Looveren, KU Leuven, M.Sc. 2021.
- Joeri Jessen, KU Leuven, M.Sc. 2021.
- Stijn Jansen, KU Leuven, M.Sc. 2021.
- Aleksei
Tiulpin, KU Leuven, Postdoc 2020-2021.
- Aida
Ashrafi, KU Leuven, Research Assistant 2018-2020.
- Maxim
Berman, KU Leuven, Ph.D. 2020.
Thesis:
Tractable Approximations for Achieving Higher Model Efficiency in
Computer Vision
- Guojun Wu, KU Leuven, M.Sc. 2020.
- Guillaume Lamine, KU Leuven, M.Sc. 2020.
- Roshni Kamath, KU Leuven, M.Sc. 2020.
- Andreas Smolders, KU Leuven, M.Sc. 2020.
- Gaspar Pizarro, KU Leuven, M.Sc. 2020.
- Niels Verleysen, KU Leuven, M.Sc. 2020.
- Anthoula Mountzouri, KU Leuven, M.Sc. 2020.
- Toon Vanderschueren, KU Leuven, M.Sc. 2020.
- Marthe Vanhulst, KU Leuven, M.Sc. 2020.
- Amal
Rannen Triki, KU Leuven, Ph.D. 2020.
Thesis:
Function Norms for Neural Networks: Theory and Applications
- Sinnu
Thomas, KU Leuven, Postdoc 2018-2020.
- Ricardo Elizondo, KU Leuven, M.Sc. 2020.
- Dávid Kerekes, KU Leuven, M.Sc. 2020.
- Swarnalata Patra, KU Leuven, M.Sc. 2020.
- Shivangi
Srivastava, Wageningen University, visiting Ph.D. student,
2018-2019.
- Axel-Jan Rousseau, KU Leuven, M.Sc. 2019.
- Hendrik Motmans, KU Leuven, M.Sc. 2019.
- Eugene Belilovsky,
Université Paris-Saclay & KU Leuven, Ph.D.
2018.
Thesis: Structured
Sparse Learning on Graphs in
High-Dimensional Data with Applications to Neuroimaging
- Alexander Van Rompaey, KU Leuven, M.Sc. 2018.
- Gilles Robijns, KU Leuven, M.Sc. 2018.
- Thomas Strypsteen, KU Leuven, M.Sc. 2018.
- Thomas Verelst, KU Leuven, M.Sc. 2018.
- Nick Seeuws, KU Leuven, M.Sc. 2018.
- Mathijs Schuurmans, KU Leuven, M.Sc. 2018.
- José Ignacio
Orlando, Universidad
Nacional del Centro de la Provincia de Buenos Aires, Ph.D.
2017.
Thesis: Machine
learning for ophthalmic screening and
diagnostics from fundus images
- Arthur Talbot, ENS Paris-Saclay, visiting student 2017.
- Nele Gerrits, KU Leuven, M.Sc. 2017.
- Jiaqian Yu,
Université Paris-Saclay, Ph.D. 2017.
Thesis: Empirical
risk minimization with non-modular loss functions
- Wacha
Bounliphone, Université Paris-Saclay & KU Leuven, Ph.D.
2017.
Thesis: Statistically
and computationally
efficient hypothesis tests for dependency and similarity
- Katerina
Gkirtzou, École Centrale Paris, Ph.D. 2013.
Thesis:
Sparsity regularization and graph-based representation in medical imaging
- Wojciech Zaremba, École Polytechnique, M.Sc. 2012.
Thesis: Modeling the variability of EEG/MEG data through statistical machine learning
- Ben Mather, University of Oxford, MEng 2011.
- Shah Ruhul Amin, University of Oxford, MEng 2010.
- Jacquelyn A. Shelton, Universität Tübingen, M.Sc. 2010.
Thesis: Semi-supervised
Subspace Learning and Application to Human Functional Magnetic Brain Resonance Imaging Data
Publications:
(Google
Scholar Profile)
- Konstantinos Kontras, Thomas Strypsteen, Christos Chatzichristos, Paul
P. Liang, Matthew Blaschko, Maarten De Vos: Multimodal Fusion Balancing
Through Game-Theoretic Regularization.
arXiv:2411.07335, 2024. [bibtex]
- Wangduo Xie, Richard Schoonhoven, Tristan van Leeuwen,
Matthew B. Blaschko: AC-IND:
Sparse CT reconstruction based
on attenuation coefficient estimation and implicit neural
distribution. IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2025. [bibtex]
- Han Zhou, Jordy Van Landeghem, Teodora Popordanoska,
Matthew B. Blaschko: A Novel
Characterization of the Population Area Under the Risk
Coverage Curve (AURC) and Rates of Finite Sample
Estimators. arXiv:2410.15361, 2024.
[bibtex; code]
- Popordanoska, T., G. Radevski, T. Tuytelaars, M. B. Blaschko:
LaSCal: Label-Shift Calibration without target labels.
Neural Information Processing Systems (NeurIPS), 2024. [bibtex]
- Ning, X., Z. Wang, S.
Li, Z. Lin, P. Yao, T. Fu, M. B. Blaschko, G. Dai, H. Yang, Y. Wang: Can LLMs Learn by Teaching? A
Preliminary Study. Neural Information Processing Systems (NeurIPS),
2024. [bibtex; code]
- Bassi, P. R. A. S. et al.: Touchstone Benchmark: Are We
on the Right Way for Evaluating AI Algorithms for Medical
Segmentation? Neural Information Processing Systems
(NeurIPS), 2024. [bibtex]
- Huy Hoang Nguyen, Han Zhou, Matthew B. Blaschko, Aleksei Tiulpin:
Bayesian Optimization
over Bounded Domains with Beta Product Kernels.
NeurIPS Workshop on Bayesian Decision-making and Uncertainty, 2024.
[bibtex]
- Tian, C., M. B. Blaschko, W. Yin, M. Xing, Y. Yue, M.-F. Moens: A
Generic Method for Fine-grained Category Discovery in Natural Language
Texts. Empirical Methods in Natural Language Processing (EMNLP), 2024.
[bibtex]
- Junyi Zhu, Shuochen
Liu, Yu Yu,
Bo Tang, Yibo Yan, Zhiyu Li, Feiyu Xiong, Tong Xu, Matthew B. Blaschko:
FastMem: Fast Memorization of
Prompt Improves Context
Awareness of Large Language Models. Findings of the Association for
Computational Linguistics: EMNLP, 2024.
