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Problem description

The aim of this exercise session is to control the position and attitude (aircraft orientation
relative to the vehicle’s center of gravity) of a quadcopter by manipulating the angular
velocities of its rotors. You will have to design an LQG control system that drives the
quadcopter to several checkpoints as fast as possible, within a room that is 6 meters wide,
6 meters long, and 3 meters high. A checkpoint is declared reached when the quadcopter
enters a sphere around it. The radius of this sphere (0.08 m) is the maximum admitted
error. In addition, the control system should be robust enough to guarantee that the
quadcopter can reach the checkpoints in time when carrying a small payload.

1 Quadcopter dynamics

A quadcopter is an aerial vehicle that is able to hover. It has four identical rotors arranged
at the corners of a square body, and its propellers or blades have a fixed angle of attack.
Figure 1 shows the diagram of the quadcopter that you will have to control. Notice that
the rotors are paired, and each pair rotates in a different direction. Motors 1 and 3 rotate
clockwise when looked from above, whereas motors 2 and 4 have a counter-clockwise
rotation. When all the motors rotate at the same angular velocity, the torques τ1, τ2,
τ3 and τ4 (these are the counter torques applied to the aircraft as a consequence of the
motors rotation) will cancel each other out and the quadcopter will not spin about its
zb-axis (ψ̇ = 0). The quadcopter will hover when the angular velocities are such that the
total thrust (f1 + f2 + f3 + f4) generated by the rotors is equal to the force of gravity.

In order describe the movement of the quadrotor and its attitude, two frames of
reference are used, namely, the inertial frame and the body frame (see Figure 1). The
inertial frame is defined by the ground, with gravity pointing in the negative z direction.
The body frame is defined by the orientation of the quadcopter, with the rotor axes
pointing in the positive zb direction and the arms pointing in the xb and yb directions.

The attitude of the quadcopter is determined by three angles, namely, roll-φ, pitch-θ
and yaw-ψ. The way of changing these angles by playing with the angular velocities of
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Figure 1: Quadcopter configuration. The roll, pitch and yaw angles are denoted by φ, θ
and ψ respectively. Motors 1 and 3 rotate clockwise and motors 2 and 4 rotate counter
clockwise as indicated by the arrows with black dotted lines. f1, f2, f3 and f4 are the
thrusts generated by the rotors about their centers of rotation. τ1, τ2, τ3 and τ4 are the
torques applied to the aircraft (counter torques) as a consequence of the spinning of the
rotors.

the rotors is illustrated in Figure 2. Changes in the roll and pitch angles are accompa-
nied by translational motion. It should be clear that a quadcopter is an underactuated
vehicle, since it only has 4 actuators (rotors) for controlling 6 degrees of freedom (three
translational, x, y, z and three rotational, φ, θ and ψ). Let’s denote the angular velocities
of the motors by ω1, ω2, ω3 and ω4, and the angular velocity to which the quadcopter
hovers by ωhover. Figure 2 shows some quadcopter motion scenarios which are explained
in the following lines:

• The rolling motion corresponds to a rotation of the quadcopter about the xb-axis.
It is obtained when ω2 = ω4 = ωhover and ω1 and ω3 are changed. For a positive
rolling, we have to set ω1 > ωhover and ω3 < ωhover. A negative rolling action is
produced when we set ω1 < ωhover and ω3 > ωhover.

• The pitch motion corresponds to a rotation of the quadcopter about the yb-axis. It
is obtained when ω1 = ω3 = ωhover and ω2 and ω4 are changed. For a positive pitch,
we have to fix ω2 > ωhover and ω4 < ωhover. A negative pitch action is generated
when we fix ω2 < ωhover and ω4 > ωhover.

• The yaw motion corresponds to a rotation of the quadcopter about the zb-axis. It
is produced by the difference in the torque developed by each pair of rotors. Since
the rotors are paired, two create a clockwise torque and two an anticlockwise one;
by varying the angular speed of one pair over the other, the net torque applied to
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Figure 2: Illustration of the quadcopter motion obtained by varying the angular velocities
of its rotors M1, M2, M3 and M4.

the aircraft changes which results in the yaw motion. For a positive yaw, we have
to set (ω1 = ω3) > ωhover and (ω2 = ω4) < ωhover. A negative yaw action is achieved
when we fix (ω1 = ω3) < ωhover and (ω2 = ω4) > ωhover

• The vertical takeoff and landing motions (change in the z-axis) are obtained by
equally augmenting or diminishing the angular speed of all motors with respect to
ωhover.

