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Abstract

We tackle the low-efficiency flaw of vision transformer caused by the high compu-
tational/space complexity in Multi-Head Self-Attention (MHSA). To this end, we
propose the Hierarchical MHSA (H-MHSA), whose representation is computed in
a hierarchical manner. Specifically, our H-MHSA first learns feature relationships
within small grids by viewing image patches as tokens. Then, small grids are
merged into larger ones, within which feature relationship is learned by viewing
each small grid at the preceding step as a token. This process is iterated to grad-
ually reduce the number of tokens. The H-MHSA module is readily pluggable
into any CNN architectures and amenable to training via backpropagation. We
call this new backbone TransCNN, and it essentially inherits the advantages of
both transformer and CNN. Experiments demonstrate that TransCNN achieves
state-of-the-art accuracy for image recognition. Code and pretrained models are
available at https://github.com/yun-liu/TransCNN. This technical report
will keep updating by adding more experiments.

1 Introduction

In the last decade, convolutional neural networks (CNN) have been the go-to architecture in computer
vision, owing to their powerful capability in learning representations from images/videos [1–11].
Meanwhile, in another field of natural language processing (NLP), the transformer architecture [12]
has been the de-facto standard to handle long-range dependencies [13, 14]. Transformer relies heavily
on self-attention to model global relationships of sequence data. Although global modelling is also
essential for vision tasks, the 2D/3D structures of vision data make it less straightforward to apply
transformers therein. This predicament was recently broken by Dosovitskiy et al. [15], by applying a
pure transformer to sequences of image patches.

Motivated by [15], a large amount of literature on vision transformer has emerged to resolve the
problems caused by the domain gap between computer vision and NLP [16–20]. From our point of
view, one major problem of vision transformers is that the sequence length of image patches is much
longer than that of tokens (words) in an NLP application, thus leading to high computational/space
complexity when computing the Multi-Head Self-Attention (MHSA). Some efforts have been ded-
icated to resolving this problem. PVT [18] and MViT [20] downsample the feature to compute
attention in a reduced length at the cost of losing contextual details. Swin Transformer [17] computes
attention within small windows to model local relationships. It gradually enlarges the receptive field
through shifting windows and stacking more layers. From this point of view, Swin Transformer [17]
may still be suboptimal because it works in a similar manner to CNN and needs many layers to model
long-range dependencies [15]. Instead of computing the attention score in the spatial dimension,
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CoaT [19] computes attention in a channel-wise manner and thus may be less effective in modelling
global feature dependencies [21].

We propose Hierarchical MHSA (H-MHSA) to make self-attention computation in transformer
flexible and efficient. Specifically, we first split an image into patches, each of which is treated in
the same way as a token [15]. Instead of computing attention across all patches, we further group
patches into small grids and compute attention within each grid. This step captures local relationships
and yields more discriminative local representations. Then, we merge these small grids into larger
ones and compute attention within each new grid by viewing small grids at the preceding step as
tokens. In this way, we essentially capture feature relationships in the larger region. This process is
iterated to reduce the number of tokens gradually. Throughout this procedure, our H-MHSA computes
self-attention in the increasing region sizes step by step and naturally models the global relationship in
a hierarchical manner. Since each grid at each step only has a small number of tokens, we can reduce
the computational/space complexity of vision transformer dramatically. We empirically observe that
this strategy brings us better generalization results.

Recent efforts in transformers mainly aim at developing a unified framework for both vision and NLP
tasks. Unlike those approaches, we argue that both the global dependencies and locality modelling
are essential for vision tasks [22–24]. Motivated by this, we introduce a novel architecture design to
inherit those merits from both transformers and CNNs, respectively. More specifically, the feature
enhancement part in conventional transformers is a multilayer perceptron (MLP) for the underlying
data patch. We argue this module is less powerful for “local-invariant" vision data. Combining the
H-MHSA module with a more potent convolutional layer may enhance the representation ability
of the network for vision data. By observing this, we exploit a new concept of Transformer in
Convolutional Neural Networks (TransCNN). Unlike previous transformer networks that operate
on sequence data, TransCNN processes 3D feature maps directly and is thus compatible with
advanced CNN techniques proposed in the last decade. TransCNN essentially inherits the merits of
CNN and transformers and thus works well in learning scale/shift-invariant feature representations
and modelling long-dependencies in the input data. Experiments on the benchmarking datasets
demonstrate that TransCNN achieves state-of-the-art performance when compared with both CNN-
based and transformer-based competitors.