[bibtex; code]
- Zehao Wang, Han Zhou, Matthew B. Blaschko, Tinne Tuytelaars, Minye Wu:
Redundancy-Aware Camera Selection for Indoor Scene Neural
Rendering.
arXiv:2409.07098, 2024. [bibtex]
- Margot Verhulst, Stien Heremans, Matthew B. Blaschko, Ben Somers:
Temporal
Transferability of Tree Species Classification in Temperate
Forests with Sentinel-2 Time Series. Remote Sensing, 2024.
[bibtex]
- Klara Gawor, Sandra Tom, Rik Vandenberghe, Philip Van Damme, Mathieu
Vandenbulcke, Markus Otto, Christine A.F. von Arnim, Estifanos
Ghebremedhin, Alicja Ronisz, Simona Ospitalieri, Matthew Blaschko, Dietmar
R. Thal: Amygdala-predominant
α-synuclein pathology exacerbates hippocampal neuron loss in
Alzheimers
disease. Brain Communications, 2024. [bibtex; doi]
- Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning,
Matthew B. Blaschko, Shengen Yan, Guohao Dai, Huazhong Yang, Yu Wang: Efficient Expert Pruning
for Sparse Mixture-of-Experts Language Models: Enhancing
Performance and Reducing Inference Costs. arXiv:2407.00945,
2024. [bibtex; code]
- Kontras, K., C. Chatzichristos, M. B. Blaschko,
and M.
De Vos: Improving Multimodal
Learning with Multi-Loss Gradient Modulation. British Machine Vision
Conference (BMVC), 2024.
[bibtex]
- Shi, J., J. Zhu, D. M. Pelt, K. J. Batenburg, and M. B. Blaschko:
Implicit Neural Representations
for Robust Joint Sparse-View CT
Reconstruction. Transactions on Machine Learning Research, 2024.
[bibtex]
- Hamed, O., S. Bakkali, M.-F. Moens, M. B. Blaschko,
and J.
Van Landeghem: Multimodal
Adaptive Inference with Anytime Early Exiting.
International Conference on Document Analysis and Recognition
(ICDAR), 2024. [bibtex; code]
- Van Landeghem, J., S. Maity, A. Banerjee, M. B. Blaschko, M.-F. Moens,
J. Llados, and S. Biswas: DistilDoc:
Knowledge Distillation for
Visually-Rich Document Applications. International Conference on
Document Analysis and Recognition (ICDAR), 2024.
[bibtex; code]
- Liu, E., J. Zhu, Z. Lin, X. Ning, M. B. Blaschko, S. Yekhanin, S. Yan,
G. Dai, H. Yang, Y. Wang: Linear Combination of
Saved Checkpoints Makes Consistency and Diffusion Models Better.
arXiv:2404.02241, 2024. [bibtex; code]
- Moens, K., J. De Vylder, M. B. Blaschko, T.
Tuytelaars:
Laparoflow-SSL: Image
Analysis From a Tiny Dataset Through Self-Supervised
Transformers Leveraging Unlabeled Surgical Video. Medical Imaging with
Deep Learning (MIDL), 2024. [bibtex]
- Maier-Hein, L., A.
Reinke, P. Godau
et al.: Metrics reloaded:
recommendations for image analysis validation. Nature Methods 21,
195212, 2024. [bibtex;
doi]
- Jha, A., M. B. Blaschko, Y. M. Asano, and T. Tuytelaars: The Common Stability Mechanism
behind most Self-Supervised Learning Approaches. arXiv:2402.14957,
2024. [bibtex]
- Zhu, J., Z. Lin,
E. Liu, X. Ning, and M.
B. Blaschko: Rescaling
Intermediate Features Makes Trained Consistency
Models Perform Better. Tiny Papers @ ICLR 2024. [bibtex]
- Li, M., D. Grujicic, S. De Saeger, S. Heremans, B. Somers, and M. B.
Blaschko: Biological
Valuation Map of Flanders: A Sentinel-2 Imagery Analysis.
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2024.
[bibtex; code]
- Gruber, S. G., T. Popordanoska, A. Tiulpin, F.
Buettner, and M. B. Blaschko: Consistent and Asymptotically
Unbiased Estimation of Proper Calibration Errors. 27th International
Conference on Artificial Intelligence and Statistics (AISTATS),
2024. [bibtex; code]
- Popordanoska, T., A. Tiulpin, and M. B. Blaschko: Beyond
Classification: Definition and Density-based Estimation of Calibration in
Object Detection. IEEE/CVF Winter Conference on Applications of
Computer
Vision (WACV), 2024. [bibtex; code]
- Van Landeghem, J., S. Biswas, M. Blaschko, and M.-F.
Moens: Beyond Document Page
Classification:
Design,
Datasets, and Challenges. IEEE/CVF Winter Conference on Applications
of
Computer
Vision (WACV), 2024.
[bibtex]
- Wang, Z., X. Ning, and M. B. Blaschko: Jaccard Metric Losses:
Optimizing the Jaccard Index with Soft Labels. Neural Information Processing Systems (NeurIPS),
2023. [bibtex; code]
- Wang, Z., M. Berman, A. Rannen-Triki, P. Torr, D. Tuia, T. Tuytelaars,
L. Van Gool, J. Yu, and M. B. Blaschko: Revisiting Evaluation Metrics
for Semantic Segmentation: Optimization and Evaluation of
Fine-grained Intersection over Union. Neural Information
Processing Systems (NeurIPS), 2023. [bibtex; code]
- Zhou, H., X. Ma, and M. B. Blaschko:
A Corrected Expected Improvement Acquisition Function Under Noisy
Observations. Asian Conference on Machine Learning (ACML),
2023. [bibtex]
- Nguyen, H. H., M. B. Blaschko, S. Saarakkala, and A. Tiulpin:
Clinically-Inspired
Multi-Agent Transformers for Disease Trajectory Forecasting from
Multimodal Data. IEEE Transactions on Medical Imaging, 2023.
[bibtex; doi; code]
- Radevski, G., D. Grujicic, M. B. Blaschko, M.-F. Moens, and T.
Tuytelaars: Multimodal
Distillation for Egocentric Action Recognition.
International Conference on Computer Vision (ICCV), 2023.
[bibtex; code]
- Van Landeghem, J., R. Tito, L. Borchmann, M. Pietruszka,
P. Joziak, R. Powalski, D. Jurkiewicz, M. Coustaty, B. Ackaert,
E. Valveny, M. Blaschko, S. Moens, and T. Stanislawek: Document
Understanding Dataset and Evaluation (DUDE). International Conference
on Computer Vision (ICCV),
2023. [bibtex]
- Popordanoska, T., A. Tiulpin, and M. B. Blaschko: To
trust or not to
trust: Assessing calibration error under covariate shift without
labels.