2 Quadcopter model

The translational motion of the quadcopter in the inertial frame is described by the
following set of equations:

m





ẍ
ÿ
z̈



 =





0
0

−mg



+RT b + FD (1)

where x, y and z are the coordinates of the position of the quadcopter in the inertial
frame, m is the mass of the system, g is the acceleration due to gravity, FD is the drag
force due to air friction, T b ∈ R

3 is the thrust vector in the body frame, and R ∈ R
3×3
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is the rotation matrix that relates the body frame with the inertial frame and is defined
as follows:

R =





cosψ cos θ cosψ sin θ sinφ− cosφ sinψ sinψ sinφ+ cosψ cosφ sin θ
cos θ sinψ cosψ cosφ+ sinψ sin θ sinφ cosφ sinψ sin θ − cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ



 .

The drag FD due to air friction is modelled as a force proportional to the linear velocity
in each direction,

FD = −kd





ẋ
ẏ
ż



 .

Here, kd is the air friction coefficient. The thrust fi generated by the ith rotor is given
by the following expression,

fi = kω2

i , for i = 1, ..., 4,

where k is the propeller/rotor lift coefficient and ωi is the angular velocity of the ith
motor. The total thrust T b generated by the 4 rotors (in the body frame) is given by

T b =
4

∑

i=1

fi = k





0
0

∑

4

i=1
ω2

i



 .

In this study it is assumed that the dynamics of the motors is much faster than the one
of the quadcopter, and therefore is not taken into account. Since the angular velocity of
each rotor is typically proportional to the applied voltage, we have that

ω2

i = cmv
2

i , for i = 1, ..., 4,

where cm is a constant and v is the voltage applied to the rotor.
While it is convenient to have the linear equations of motion in the inertial frame,

the rotational equations of motion are useful to us in the body frame, so that we can
express rotations about the center of the quadcopter instead of about the inertial center.
To this end we can use the Euler’s equations for rigid body dynamics, which are defined
as follows:

Iω̇ + ω × (Iω) = τ (2)

where “×” denotes cross product, I ∈ R
3×3 is the inertia matrix, ω = [ωx ωy ωz]

T is the

angular velocity vector, and τ = [τφ τθ τψ]
T is the vector of external torques.

We can model the quadcopter as two thin uniform rods crossed at the origin with a
point mass (motor) at each end. This results in a diagonal inertia matrix of the following
form:

I =





Ixx 0 0
0 Iyy 0
0 0 Izz



 ,

where Ixx, Iyy and Izz are the moments of inertia of the quadcopter about the xb, yb and
zb axes respectively. After computing the cross product, equation (2) reduces to:





Ixx 0 0
0 Iyy 0
0 0 Izz









ω̇x
ω̇y
ω̇z



 =





τφ
τθ
τψ



−





(Iyy − Izz)ωyωz
(Izz − Ixx)ωxωz
(Ixx − Iyy)ωxωy



 . (3)
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The roll τφ and pitch τθ torques are derived from standard mechanics as follows:

τφ = L (f1 − f3) = Lk
(

ω2

1
− ω2

3

)

= Lkcm
(

v2
1
− v2

3

)

τθ = L (f2 − f4) = Lk
(

ω2

2
− ω2

4

)

= Lkcm
(

v2
2
− v2

4

)

,

where L is the distance between the rotor and the quadcopter center (radius). As it
was discussed earlier, all the rotors apply torques to the aircraft about its zb-axis while
they rotate. In order to have an angular acceleration about the zb-axis, the total torque
generated by the rotors has to overcome the drag forces. The total torque about the
zb-axis, that is the yaw τψ torque is given by the following equation:

τψ = b
(

ω2

1
− ω2

2
+ ω2

3
− ω2

4

)

= bcm
(

v2
1
− v2

2
+ v2

3
− v2

4

)

where b is the propellers drag coefficient.
The roll, pitch and yaw rates are related to the components of the angular velocity

vector by means of the following expression:





φ̇

θ̇

ψ̇



 = Qω =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ









ωx
ωy
ωz



 (4)

where Q is a projection matrix.
Finally, from equations (1), (3), and (4) we can write down the the entire model of

the quadcopter in a state space form as follows:

ẋ = vx (5)

ẏ = vy (6)

ż = vz (7)

v̇x = −
kd
m
vx +

kcm
m

(

sinψ sinφ+ cosψ cosφ sin θ
)(

v2
1
+ v2

2
+ v2

3
+ v2

4

)

(8)

v̇y = −
kd
m
vy +

kcm
m

(

cosφ sinψ sin θ − cosψ sinφ
)(

v2
1
+ v2

2
+ v2

3
+ v2

4

)

(9)

v̇z = −
kd
m
vz − g +

kcm
m

(

cos θ cosφ
)(

v2
1
+ v2

2
+ v2

3
+ v2

4

)

(10)

φ̇ = ωx + ωy(sinφ tan θ) + ωz(cosφ tan θ) (11)

θ̇ = ωy cosφ− ωz sinφ (12)

ψ̇ =
sinφ

cos θ
ωy +

cosφ

cos θ
ωz (13)

ω̇x =
Lkcm
Ixx

(

v2
1
− v2

3

)

−

(

Iyy − Izz
Ixx

)

ωyωz (14)

ω̇y =
Lkcm
Iyy

(

v2
2
− v2

4

)

−

(

Izz − Ixx
Iyy

)

ωxωz (15)

ω̇z =
bcm
Izz

(

v2
1
− v2

2
+ v2

3
− v2

4

)

−

(

Ixx − Iyy
Izz

)

ωxωy. (16)

Notice that in this model we have not considered the ground effect. This means that
in principle we can have negative values for the z coordinate of the quadcopter. If we
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Table 1: Parameters of the Quadcopter model

Parameter Symbol Value Unit

Mass of the quadcopter m 0.5 kg

Radius of the quadcopter L 0.25 m

Propeller lift coefficient k 3 · 10−6 Ns2

Propeller drag coefficient b 1 · 10−7 Nms2

Acceleration of gravity g 9.81 m/s2

Air friction coefficient kd 0.25 kg/s

Quadcopter inertia about the xb-axis Ixx 5 · 10−3 kg m2

Quadcopter inertia about the yb-axis Iyy 5 · 10−3 kg m2

Quadcopter inertia about the zb-axis Izz 1 · 10−2 kg m2

Motor constant cm 1 · 104 v−2s−2

denote the state vector of the system by x ∈ R
12 = [x y z vx vy vz φ θ ψ ωx ωy ωz]

T ,

and we define the input and output vectors as u ∈ R
4 = [v2

1
v2
2
v2
3
v2
4
]
T
and y ∈ R

6 =
[x y z φ θ ψ ]T respectively, we can write down the model of the quacopter in a more
compact way,

ẋ = ξ(x,u) (17)

y = Cx (18)

where C ∈ R
6×12 is the output matrix and ξ is a nonlinear vector function defined by (5)-

(16). Notice that the the input vector is in terms of the squared voltages of the rotors,
and therefore your control system should compute v2

1
, v2

2
v2
3
and v2

4
instead of v1, v2

v3 and v4. The maximum voltage that can be applied to the motors is 10 v. To make sure
that this constraint is not violated, the circuitry within the quadcopter incorporates a
clipping mechanism. Observe that negative voltages would change the spinning direction
of the motors and therefore would invalid the model that has been derived. Based on the
previous considerations, it is clear that the input constraints of the system are given by

0 v2 ≤ u1, u2, u3, u4 ≤ 100 v2 (19)

where u1 = v2
1
, u2 = v2

2
, u3 = v2

3
and u4 = v2

4
. In the present setup, the attitude (φ, θ, ψ)

of the quadcopter is computed from the readings of a gyroscope and an accelerometer
installed in the aircraft. The position (x, y, z) of the vehicle is determined by a set of
cameras installed within the room.

3 Available tools

In order to simplify the control design process, you have at your disposal the following
tools:
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• A *.mat file references xx.mat (where xx corresponds to your group number)
that contains the sequence of references for the x, y, and z coordinates of the
quadcopter (references), the maximum simulation time (Tmax ) and the initial state
of the system (x0 quadcopter). You have to load this file first before performing any
simulation with Simulink. You can always check which variables are in the workspace
by typing the Matlab command whos.