2 Related Work

Convolutional neural networks. More than two decades ago, LeCun et al. [25] built the first
deep CNN, i.e., LeNet, for document recognition. About ten years ago, AlexNet [1] introduced
pooling layers into CNN and pushed forward the state of the art of ImageNet classification [26]
significantly. Since then, CNN has become the de-facto standard of computer vision owing to its
powerful ability in representation learning. Brilliant achievements have been seen in this direction.
VGGNet [2] investigates networks of increasing depth using small (3 × 3) convolution filters.
ResNet [3] manages to build very deep networks by resolving the gradient vanishing/exploding
problem with residual connections [27]. GoogLeNet [28] presents the inception architecture [29, 30]
using multiple branches with different convolution kernels. ResNeXt [31] improves ResNet [3]
by replacing the 3 × 3 convolution in the bottleneck with a grouped convolution. DenseNets [32]
presents dense connections, i.e., using the feature maps of all preceding layers as inputs for each
layer. MobileNets [33, 34] decompose the traditional convolution into a pointwise convolution
and a depthwise separable convolution for acceleration, and an inverted bottleneck is proposed for
ensuring accuracy. ShuffleNets [35, 36] further decompose the pointwise convolution into pointwise
group convolution and channel shuffle to reduce computational cost. MansNet [37] proposes an
automated mobile neural architecture search approach to search for a model with a good trade-off
between accuracy and latency. EfficientNet [38] introduces a new scaling method that uniformly
scales all dimensions of depth/width/resolution of the searched architecture of MansNet [37]. The
above advanced techniques are the engines driving the development of computer vision in the last
decade. Instead of totally abandoning them as done in recent transformer works [16–20], we aim at
introducing a generic framework that could inherit the advantages of both CNNs and transformers.

Self-attention mechanism. Inspired by the human visual system, the self-attention mechanism
is usually adopted to enhance essential information and suppress noisy information. STN [39]
presents the first spatial attention model through learning an appropriate spatial transformation for
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each input. Chen et al. [40] proposed the first channel-wise attention model and achieved promising
results on the image captioning task. Wang et al. [41] explored self-attention in deep residual
networks. SENet [21] applies channel-wise attention to backbone network design and boosts the
accuracy of ImageNet classification [26]. CBAM [42] sequentially applies channel-wise and spatial
attention for adaptive feature refinement in deep networks. BAM [43] produces a 3D attention map
by combining channel-wise and spatial attention. SK-Net [44] uses channel-wise attention to fuse
multiple branches with different kernel sizes selectively. Non-local network [45] presents non-local
attention for capturing long-range dependencies. ResNeSt [46] is a milestone in this direction. It
applies channel-wise attention on different network branches to capture cross-feature interactions
and learn diverse representations. Our work shares some similarities with these works by applying
self-attention for adaptive feature refinement. The difference is that we propose H-MHSA to learn
global relationships rather than a simple feature recalibration using spatial or channel-wise attention
in these works.

Vision transformer. Transformer [12] entirely relies on self-attention to handle long-range
dependencies of sequence data. It was first proposed for NLP tasks [13, 14]. In order to apply
transformers on image data, Dosovitskiy et al. [15] split an image into patches and treated them
as tokens. Hence, a pure transformer [12] can be adopted. Such a vision transformer (ViT) attains
competitive accuracy for ImageNet classification [26]. More recently, lots of efforts have been
dedicated to improving ViT. T2T-ViT [47] proposes to split an image into tokens of overlapping
patches so as to represent local structure by surrounding tokens. CaiT [48] builds a deeper transformer
network by introducing a per-channel weighting and specific class attention. DeepViT [49] proposes
Re-attention to re-generate attention maps to increase their diversity at different layers. DeiT
[50] presents a knowledge distillation strategy for improving the training of ViT [15]. Srinivas
et al. [51] tried to add the bottleneck structure to vision transformer. Some works build pyramid
transformer networks to generate multi-scale features [16–20]. PVT [18] adopts convolution operation
to downsample the feature map in order to reduce the sequence length in MHSA, thus reducing
the computational load. Similar to PVT [18], MViT [20] utilizes pooling to compute attention
on a reduced sequence length. Swin Transformer [17] computes attention within small windows
and shifts windows to gradually enlarge the receptive field. CoaT [19] computes attention in the
channel dimension rather than in the traditional spatial dimension. In this paper, we introduce novel
designs to reduce the computational complexity of MHSA and maintain the global relationship
modelling capacity of transformers. Another salient merit of the proposed method is that the new
H-MHSA module could be easily pluggable into any CNN architectures and thus making the resulting
architecture inherit the advantages of both CNNs and Transformers.