Women in Computer Vision Workshop at ICCV, 2023.
[bibtex]
- Wang, Z., T. Popordanoska, J. Bertels, R. Lemmens,
and M. B. Blaschko: Dice
Semimetric Losses: Optimizing the Dice
Score with Soft Labels. Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2023.
[bibtex; code]
- Xie, W. and M. B. Blaschko: Dense
Transformer based Enhanced Coding
Network for Unsupervised Metal Artifact Reduction. Medical Image
Computing
and Computer-Assisted Intervention (MICCAI), 2023.
[bibtex]
- Zhu, J. and M. B. Blaschko: Improving Differentially
Private SGD via Randomly Sparsified Gradients. Transactions on Machine
Learning Research, 2023. [bibtex; code]
- Hemelings, R., B. Elen, A. K. Schuster, M. B. Blaschko, J.
Barbosa-Breda, P. Hujanen, A. Junglas, S. Nickels, A. White, N. Pfeiffer,
P. Mitchell, P. De Boever, A. Tuulonen, and I. Stalmans: A generalizable
deep learning regression model for automated glaucoma screening from
fundus images. npj Digital Medicine, 2023.
[bibtex; doi]
- Zhu, J., R. Yao, and M. B. Blaschko: Surrogate Model Extension
(SME): A Fast and Accurate Weight Update Attack on Federated Learning.
International Conference on Machine Learning (ICML), 2023.
[bibtex; code]
- Zhu, J., X. Ma, and M. B.
Blaschko: Confidence-aware
Personalized Federated Learning via Variational
Expectation Maximization. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.
[bibtex; code]
- Thomas, S. S., G. Lamine, J. Palandri, M. Lakehal-ayat, P.
Chakravarty, F. Wolf-Monheim, and M. B. Blaschko: Mitigating Bias in
Bayesian Optimized Data While Designing MacPherson Suspension
Architecture, in IEEE Transactions on Artificial Intelligence,
2023. [bibtex; doi]
- Rousseau, A.-J., T. Becker, S. Appeltans, M. B. Blaschko,
and D. Valkenborg: A
spatial extension to beta calibration for
medical
segmentation models. IEEE 20th International Symposium on Biomedical
Imaging (ISBI), 2023. [bibtex]
- Reinke, A., et al.: Common Limitations of
Image Processing Metrics:
A Picture Story. arXiv:2104.05642, 2023.
[bibtex]
- Reinke, A., et al.: Understanding
metric-related pitfalls in image analysis
validation. arXiv:2302.01790, 2023.
[bibtex]
- Li, M., Z. Wang, and M. B.
Blaschko: Improved Imagery
Throughput via Cascaded Uncertainty Pruning on U-Net++.
Northern Lights Deep Learning Conference 2023.
[bibtex; doi]
- Popordanoska, T., R. Sayer, and M. B. Blaschko: A Consistent and
Differentiable Lp Canonical Calibration Error Estimator. Neural
Information Processing Systems (NeurIPS), 2022.
[bibtex; code]
- Ma, X., J. Zhu, M. B. Blaschko: Tackling Personalized
Federated
Learning with Label Concept Drift via Hierarchical Bayesian Modeling.
Workshop on Federated Learning: Recent Advances and New Challenges (in
Conjunction with NeurIPS), 2022. [bibtex]
- Oniga, R., M. Blaschko, T. Eelbode, F. Maes, R. Bisschops, P.
Bossuyt: Deep
learning for prediction of future endoscopic
disease
activity in Ulcerative Colitis. Proceedings of the 5th International
Conference XGEN, 2022. [bibtex]
- Deruyttere, T., D. Grujicic, M. B. Blaschko, and M.-F. Moens:
Talk2Car:
Predicting Physical Trajectories for Natural Language Commands.
IEEE Access, 2022. [bibtex; doi]
- Radevski, G., D. Grujicic, M.
Blaschko, M.-F. Moens,
and T. Tuytelaars: Students
taught by multimodal teachers are superior
action
recognizers. 2nd International Ego4D Workshop @ ECCV, 2022.
[bibtex]
- Koper, M. J., S. O. Tomé, K. Gawor, A. Belet, E. Van Schoor,
J. Schaeverbeke, R. Vandenberghe, M. Vandenbulcke,
E. Ghebremedhin, M. Otto, C. A. F. von Arnim, S. Balusu,
M. B. Blaschko, B. De Strooper, and D. R. Thal:
LATE-NC aggravates
GVD-mediated necroptosis in Alzheimers disease. Acta
Neuropathologica Communications, 2022. [bibtex; doi]
- Tiulpin, A. and M. B. Blaschko: Greedy Bayesian Posterior
Approximation with Deep Ensembles. Transactions on Machine Learning
Research, 2022. [bibtex; code]
- Hemelings, R., B. Elen, J. Barbosa-Breda, E. Bellon, M. B.
Blaschko, P. De Boever, I. Stalmans: Pointwise
visual field estimation
from optical coherence tomography in glaucoma using deep learning.
Translational Vision Science & Technology, 2022.
[bibtex; doi]
- Popordanoska, T. and M. B. Blaschko: KULeuven
at LeQua 2022:
Model Calibration in Quantification Learning. Conference and Labs of
the
Evaluation Forum (CLEF), 2022. [bibtex]
- Wang, Z. and M. B. Blaschko: MRF-UNets: Searching UNet
with Markov Random Fields. European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECML), 2022. [bibtex; code]
- Grujicic, D. and M. B. Blaschko: 2-D latent space models:
Layer-wise
perceptual training and spatial grounding. International Conference on
Pattern Recognition (ICPR), 2022. [bibtex]
- Zhou, H., A. Ashrafi, and M. B. Blaschko: Combinatorial optimization
for low bit-width neural networks. International Conference on Pattern
Recognition (ICPR), 2022. [bibtex]
- Van Landeghem, J., M. Blaschko, B. Anckaert and M.-F.
Moens: Benchmarking
Scalable Predictive Uncertainty in
Text Classification. IEEE Access, 2022.
[bibtex; code; doi]
- Nguyen, H. H., S. Saarakkala, M. B. Blaschko, and A. Tiulpin:
CLIMAT:
Clinically-Inspired Multi-Agent Transformers for Knee Osteoarthritis
Trajectory Forecasting. IEEE International Symposium on Biomedical
Imaging (ISBI),
2022. [bibtex; code;
doi]
- Grujicic, D., T. Deruyttere, M.-F. Moens, and M. B. Blaschko:
Predicting Physical World
Destinations for Commands Given to
Self-Driving Cars. Thirty-Sixth AAAI Conference on Artificial
Intelligence, 2022. [bibtex; data;
doi]
- Wang, Z. and M. B. Blaschko: Optimizing
Slimmable Networks
for Multiple Target Platforms. Proceedings of the Northern Lights
Deep
Learning Conference, 2022. [bibtex; doi]
- Zhu, J. and M. B. Blaschko: Differentially Private SGD
with Sparse Gradients. arXiv:2112.00845, 2021.