• A Simulink file template quadcopter.slx containing the nonlinear model of the
quadcopter and a block that imports the reference trajectory from the workspace
of Matlab. The input of the quadcopter block is a vector containing the squared
voltages of the rotors (denoted by u(t)) and the outputs of this block are the entire
state vector (denoted by x(t)) and the measured variables (denoted by y(t)), to
which some measurement noise has been added.

• A protected Matlab function generate report.p for visualizing and evaluating the
simulation results after a Simulink run. It plots the trajectory followed by the
quadcopter (blue line) within the room as well as the checkpoints (red circles), the
evolution in time of the inputs or control actions (with indication of the input lim-
its), the evolution of the angles ψ, θ and ψ of the quadcopter, and the evolution
of the x, y and z coordinates together with their setpoints and maximum allowed
deviations (0.08 m). This function also gives a simulation report indicating the
number of checkpoints reached, and the time that the aircraft has spent travel-
ing from one checkpoint to the next one. The quadcopter has a time limit of 7
seconds to reach each checkpoint. For simulations where it is assumed that the
entire state vector is available (no observer), you should type in the command win-
dow generate report(0). For the case where the state vector is estimated by an
observer, you should type generate report(1).

Remarks:

• Do not bother about the file quadcopter sfunction.p. It is used for implement-
ing the nonlinear model of the quadcopter in Simulink. Additionally, the file
icon quad.png provides an image mask for the Simulink block representing the
aircraft.

• Make sure that the folder where you downloaded all the files is part of the Matlab
path (or working directory).

4 Assignment

4.1 Linearization

In order to design an LQR or an LQG controller, it is necessary to have a linear approxi-
mation of the nonlinear model around an operating point. In this exercise such operating
point, which is also an equilibrium point, is the one of a stationary flight (the quadcopter
is in hover).

• Determine the linearization/equilibrium point of the vehicle for φ = θ = ψ = 0 and
x = y = z = 0.
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• Linearize the nonlinear model (5)-(16) about the equilibrium point. Do not forget
to provide both the symbolic expression and the numerical values of the matrices
describing the resulting linear model,

∆ẋ = A∆x+B∆u

∆y = C∆x

where ∆x = x − x∗, ∆u = u − u∗ and ∆y = y − y∗ are the deviation variables
and x∗, u∗ and y∗ are the values of x, u and y at the operating point.

Note: It is always a good idea to verify how good your linear model is in approximating
the nonlinear model. To this end you can apply a small step to the inputs of the models
and compare their respective outputs. We suggest you to apply the following step signal:

∆u1 = ∆u2 = ∆u3 = ∆u4 =







t < 1, 0

t ≥ 1, 5

and simulate both models for 5 seconds. Do not forget to perform the proper conversions
between the deviation variables (∆x, ∆u, ∆y) and the original variables (x, u, y) at the
moment of using the models. The previous test also serves to check whether you make a
mistake or not when you derived the linear model.

4.2 Discretization

• Choose a discretization rule (e.g., zero-order hold, Euler’s rule, bilinear transforma-
tion - also called tustin’s rule, etc.) and find a discrete-time state-space model for
the quadcopter. Use a sampling time of Ts = 0.05 s. Provide the numerical values
of the matrices describing the discrete-time model.

• Is the discrete-time model stable?, what are the poles?, is it controllable?, is it
observable?, is it stabilisable?, is it detectable?, is it minimal?, are there transmission
zeros?

Remark: The discrete-time model derived here, is the model that you have to use for
designing the control schemes of the following subsections.

4.3 LQR control

The control goal is to drive the quadcopter to several checkpoints as fast as possible
(tracking problem). Furthermore, the control system should be capable of driving the
aircraft to the checkpoints when carrying a payload of 0.1 kg. A checkpoint is declared
reached when the quadcopter enters a sphere around it. The radius of this sphere, which
is 0.08 m, is the maximum admitted error. The quadcopter is confined to a room that is
6 meters wide, 6 meters long, and 3 meters high. In this section it is assumed that

the entire state-vector is available. So, use the proper output of the quadcoper block
in Simulink. Do not forget that for generating a simulation report, you have to type in
the command window generate report(0) after a Simulink simulation run.
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• Experiments without payload. Initially make sure that the payload parameter of
the quadcopter block is set to 0 kg (to access the parameters window double-click
the quadcopter block).