3 Methodology

In this section, we first provide a brief review of vision transformer [15] in §3.1. Then, we present
our H-MHSA in §3.2. Finally, we present the details of TransCNN in §3.3.

3.1 Review of Vision Transformer

Transformer [12, 15] relies heavily on MHSA to model long-range relationships. Suppose X ∈
RN×C denotes the input, where N and C are the number of tokens and the feature dimension of
each token, respectively. We define the query Q = XWq, the key K = XWk, and the value
V = XWv, where Wq ∈ RC×C , Wk ∈ RC×C , and Wv ∈ RC×C are the weight matrices of
linear transformations. With a mild assumption that the input and output have the same dimension,
the traditional MHSA can be calculated as

A = Softmax(QKT/
√
d)V, (1)

in which
√
d means an approximate normalization, and the Softmax function is applied to the rows

of matrix. Note that we omit the concept of multiple heads here for simplicity. In Equ. (1), the matrix
product of QKT first computes the similarity between each pair of tokens. Each new token is then
derived over the combination of all tokens. After the computation of MHSA, a residual connection is
further added to ease the optimization, like

A′ = AWp + X, (2)
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Figure 1: Illustration of the proposed TransCNN. GAP: global average pooling; FC: fully-connected
layer; DW Conv: depthwise separable convolution; IRB: Inverted Residual Bottleneck [34]; TDB:
Two-branch Downsampling Block. ×Li means that the H-MHSA + IRB block is repeated for Li

times. H and W denote the height and width of the input image, respectively. S denotes the stride of
the convolution. SiLU [52] is a nonlinearization function.

in which Wp ∈ RC×C is a weight matrix for feature projection. At last, an MLP is adopted to
enhance the representation, which can be formulated as

Y = MLP(A′) + A′, (3)

where Y denotes the output of a transformer block.

The computational complexity of MHSA (Equ. (1)) is

Ωtime(MHSA) = 3NC2 + 2N2C. (4)

It is easy to infer that the space complexity (memory consumption) also includes the term O(N2).
O(N2) could become very large for high-resolution inputs, and this limits the applicability of
transformers for vision tasks. Motivated by this, we aim at reducing such complexity and maintaining
the capacity of global relationship modelling without the risk of reduced performances.

3.2 Hierarchical Multi-Head Self-Attention

Here, we introduce how to reduce the computational/space complexity of Equ. (1) using our H-MHSA.
Instead of computing attention across the whole input, we compute attention in a hierarchical manner
so that each step only processes a limited number of tokens. Fig. 1b shows the paradigm of H-MHSA.
Suppose the input feature map X ∈ RH0×W0×C has a height of H0 and a width of W0, and we have
N = H0 ×W0. We divide the feature map into small grids with the size of G0 ×G0 and reshape the
feature map as

X ∈ RH0×W0×C → X′ ∈ R(
H0
G0
×G0)×(W0

G0
×G0)×C → X′ ∈ R(

H0
G0
×W0

G0
)×(G0×G0)×C . (5)

With Q = X′Wq , K = X′Wk, and V = X′Wv , Equ. (1) is applied to generate local attention A0.
To ease network optimization, we reshape A0 back to the shape of X through

A0 ∈ R(
H0
G0
×W0

G0
)×(G0×G0)×C → A0 ∈ R(

H0
G0
×G0)×(W0

G0
×G0)×C → A0 ∈ RH0×W0×C , (6)
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and add a residual connection to it
A0 = X + A0. (7)

Since A0 is computed within each small G0 × G0 grid, the computational/space complexity is
reduced significantly.