[bibtex]
- Tiulpin, A. and M. B. Blaschko: Greedy Bayesian
Posterior
Approximation with Deep Ensembles. NeurIPS Workshop on Bayesian Deep
Learning, 2021. [bibtex; code]
- Hemelings, R., B. Elen, J. Barbosa Breda, M. B. Blaschko, P.
De Boever, and I. Stalmans: Deep
learning on fundus images detects glaucoma
beyond the optic disc. Scientific Reports, 2021.
[bibtex; doi]
- Thomas, S. S., J. Palandri, M. Lakehal-ayat, P. Chakravarty, F.
Wolf-Monheim, and M. B. Blaschko: Kinematics
Design of a MacPherson
Suspension Architecture based on Bayesian Optimization. IEEE
Transactions
on Cybernetics, 2021. [bibtex; doi]
- Popordanoska, T., J. Bertels, D. Vandermeulen,
F. Maes, M. B.
Blaschko: On
the relationship between calibrated predictors and unbiased
volume estimation. Medical Image Computing and Computer Assisted
Interventions (MICCAI), 2021. [bibtex; code;
doi]
- Popordanoska, T., A. Tiulpin, W. Bounliphone, and M. B. Blaschko:
Distribution-Independent
Confidence Intervals for the Eigendecomposition
of Covariance Matrices via the Eigenvalue-Eigenvector Identity. ICML
Workshop on Distribution Free Uncertainty Quantification,
2021.[bibtex; code]
- Tiulpin, A. and M. B. Blaschko: Greedy Bayesian Posterior
Approximation with Deep Ensembles. arXiv:2105.14275,
2021. [bibtex, code]
- Ma, X. and M. B. Blaschko: Meta-Cal: Well-controlled
Post-hoc
Calibration by Ranking. International Conference on Machine Learning
(ICML), 2021. [bibtex; code]
- Heremans, S., F. Turkelboom, M. Verhulst, M. B. Blaschko, B. Somers:
Remote
Sensing and Deep Learning for Environmental Policy Support: From
Theory to Practice. IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), 2021. [bibtex; doi]
- Hemelings, R., B. Elen, J. Barbosa Breda, M.
B. Blaschko, P.
De Boever, and I. Stalmans: Convolutional
neural network predicts visual
field threshold values from optical coherence tomography scans. The
Association for Research in Vision and Ophthalmology Annual Meeting
(ARVO), 2021. [bibtex]
- Zhu, J. and M. B. Blaschko:
R-GAP: Recursive Gradient
Attack on Privacy. International Conference on Learning
Representations (ICLR), 2021.
[bibtex; code]
- Rousseau, A.-J., T. Becker, J. Bertels, M. B. Blaschko,
and D. Valkenborg: Post
Training Uncertainty Calibration of Deep Networks for Medical Image
Segmentation. IEEE International Symposium on Biomedical Imaging
(ISBI), 2021. [bibtex;
code;
doi]
- Hemelings, R.,
B. Elen, M. B. Blaschko, J. Jacob, I. Stalmans, and P. De Boever: Pathological
myopia
classification with simultaneous lesion segmentation using deep
learning. Computer Methods and Programs in Biomedicine, 2021. [bibtex; doi]
- Nguyen, H. H., S. Saarakkala, M. B. Blaschko, and A. Tiulpin:
Annotation-Efficient
Deep Semi-Supervised Learning for Automatic Knee
Osteoarthritis Severity Diagnosis from Plain Radiographs. Medical
Imaging
meets NeurIPS Workshop, 2020. [bibtex; code]
- Ma, X. and M. B. Blaschko: Additive
Tree-Structured Conditional
Parameter Spaces in Bayesian Optimization: A Novel Covariance Function and
a Fast Implementation. IEEE Transactions on Pattern Analysis and
Machine
Intelligence, 2020. [bibtex; code; doi]
- Grujicic, D., G. Radevski, T. Tuytelaars, and M. B. Blaschko:
Learning
to ground medical text in a 3D human atlas. The SIGNLL Conference on
Computational Natural Language Learning (CoNLL), 2020.
[bibtex; code;
doi]
- Deruyttere, T., S. Vandenhende, D. Grujicic, Y. Liu, L. Van Gool, M.
Blaschko, T. Tuytelaars, and M.-F. Moens: Commands 4 Autonomous
Vehicles
(C4AV) Workshop Summary. European Conference on Computer Vision
Workshop
Proceedings, 2020. [bibtex; doi]
- Van Landeghem, J., M. B. Blaschko, B. Anckaert, and M.-F. Moens: Predictive
Uncertainty for
Probabilistic Novelty Detection in Text
Classification. ICML Workshop on Uncertainty and Robustness in Deep
Learning, 2020. [bibtex]
- Eelbode, T., J. Bertels, M. Berman, D. Vandermeulen, F. Maes, R.
Bisschops, and M. B. Blaschko: Evaluation with
Dice score and Jaccard
index for Medical Image Segmentation: Optimization in Theory and
Practice.
IEEE Transactions on Medical Imaging, 2020. [bibtex; code; doi]
- Grujicic, D., G. Radevski, T. Tuytelaars, and M. B. Blaschko:
Self-supervised
context-aware Covid-19 document exploration through atlas grounding.
ACL Workshop on Natural Language Processing for COVID-19, 2020.
[bibtex; code; video]
- Nguyen, H. H., S. Saarakkala, M. B. Blaschko, and A. Tiulpin: Semixup: In- and
Out-of-Manifold Regularization for Deep
Semi-Supervised Knee Osteoarthritis Severity Grading from Plain
Radiographs. IEEE Transactions on Medical Imaging, 2020.
[bibtex; code;
doi]
- Berman, M., L. Pishchulin, N. Xu, M. B. Blaschko, and G. Medioni:
AOWS:
Adaptive and Optimal Network Width Search with Latency Constraints.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2020. [bibtex; code;
doi]
- Yu, J. and M. B. Blaschko: The Lovász Hinge:
A Novel Convex Surrogate for Submodular
Losses. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 42(3):735-748, 2020. [bibtex; code;
doi]
- Berman, M. and M. B. Blaschko: Discriminative training of
conditional random fields with probably submodular constraints.