– Implement a full-state feedback controller (Nx, Nu, K) based on an LQR
kind of feedback.

– Implement an LQR controller with integral action. Keep in mind that we are
interested in tracking only the x, y and z coordinates of the vehicle. So, set the
number of integrators accordingly. Verify the controllability of the augmented
system.

– Briefly describe the design process, indicating how you obtained the weighting
matrices for both control schemes.

– Discuss the simulation results. Which control strategy performs better?

• Experiments with payload. Adding a payload or cargo to the quadcopter can be
seen as a disturbance that affects the dynamics of the aircraft. Now, make sure that
the payload parameter of the quadcopter block is set to 0.1 kg.

– Keep the weighting matrices previously found, and simulate again both control
systems.

– What is the effect of the payload on the performance of the controllers? which
control system is more robust? Discuss. You can change the tuning of your
controllers if they become unstable.

– What are the fundamental differences between the full-state feedback controller
and the integral controller?

Remark: It is extremely important to set the “sample time property” of the Simulink
blocks (gains, discrete-time blocks, etc.) that are part of your controller to Ts.

4.4 LQG control

For this section you have to use the LQR controller with integral action that you designed
in Section 4.3. Additionally, the assumption that the entire state-vector is avail-

able is NOT valid anymore. Therefore your control system only has at its disposal
the measurements given by the sensors. Do not forget that for generating a simulation
report, you have to type in the command window generate report(1) after a Simulink
simulation run.

• Design and implement a Kalman Filter for estimating the entire state-vector. The
the variance of the measurement noise for x, y, z is 2.5 · 10−5 and for φ, θ, ψ is
7.57 · 10−5. Briefly discuss how you fixed the covariance matrix of the process
noise and the covariance matrix of the measurement noise. Note: In the discrete-
time stochastic model of the system (see page 174 of the course notes), assume
B1 = I ∈ R

12×12, the identity matrix.

• Carry out a simulation with a payload of 0 kg. What is the effect of adding a
Kalman filter on the overall performance of the control system? Discuss the results.
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• Perform a simulation with a payload of 0.1 kg, and compare the results with the
ones obtained in the previous section. Discuss.

4.5 State feedback design via Pole Placement

In this section you have to design and implement a full-state feedback controller (Nx,
Nu, K) using the pole placement technique. Likewise, as in the previous section, the
assumption that the entire state-vector is available is NOT valid anymore.
Hence you also have to design a state estimator using the pole placement methodology.

• Briefly describe the design process. What criteria did you use to select the closed-
loop poles for the state feedback controller? and how did you select the poles for
the state estimator?

• Carry out simulations with and without payload, and compare the results with the
ones obtained with the LQG controller. Discuss.

5 Deliverables

We expect from you:

• A written report (a hard copy and a digital copy).

• All the Simulink and Matlab files that allow us to reproduce your results. Also
provide a document where you briefly explain the purpose of each of them.

Remarks about the report: The report should be written preferably in English,
and it should address every single point of Section 4. Your report should describe the
technical aspects of the designed controllers, and clearly it should state which design
specifications were met and which were not (and why they could not be achieved).

Not only the technical correctness of your report is evaluated but also the quality and
presentation. So, make sure that everything is clear and well explained. For example,
make sure that you label every axis of every plot, that your figures include legends if
necessary, that in the text you discuss or address what is presented in every figure of the
manuscript, that the text is free of typos and well redacted, etc. Do not forget to include
the Simulink diagrams that you have created. If a Simulink diagram contains subsystems,
you should also present the contents of these subsystems (excluding the Simulink blocks
that were given to you). In addition, your report must be self-contained. Do not refer
the reader to your Matlab files. Keep in mind that we only ask you for your Matlab files
for verification purposes.

6 Examination

At the end of the semester you will have an oral exam, where you will have to defend
your design choices, explain technical details, answer some general questions, etc. Further
information (dates of examination, how the points are distributed between exercises and
practicum, etc.) can be found in the webpage of the Computergestuurde Regeltechniek
course in Toledo.
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