For the i-th (i > 0) step, we view each smaller grid Gi−1 × Gi−1 at the (i-1)-th step as a token,
which can be simply achieved by downsampling the attention feature Ai−1:

A′i−1 = MaxPoolGi−1
(Ai−1) + AvePoolGi−1

(Ai−1), (8)

where MaxPoolGi−1
(·) and AvePoolGi−1

(·) mean to downsample Ai−1 by Gi−1 times using max-
imum pooling and average pooling (with kernel size and stride of Gi−1), respectively. Hence, we
have A′i−1 ∈ RHi×Wi×C with Hi = H0/(G0G1 · · ·Gi−1) and Wi = W0/(G0G1 · · ·Gi−1). Then,
we divide A′i−1 into Gi ×Gi grids and reshape it:

A′i−1 ∈ RHi×Wi×C → A′i−1 ∈ R(
Hi
Gi
×Gi)×(

Wi
Gi
×Gi)×C → A′i−1 ∈ R(

Hi
Gi
×Wi

Gi
)×(Gi×Gi)×C . (9)

With Q = A′i−1W
q, K = A′i−1W

k, and V = A′i−1W
v, Equ. (1) is called to obtain the attention

feature Ai. Ai is reshaped back to the shape of the input, like

Ai ∈ R(
Hi
Gi
×Wi

Gi
)×(Gi×Gi)×C → Ai ∈ R(

Hi
Gi
×Gi)×(

Wi
Gi
×Gi)×C → Ai ∈ RHi×Wi×C , (10)

and a residual connection is added
Ai = A′i−1 + Ai. (11)

This process is iterated until Hi ×Wi is small enough to run Equ. (1) directly without grid splitting.
The final output of H-MHSA is

H-MHSA(X) = (A0 + · · ·+ Upsample(AM ))Wp + X, (12)

where Upsample(·) means to upsample an attention feature to the original size, Wp has the same
meaning as Equ. (2), and M is the maximum number of steps. In this way, H-MHSA can model
global relationships, equivalent to traditional MHSA.

It is easy to show that, with a mild assumption that all Gi is the same, the computational complexity
of H-MHSA is approximately

Ωtime(H-MHSA) = 3NC2 + 2NG2
0C (13)

Compared to Equ. (4), we reduce computational complexity significantly, i.e., from O(N2) to
O(NG2

0), where G2
0 can be much smaller than N . The same conclusion can be easily derived for space

complexity. Suppose we have a 1024×1024 input, PVT [18] can only downsample it into 1/8 scale, so
its computational/space complexity is approximately proportional to N ·N/82 = 10242×10242/82 =
16G, while our H-MHSA only has an approximate complexity of NG2

0 = 10242 × 322 = 1G when
we set both G0 and G1 to 32 using two hierarchies. For Swin Transformer [17], it uses a fixed 7× 7
window to scan the input and thus needs many layers to obtain a global view of the input, while our
H-MHSA can model the global relationships much more efficiently. Moreover, as the downsampling
operation of Equ. (8) is parameter-free, we can set Gi values flexibly for downstream vision tasks
without retraining on the ImageNet dataset [26]. In contrast, PVT [18] and Swin Transformer [17]
utilize fixed settings and have to be retrained on ImageNet if we want to re-parameterize the network
configuration.

3.3 Transformer in Convolutional Neural Networks

Recent efforts on transformer usually aim at building pure transformer networks to provide a unified
architecture for both vision and NLP tasks [16–20]. This may not be optimal for vision tasks because
those architectures are not good at learning locality representations that we argue are essential for
vision data [22–24]. Motivated by this, we design the H-MHSA module in a way that it could
be readily pluggable into any existing CNN architecture. In this way, the resulting network could
essentially inherit the merits from both transformers and CNNs.