International Journal of Computer Vision, 2020. [bibtex; code; doi]
- Ma, X. and M. B. Blaschko: Additive
tree-structured covariance
function for conditional parameter spaces in Bayesian optimization.
Artificial Intelligence and Statistics (AISTATS), 2020.
[bibtex; code]
- Hemelings, R., B. Elen, J. Barbosa Breda, S. Lemmens, M. Meire, S.
Pourjavan, E. Vandewalle, S. Van de Veire, M. B. Blaschko, P. De Boever,
and I. Stalmans: Accurate
prediction of glaucoma from color fundus images
with a convolutional neural network that relies on active and transfer
learning. Acta Ophthalmologica, 98(1):e94-e100, 2020. [bibtex; doi]
- Ashrafi, A. and M. B. Blaschko: Combinatorial
discrete optimization of
linear classifiers with binary weights. Women in Machine Learning
Workshop
(WiML), Vancouver, Canada 2019. [bibtex]
- Ma, X., A. Rannen Triki, M. Berman, C. Sagonas, J. Cali, and M. B.
Blaschko: A
Bayesian optimization framework for neural network
compression. Proceedings of the International Conference on Computer
Vision (ICCV), 2019. [bibtex; doi]
- Rannen Triki, A., M. Berman, V. Kolmogorov, and M. B. Blaschko:
Function
Norms for Neural Networks. Workshop on
Statistical Deep Learning in Computer Vision at ICCV, 2019.
[bibtex; doi]
- Oyallon, E., S. Zagoryuko, G. Huang, N. Komodakis, S. Lacoste-Julien,
M. Blaschko, and E. Belilovsky: Scattering Networks for
Hybrid
Representation Learning. IEEE Transactions on Pattern Analysis and
Machine
Intelligence, 41(9):2208-2221, 2019. [bibtex; code;
doi]
- Srivastava, S., M. Berman, M. B. Blaschko, and D. Tuia: Adaptive
Compression-based Lifelong Learning. British Machine Vision Conference
(BMVC), 2019. [bibtex]
- Bertels, J., T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R.
Bisschops, and M. B. Blaschko: Optimizing
the Dice Score and Jaccard Index
for Medical Image Segmentation: Theory and Practice. Medical Image
Computing and Computer Assisted Interventions (MICCAI), 2019.
[bibtex; code; doi]
- Hemelings, R., B. Elen, I. Stalmans, P. De Boever, and M. B. Blaschko:
A
Fully Convolutional Network for Artery-Vein Segmentation in Fundus
Images. Computerized Medical Imaging and Graphics, 2019.
[bibtex; code
and annotations; doi]
- Thomas, S. S., J. Palandri, M. Lakehal-ayat, P. Chakravarty, F.
Wolf-Monheim, and M. B. Blaschko: Designing
MacPherson Suspension
Architectures using Bayesian Optimization. 28th Belgian Dutch
Conference
on Machine Learning (Benelearn), 2019.
[bibtex]
- Verelst, T., M. B. Blaschko,
and M. Berman: Generating superpixels using
deep image representations. arXiv:1903.04586,
2019. [bibtex]
- Berman, M., M. B. Blaschko, A. Rannen Triki, and J. Yu: Yes, IoU loss
is submodular - as a function of the mispredictions. arXiv:1809.01845,
2018. [bibtex]
- Berman, M. and M. B. Blaschko: Supermodular Locality
Sensitive
Hashes. arXiv:1807.06686, 2018. [bibtex]
- Rannen Triki, A., M. B. Blaschko,
Y. M. Jung, S.
Song, H. J. Han,
S. I. Kim, C.
Joo: Intraoperative
margin assessment of human breast tissue in optical
coherence tomography images using deep neural networks.
Computerized Medical Imaging and Graphics, 2018. [bibtex; code; doi]
- Schuurmans, M., M. Berman, and M. B. Blaschko: Efficient semantic image
segmentation with superpixel pooling. arXiv:1806.02705,
2018. [bibtex; code]
- Orlando, J. I., J. Barbosa Breda, K. van Keer, M. B. Blaschko, P. J.
Blanco, and C. A. Bulant: Towards
a glaucoma risk index based on simulated
hemodynamics from fundus images. Medical Image Computing and Computer
Assisted Intervention (MICCAI), 2018. [bibtex; code;
doi]
- Berman, M., A. Rannen Triki, and M. B. Blaschko: The
Lovász-Softmax
loss: A tractable surrogate for the optimization of the
intersection-over-union measure in neural networks. Computer Vision
and Pattern Recognition (CVPR),
2018. [bibtex; code;
video; doi]
- Verelst, T., M. Berman, and M. B. Blaschko: Generating
superpixels
with deep representations. CVPR Workshop on DeepVision: Deep Learning
in
Computer Vision, 2018. [bibtex]
- Orlando, J. I., E. Prokofyeva, M. del Fresno, and M. B. Blaschko: An Ensemble Deep Learning
Based Approach for Red Lesion Detection in Fundus Images.
Computer Methods and Programs in Biomedicine, 153:115-127,
2018. [bibtex;
code;
doi]
- Mehrkanoon, S., M. B. Blaschko, J. A. K. Suykens: Shallow
and Deep
Models for Domain Adaptation. European Symposium on Artificial Neural
Networks (ESANN), 2018. [bibtex]
- Rannen Triki, A., M. Berman, and M. B.
Blaschko: Stochastic Weighted Function
Norm Regularization. arXiv:1710.06703, 2017. [bibtex]
- Rannen Triki, A., R. Aljundi, M. B. Blaschko, and
T. Tuytelaars:
Encoder Based Lifelong
Learning. International Conference on Computer Vision (ICCV), 2017.
[bibtex; code;
doi]
- Orlando, J. I., K. van Keer, J. Barbosa Breda, H. L. Manterola, M. B.
Blaschko, and A. Clausse: Proliferative
Diabetic Retinopathy
Characterization based on Fractal Features: Evaluation on a Publicly
Available Data Set. Medical Physics, 44(12):6425-6434, 2017.
[bibtex; code;
doi]
- Blaschko, M. B.: Slack and
Margin Rescaling as Convex Extensions of Supermodular Functions.
International Conference on Energy Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR), 2017. [bibtex; code;
doi]
- Berman, M. and M. B. Blaschko: Optimization of the Jaccard
index for image segmentation with the Lovász hinge.
arXiv:1705.08790,
2017. [bibtex; code]
- Belilovsky, E.,
K. Kastner, G. Varoquaux, and
M. B. Blaschko: Learning
to Discover Sparse Graphical Models.
International Conference on Machine Learning (ICML),
2017. [bibtex; code;
video]
- Belilovsky, E., M. B. Blaschko, J. R. Kiros, R. Urtasun, R. Zemel:
Joint
Embeddings of
Scene Graphs and Images. International Conference on
Learning Representations Workshop Track (ICLR), 2017.
[bibtex]
- Belilovsky, E., K. Kastner, G. Varoquaux, and M. B. Blaschko:
Learning
to Discover Sparse Graphical Models. International Conference on
Learning Representations Workshop Track (ICLR), 2017.
[bibtex; code]
- Yu, J. and M. B.
Blaschko:
An Efficient Decomposition
Framework for Discriminative Segmentation with Supermodular Losses.
arXiv:1702.03690, 2017. [bibtex; code]
- Orlando, J. I., E. Prokofyeva, and M. B. Blaschko: A
Discriminatively Trained Fully Connected Conditional Random Field
Model for Blood Vessel Segmentation in Fundus
Images. IEEE Transactions on Biomedical Engineering, 64(1):16-27,
2017.
[bibtex; code and data; doi]
- Belilovsky, E., G. Varoquaux, and M. B. Blaschko: Testing
for Differences in Gaussian Graphical Models: Applications to Brain
Connectivity. Neural Information Processing Systems (NIPS), 2016.
[bibtex; code]
- Rannen Triki, A. and M. B. Blaschko: Stochastic
Function Norm
Regularization of DNNs. NIPS Workshop on Optimization for Machine
Learning
(OPT), 2016. [bibtex; code]
- Berman, M. and M. B. Blaschko: Efficient
optimization for probably
submodular constraints in CRFs. NIPS Workshop on Constructive Machine
Learning, 2016. [bibtex; code]
- Rannen Triki, A. and M. B. Blaschko: Stochastic
Function Norm
Regularization of Deep Networks. In Women in Machine Learning Workshop.
Barcelona, Spain, 2016. [bibtex; code]
- Yu, J. and M. B. Blaschko: Efficient Learning for Discriminative
Segmentation with Supermodular Losses. In Women in Machine Learning
Workshop. Barcelona, Spain, 2016. [bibtex; code]
- Bounliphone, W., E. Belilovsky, A. Tenenhaus, I.
Antonoglou, A. Gretton, and M. B. Blaschko: Fast Non-Parametric Tests of
Relative
Dependency and Similarity. arXiv:1611.05740, 2016.
[bibtex; code;
code]
- Orlando, J. I., E. Prokofyeva, M. del Fresno, and M. B.
Blaschko: Convolutional
Neural Network Transfer for Automated Glaucoma Identification.
International Symposium on Medical Information Processing and Analysis,
2016. [bibtex;
code;
doi]
- Yu, J. and M. B. Blaschko: Efficient Learning for
Discriminative
Segmentation with Supermodular Losses. British Machine Vision
Conference
(BMVC), 2016. [bibtex; code;
doi]
- Yu, J. and M. B. Blaschko: A
Convex Surrogate Operator for General
Non-Modular Loss Functions. Benelearn. Kortrijk, Belgium, 2016.
[bibtex; code]
- Rannen Triki, A. and M.
B. Blaschko: Stochastic
Function Norm Regularization of Deep Networks.
arXiv:1605.09085,
2016. [bibtex; code]
- Bounliphone, W. and M. B. Blaschko: A U-statistic
Approach to Hypothesis Testing for
Structure Discovery in Undirected Graphical Models. arXiv:1604.01733,
2016. [bibtex; code]
- Ghafarianzadeh, M., M. B. Blaschko, and G. Sibley: Efficient,
Dense, Object-based Segmentation from RGBD Video. IEEE International
Conference on Robotics and Automation (ICRA), 2016.
[bibtex;
doi]
- Yu, J. and M. B. Blaschko: A
Convex
Surrogate Operator
for General Non-Modular Loss Functions. International Conference on
Artificial Intelligence and Statistics (AISTATS), 2016. [bibtex; code]
- Zaremba, W. and M. B. Blaschko: Discriminative
training of CRF models with probably submodular
constraints. IEEE Winter Conference on Applications of Computer Vision
(WACV), 2016. [bibtex; code; doi]
- Bounliphone, W., E. Belilovsky, M. B. Blaschko, I. Antonoglou, and
A. Gretton: A Test of
Relative Similarity for Model Selection in Generative Models.
International Conference on Learning Representations (ICLR), 2016. [Note: Université Paris-Saclay STIC Doctoral School Best Scientific Contribution Award; bibtex; code]
- Gkirtzou, K. and M. B. Blaschko: The Pyramid Quantized Weisfeiler-Lehman Graph Representation. Neurocomputing, 173(3):1495-1507, 2016. [bibtex; code; doi]
- Sidahmed, H., E. Prokofyeva, and M. B. Blaschko:
Discovering Predictors of Mental Health Service Utilization with
k-support
Regularized Logistic Regression. Information Sciences, 329:937-949,
2016. [bibtex; code; doi]
- Blaschko, M. B. and J. Yu: Hardness Results for Structured
Learning and Inference with Multiple Correct Outputs. Constructive
Machine Learning Workshop at ICML, 2015. [bibtex]
- Belilovsky, E., A. Argyriou, G. Varoquaux, and M. B. Blaschko:
Convex Relaxations of Penalties for Sparse Correlated
Variables With Bounded Total Variation. Machine Learning, 100(2-3):533-553,
2015. [bibtex; code; doi]
- Yu, J. and M. B. Blaschko: Learning Submodular Losses with the
Lovász Hinge. International Conference on Machine Learning (ICML),
2015. [bibtex; code]
- Bounliphone, W., A. Gretton, A. Tenenhaus, and M. B. Blaschko: A
low variance consistent test of relative dependency. International
Conference on Machine Learning (ICML),
2015. [bibtex; code]
- Belilovsky, E., K. Gkirtzou, M. Misyrlis, A. B.