We follow the common practice in the vision community to preserve 3D feature maps in the network
backbone and use a global average pooling layer and a fully connected layer to predict image classes.
This is different from existing transformers which rely on another 1D class token to make predictions
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Table 1: Network configurations of TransCNN. The parameters of building blocks are shown in
brackets, with the numbers of blocks stacked. For the first stage, each convolution has C channels and
a stride of S. For the other four stages, each IRB uses a K ×K depthwise separable convolution and
an expansion ratio of E. Note that we omit the downsampling operation after t-th stage (t = {2, 3, 4})
for simplicity. “#Params” refers to the number of parameters.

Stage Input Size Operator TransCNN-Small TransCNN-Base

1 224× 224 3× 3 conv. C = 16, S = 2
C = 64, S = 2

C = 16, S = 2
C = 64, S = 2

2 56× 56
H-MHSA

IRB

[
C = 64
K = 5
E = 4

]
× 2

[
C = 64
K = 5
E = 4

]
× 3

3 28× 28
H-MHSA

IRB

[
C = 128
K = 3
E = 4

]
× 2

[
C = 128
K = 3
E = 4

]
× 4

4 14× 14
H-MHSA

IRB

[
C = 256
K = 5
E = 6

]
× 2

[
C = 256
K = 5
E = 6

]
× 8

5 7× 7
H-MHSA

IRB

[
C = 512
K = 3
E = 5

]
× 2

[
C = 512
K = 3
E = 6

]
× 3

1× 1 - Global Average Pooling, 1000-d FC, Softmax
#Params 13.1M 26.7M

[15, 16, 18–20, 47–50, 53–55]. We also observe that previous transformer networks [15–20, 47–50]
usually adopt GELU function [56] for nonlinear activation. However, GELU functions are memory-
hungry during network training. We empirically found that SiLU function [52], originally coined
in [56], performs on-par with GELUs and is more memory-friendly. Hence, TransCNN uses SiLU
function [52] for nonlinear activation.

The overall architecture of TransCNN is illustrated in Fig. 1. At the beginning of TransCNN,
unlike previous transformers that flatten image patches [15], we apply two sequential vanilla 3× 3
convolutions, each of which has a stride of 2, to downsample the input image into 1/4 scale. Then,
we stack H-MHSA and convolution blocks alternatively, which can be divided into four stages
with pyramid feature scales of 1/4, 1/8, 1/16, and 1/32, respectively. The convolution block we
adopt is the widely-used Inverted Residual Bottleneck (IRB, Fig. 1c) with depthwise separable
convolution [34]. For feature downsampling at the end of each stage, we design a simple Two-
branch Downsampling Block (TDB, Fig. 1d). It consists of two branches: one branch is a vanilla
3 × 3 convolution with a stride of 2; the other branch is a pooling layer and a 1 × 1 convolution.
These two branches are fused by element-wise sum to keep more contextual information in feature
downsampling. Our experiments show that TDB performs better than direct downsampling.

The configuration details of TransCNN are summarized in Tab. 1. We provide two versions of Tran-
sCNN: TransCNN-Small and TransCNN-Base. TransCNN-Base has a similar number of parameters
to ResNet50 [3]. Note that we only adopt the simplest parameter settings without careful tuning to
demonstrate the effectiveness and generality of the proposed concepts, i.e., H-MHSA and TransCNN.
For example, we use the typical numbers of channels, i.e., 64, 128, 256, and 512. The dimension of
each head in MHSA is set to a typical value of 64. We believe that a delicate engineering tuning on
those parameter settings could further boost the performance but is out of the scope of this paper.

4 Experiments

This section evaluates the proposed TransCNN for image classification on the ImageNet dataset [26].
We first provide ablation studies of TransCNN for better understanding. Then, we compare TransCNN
to existing CNN- and transformer-based networks. At last, we further validate the superiority of
TransCNN by applying it to object detection and instance segmentation on the popular MS-COCO
dataset [57].
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Table 2: Ablation studies for various design choices of this paper on the ImageNet validation set [26].
The configuration of TransCNN-Base is adopted for all experiments.