Konova, J. Honorio, N. Alia-Klein, R. Z. Goldstein, D. Samaras,
and M. B. Blaschko: Predictive sparse modeling of fMRI data for improved
classication, regression, and visualization using the
k-support norm. Computerized Medical Imaging and
Graphics, 46(1):40-46, 2015. [bibtex;
code; doi]
- Belilovsky, E., A. Argyriou, and M. B. Blaschko: Approximating
Combined Discrete Total Variation and Correlated Sparsity With
Convex Relaxations. NIPS Workshop on Discrete and Combinatorial
Problems in Machine Learning, 2014. [bibtex; code]
- Bounliphone, W., A. Gretton, and M. B. Blaschko: Kernel
non-parametric tests of relative dependency. NIPS Workshop on Modern
Nonparametrics 3: Automating the Learning Pipeline, 2014. [bibtex; code]
- Yu, J. and M. B. Blaschko: Lovasz Hinge for Learning Submodular
Losses. NIPS Workshop on Representation and Learning Methods for
Complex Outputs, 2014. [bibtex; code]
- Blaschko, M. B.: Advances in Empirical Risk Minimization for Image
Analysis and Pattern Recognition. Mémoire d'habilitation
à diriger des recherches, École Normale
Supérieure de Cachan, 2014. [bibtex]
- Orlando, J. I. and M. B. Blaschko: Learning fully-connected CRFs
for blood vessel segmentation in
retinal images. Medical Image Computing and Computer Assisted
Intervention (MICCAI),
2014. [bibtex; data; doi]
- Ghafarianzadeh, M., M. B. Blaschko, and G. Sibley: Unsupervised
Spatio-Temporal Segmentation with
Sparse Spectral-Clustering. British Machine Vision Conference (BMVC),
2014. [bibtex; doi]
- Blaschko, M. B., A. Mittal, and E. Rahtu: An O(n log n) Cutting
Plane Algorithm for Structured
Output Ranking. 36th German Conference on Pattern Recognition (GCPR),
2014. [bibtex; doi]
- Misyrlis, M., A. B. Konova, M. B. Blaschko, J.
Honorio, N. Alia-Klein, R. Z. Goldstein, D. Samaras: Predicting
cross-task behavioral variables from fMRI data using the k-support
norm. Sparsity Techniques in Medical Imaging,
2014. [Note: Best paper award; bibtex; code]
- Vedaldi, A., S. Mahendran, S. Tsogkas, S. Maji, R. Girshick,
J. Kannala, E. Rahtu, I. Kokkinos, M. B. Blaschko, D. Weiss,
B. Taskar, K. Simonyan, N. Saphra, and S. Mohamed:
Understanding Objects in Detail with Fine-grained Attributes.
Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR),
2014. [bibtex; code; data;
doi]
- Blaschko,
M. B.: Machine Learning
for Neurological Disorders. Centraliens, 632 (2014)
40-42. [bibtex]
- Zaremba, W., A. Gretton, and
M. Blaschko: B-tests: Low
Variance Kernel Two-Sample Tests. Neural
Information Processing Systems (NIPS),
2013. [bibtex; code]
- Gkirtzou, K., J. Honorio, D. Samaras, R. Goldstein, and
M. Blaschko: fMRI Analysis with Sparse Weisfeiler-Lehman Graph
Statistics. International Workshop on Machine Learning in Medical
Imaging (MLMI),
2013. [bibtex; code; doi]
- Gkirtzou, K., J.-F. Deux, G. Bassez, A. Sotiras, A. Rahmouni,
T. Varacca, N. Paragios, and
M. B. Blaschko: Sparse
classification with MRI based markers for neuromuscular disease categorization. International Workshop on
Machine Learning in Medical Imaging (MLMI),
2013.[bibtex; code; doi]
- Maji, S., E. Rahtu, J. Kannala, M. Blaschko, and
A. Vedaldi: Fine-Grained
Visual Classification of Aircraft. arXiv:1306.5151,
2013. [bibtex; code and data]
- Blaschko, M. B., W. Zaremba, and
A. Gretton: Taxonomic
Prediction with Tree-Structured Covariances. European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD),
2013. [bibtex; code
and data; doi]
- Blaschko, M. B., J. Kannala, and
E. Rahtu: Non
Maximal Suppression in Cascaded Ranking Models. Scandinavian
Conference on Image Analysis (SCIA),
2013. [bibtex; code and data; doi]
- Blaschko,
M. B.: A
Note on k-support Norm Regularized Risk
Minimization. arXiv:1303.6390, 2013. [bibtex; code]
- Zaremba, W., M. P. Kumar, A. Gramfort, and
M. B. Blaschko: Learning
from M/EEG data with variable brain activation
delays. International Conference on Information Processing in
Medical Imaging (IPMI),
2013. [bibtex; code
and data; doi]
- Gkirtzou, K., J. Honorio, D. Samaras, R. Goldstein, and
M. B. Blaschko: fMRI
Analysis of Cocaine Addiction Using k-support
Sparsity. International Symposium on Biomedical Imaging
(ISBI),
2013. [bibtex; code;
doi]
- Flint, A. and
M. B. Blaschko: Perceptron
Learning of SAT. Neural Information Processing Systems (NIPS),
2012. [bibtex]
- Mittal, A., M. B. Blaschko, A. Zisserman,
P. H. S. Torr: Taxonomic
Multi-class Prediction and Person Layout using Efficient
Structured Ranking. European Conference on Computer Vision
(ECCV), 2012. [bibtex; code; doi]
- Blaschko, M. B. and
C. H. Lampert: Guest
Editorial: Special Issue on Structured Prediction and
Inference. International Journal of Computer Vision (IJCV),
99(3):257-258, 2012. [bibtex; doi]
- Rahtu, E., J. Kannala, and M. B. Blaschko: Learning
a Category
Independent Object Detection Cascade.
International Conference on Computer
Vision (ICCV), 2011. [bibtex; code and
data; doi]
- Vedaldi, A., M. B. Blaschko, and A. Zisserman: Learning
Equivariant Structured Output SVM Regressors.
International Conference on Computer
Vision (ICCV), 2011. [bibtex; doi]
- Blaschko, M. B.: Branch
and Bound Strategies for Non-maximal
Suppression in Object Detection. International Conference on Energy
Minimization Methods in Computer
Vision and Pattern Recognition (EMMCVPR), 2011.
[bibtex; doi]
- Blaschko, M. B., J. A. Shelton, A. Bartels, C. H. Lampert
and A. Gretton:
Semi-supervised
Kernel Canonical Correlation Analysis with Application
to Human fMRI. Pattern Recognition Letters, 32(11):1572-1583,
2011.
[bibtex; doi]
- Blaschko, M. B., A. Vedaldi and A. Zisserman:
Simultaneous
Object Detection and Ranking with Weak Supervision.
Proceedings of the Twenty-Fourth Annual Conference on
Neural Information Processing Systems (NIPS 2010) [bibtex]
- Shelton, J. A., M. B. Blaschko, A. Gretton, J. Müller, E. Fischer
and A. Bartels, Similarities in Resting State and Feature-driven Activity:
Non-parametric Evaluation of Human fMRI. NIPS'10 Workshop on Learning and
Planning from Batch Time Series Data, 2010.[bibtex]
- Shelton, J. A., M. B. Blaschko, and A. Bartels: Augmentation of fMRI
Data Analysis using Resting State Activity and Semi-supervised Canonical
Correlation Analysis. Women in Machine Learning Workshop (WiML 2010),
Vancouver, BC, Canada 2010. [bibtex]
- Tuytelaars, T., C. H. Lampert, M. B. Blaschko
and W. Buntine:
Unsupervised Object
Discovery: A
Comparison. International Journal of Computer Vision (IJCV),
88(2):284-302,
2010. [bibtex; code;
doi]
- Blaschko, M. B., J. A. Shelton and A. Bartels:
Augmenting
Feature-driven fMRI Analyses: Semi-supervised Learning and
Resting State Activity.
Proceedings of the Twenty-Third Annual Conference on
Neural Information Processing Systems (NIPS 2009) [bibtex]
- Blaschko, M. B. and C. H. Lampert: Object
Localization with Global
and Local Context Kernels. British Machine Vision Conference (BMVC),
2009. [bibtex; video; doi]
- Lampert, C. H., M. B. Blaschko and T. Hofmann: Efficient
Subwindow
Search: A Branch and Bound Framework for Object Localization.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(12):2129-2142,
2009. [bibtex; code;
doi]
- Shelton, J. A., M. B. Blaschko, C. H. Lampert and A. Bartels:
Semi-supervised
Analysis of Human fMRI. Berlin Brain-Computer Interface
Workshop (BBCI), 2009. [bibtex]
- Shelton, J., M. B. Blaschko and A. Bartels: Semi-supervised
Subspace
Analysis of Human Functional Magnetic Resonance Imaging Data. Max
Planck
Institute for Biological Cybernetics Tech Report (185) (05
2009) [bibtex]
- Lampert, C. H. and M. B.
Blaschko: Structured Prediction
by Joint Kernel Support Estimation. Machine Learning, 77(2-3):249-269,
2009. [bibtex; doi]
- Blaschko, M. B.: Kernel
Methods in Computer Vision: Object
Localization, Clustering, and Taxonomy Discovery. Doctoral Thesis, Max
Planck Institute for Biological Cybernetics, Awarded by the Technische
Universität Berlin, 2009. [bibtex; doi]
- Blaschko, M. B. and A. Gretton: Learning
Taxonomies by Dependence
Maximization. Proceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems (NIPS 2008), 1-8. (Eds.)
Koller, D., D. Schuurmans, Y. Bengio, L. Bottou (01 2009) [bibtex]
- Lampert, C. H. and M. Blaschko: Joint Kernel
Support Estimation
for Structured Prediction. NIPS 2008 Workshop on "Structured Input -
Structured Output" 2008, 76 (12 2008) [bibtex]
- Blaschko, M. B. and A. Gretton: Taxonomy Inference
Using Kernel
Dependence Measures. Max Planck Institute for Biological Cybernetics
Tech Report (181) (11 2008) [bibtex]
- Blaschko, M. B. and C. H. Lampert: Learning to
Localize Objects
with Structured Output Regression. Computer Vision: ECCV 2008, 2-15.
(Eds.) Forsyth, D. A., P. H.S. Torr, A. Zisserman, Springer, Berlin,
Germany (10 2008) [Note: Best Student Paper Award; bibtex;
code;
doi]
- Blaschko, M. B., C. H. Lampert and A. Gretton: Semi-Supervised
Laplacian Regularization of Kernel Canonical Correlation Analysis.
Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2008, 133-145. (Eds.) Daelemans, W., B.
Goethals, K. Morik, Springer, Berlin, Germany (08
2008) [bibtex; doi]
- Blaschko, M. B. and A. Gretton: A Hilbert-Schmidt
Dependence
Maximization Approach to Unsupervised Structure Discovery.
Proceedings of the 6th International Workshop on Mining and Learning
with Graphs (MLG 2008), 1-3 (07 2008) [bibtex]
- Blaschko, M. B. and C. H. Lampert: Correlational
Spectral
Clustering. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2008), 1-8, IEEE
Computer Society, Los Alamitos, CA, USA (06 2008)
[bibtex; code;
doi]
- Lampert, C. H., M. B. Blaschko and T. Hofmann: Beyond
Sliding
Windows: Object Localization by Efficient Subwindow Search.
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2008), 1-8, IEEE Computer
Society, Los Alamitos, CA, USA (06 2008) [Note: Best paper
award; bibtex; code;
doi]
- Lampert, C. and M. B. Blaschko: A Multiple Kernel
Learning
Approach to Joint Multi-Class Object Detection. Pattern Recognition:
Proceedings of the 30th DAGM Symposium, 31-40. (Eds.) Rigoll, G.
Springer, Berlin, Germany (06 2008) [Note: Main Award DAGM
2008; bibtex; doi]
- Blaschko, M. B., T. Hofmann and C. H. Lampert: Efficient
Subwindow Search for Object Localization. Max Planck Institute for
Biological Cybernetics Tech Report (164) (08 2007) [bibtex]
- Blaschko, M. B. and T. Hofmann: Conformal
Multi-Instance Kernels.
NIPS 2006 Workshop on Learning to Compare Examples, 1-6 (12
2006) [bibtex]
- Lisin, D. A., M. A. Mattar, M. B. Blaschko, M. C. Benfield and E.
G. Learned-Miller: Combining
Local and Global Image Features for
Object Class Recognition. Proceedings of IEEE Workshop on Learning in
Computer Vision and Pattern Recognition (in conjunction with CVPR),
47 (06 2005) [bibtex; doi]
- Blaschko, M. B.: Support
Vector Classification of Images with Local
Features. M.S. Thesis, University of Massachusetts Amherst, Dept. of
Computer Science (05 2005) [bibtex]
- Blaschko, M. B., G. Holness, M. A. Mattar, D. Lisin, P.
E. Utgoff, A. R. Hanson, H. Schultz, E. M. Riseman, M. E. Sieracki, W.
M. Balch and B. Tupper: Automatic
In Situ Identification of Plankton.
Proceedings of the Seventh IEEE Workshops on Application of Computer
Vision (WACV/MOTION'05), 79 - 86 (01
2005) [bibtex; doi]
- Shapiro, M. D. and M. B. Blaschko: Stability
of Hausdorff-based
Distance Measures. Visualization, Imaging, and Image Processing, 1-6
(09
2004) [bibtex]
- Shapiro, M. D. and M. B. Blaschko: On
Hausdorff Distance
Measures. University of Massachusetts Amherst, Computer Science
Dept. Technical report (08 2004) [bibtex]