Design 3× 3 IRB Default IRB 1st-level H-MHSA 2nd-level H-MHSA TDB Top-1 Acc.
1 4 77.0
2 4 77.6
3 4 4 79.2
4 4 4 79.3
5 4 4 4 79.9
6 4 4 4 4 80.1

4.1 Experimental Setup

ImageNet dataset [26] consists of 1.28M training images and 50K validation images from 1000
categories. We adopt the training set to train our network and the validation set to test the performance.
We implement TransCNN using the popular PyTorch framework [58]. For a fair comparison, we
follow the same training protocol as DeiT [50], which is the standard protocol for training transformer
networks nowadays. Specifically, the input images are randomly cropped to 224 × 224 pixels,
followed by random horizontal flipping and mixup [59] for data augmentation. Label smoothing [29]
is used to avoid overfitting. The AdamW optimizer [60] is adopted with the momentum of 0.9, the
weight decay of 0.05, and a mini-batch size of 128 per GPU by default. The initial learning rate is set
to 8× 10−4, which decreases following the cosine learning rate schedule [61]. The training process
lasts for 300 epochs on eight NVIDIA Tesla V100 GPUs. For model evaluation, we apply a center
crop of 224× 224 pixels on validation images to evaluate the recognition accuracy. We report the
top-1 classification accuracy on the validation set as well as the number of parameters and the number
of FLOPs for various models. Note that for ablation studies, we utilize a mini-batch size of 64 and
100 training epochs to save time. Moreover, only two hierarchies are enough for 224× 224 inputs.
We set G0 = {8, 4, 2} for t-th stage, t = {2, 3, 4}, respectively. The fifth stage can be processed
directly. Besides, we adopt Q = A0W

q rather than Q = A′0W
q for the second hierarchy to omit

an upsampling operation in Equ. (12).

4.2 Ablation Studies

In this part, we evaluate various design choices of the proposed TransCNN. As discussed above, here,
we only train all ablation models for 100 epochs to save time. The batch size and learning rate are
also reduced by half accordingly. The configuration of TransCNN-Base is adopted for these ablation
studies.

Main components of TransCNN. We start with a pure CNN architecture by removing H-MHSA,
replacing TDB with its single pooling branch, and utilizing 3× 3 depthwise separable convolutions
for all IRB. This baseline variant is just like MobileNetV2 [34]. From Tab. 2, we can see that the top-1
accuracy of this baseline on the ImageNet validation set [26] is 77.0%. Then, we reform this baseline
with the default IRB setting of TransCNN-Base, i.e., using 5× 5 depthwise separable convolutions
for IRB in the 2nd and 4th stages, inspired by [38]. The top-1 accuracy is improved from 77.0% to
77.6%. Next, we add the 1st level of H-MHSA. Note that we set G1 = 7 for all stages to align
the setting with Swin Transformer [17]. Introducing attention into CNN significantly improves the
accuracy by 1.6%. We also validate the 2nd level of H-MHSA, like PVT [18]. It achieves a similar
result to the 1st-level H-MHSA. After that, we use the complete and default version of H-MHSA,
which boosts the classification accuracy to 79.9%. H-MHSA not only improves accuracy, but also
has the ability to process very large images, which is difficult for other methods [17, 18], as discussed
in §3.2. At last, we add TDB into the network architecture for feature map downsampling, further
improving the accuracy to 80.1%. The above experimental results suggest that all design choices of
TransCNN are effective and necessary.

A pure transformer version of TransCNN vs. PVT [18]. When we remove all depthwise
separable convolutions from TransCNN and train the resulting transformer network for 100 epochs,
it achieves 77.7% top-1 accuracy on the ImageNet validation set [26]. In contrast, the well-known
transformer network, PVT [18], attains 75.8% top-1 accuracy under the same condition. This suggests
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Table 3: Comparison to state-of-the-art methods on the ImageNet validation set [26]. “*” indicates
the performance of a method using the default training setting in the original paper. “#Params” and
“#FLOPs” refer to the number of parameters and the number of FLOPs, respectively.

Architecture Model Input #Params #FLOPs Top-1 Acc.

CNN ResNet18* [3] 224× 224 11.7M 1.8G 69.8
ResNet18 [3] 224× 224 11.7M 1.8G 68.5

Transformer DeiT-Ti/16 [50] 224× 224 5.7M 1.3G 72.2
PVT-Tiny [18] 224× 224 13.2M 1.9G 75.1

TransCNN-Small 224× 224 13.1M 1.8G 79.3

CNN

ResNet50* [3] 224× 224 25.6M 4.1G 76.1
ResNet50 [3] 224× 224 25.6M 4.1G 78.5
ResNet101* [3] 224× 224 44.7M 7.9G 77.4
ResNet101 [3] 224× 224 44.7M 7.9G 79.8
ResNeXt50-32x4d* [31] 224× 224 25.0M 4.3G 77.6
ResNeXt50-32x4d [31] 224× 224 25.0M 4.3G 79.5
ResNeXt101-32x4d* [31] 224× 224 44.2M 8.0G 78.8
ResNeXt101-32x4d [31] 224× 224 44.2M 8.0G 80.6
RegNetY-4G [62] 224× 224 20.6M 4.0G 80.0
RegNetY-8G [62] 224× 224 39.2M 8.0G 81.7
ResNeSt-50 [46] 224× 224 27.5M 5.4G 81.1
ResNeSt-101 [46] 224× 224 48.3M 10.3G 83.0

Transformer

T2T-ViTt-14 [47] 224× 224 21.5M 5.2G 80.7
T2T-ViTt-19 [47] 224× 224 39.2M 8.4G 81.4
TNT-S [53] 224× 224 23.8M 5.2G 81.3
TNT-B [53] 224× 224 65.6M 14.1G 82.8
PVT-Small [18] 224× 224 24.5M 3.8G 79.8
PVT-Medium [18] 224× 224 44.2M 6.7G 81.2
PVT-Large [18] 224× 224 61.4M 9.8G 81.7
Swin-T [17] 224× 224 28.3M 4.5G 81.3
Swin-S [17] 224× 224 49.6M 8.7G 83.0
Swin-B [17] 224× 224 87.8M 15.4G 83.3
ViT-B/16 [15] 384× 384 86.6M 55.4G 77.9
ViT-L/16 [15] 384× 384 304.3M 190.7G 76.5
DeiT-S/16 [50] 224× 224 22.1M 4.6G 79.8
DeiT-B/16 [50] 224× 224 86.6M 17.6G 81.8

TransCNN-Base 224× 224 26.7M 4.0G 82.2

that our proposed Hierarchical Multi-Head Self-Attention (H-MHSA) is very effective in feature
representation learning. Note that H-MHSA also has the capability to handle very large images,
unlike other transformer networks, as discussed in the main paper.

SiLU [52] vs. GELU [56]. In this paper, we adopt SiLU function [52] for nonlinearization rather
than the widely-used GELU function [56] in transformers [12, 15]. Here, we evaluate the effect of
this choice. The proposed TransCNN with SiLU [52] attains 80.1% top-1 accuracy on the ImageNet
validation set [26] when trained for 100 epochs. TransCNN with GELU [56] gets 79.7% top-1
accuracy, slightly worse than SiLU [52]. When using a batch size of 128 per GPU, TransCNN
with SiLU [52] occupies 20.2GB GPU memory in the training phase, while TransCNN with GELU
[56] occupies 23.8GB GPU memory. Hence, TransCNN with SiLU [52] can achieve slightly better
performance with less GPU memory consumption.

4.3 Comparison with State-of-the-art Network Architectures

After establishing the effectiveness of key modules in TransCNN, we summarize the results obtained
by our method and compare it with several state-of-the-art network architectures, including CNN-
based ones like ResNet [3], ResNeXt [31], RegNetY [62], ResNeSt [46], and transformer-based
ones like ViT [15], DeiT [50], T2T-ViT [47], TNT [53], PVT [18], Swin Transformer [17]. Besides
the top-1 accuracy on the ImageNet validation set [26], we also report the numbers of parameters
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Table 4: Object detection performance on the MS-COCO val2017 set [57]. “#Params” refers to the
number of parameters.

Backbone #Params RetinaNet [63]
AP AP50 AP75 APS APM APL

ResNet18 [3] 21.3M 31.8 49.6 33.6 16.3 34.3 43.2
PVT-Tiny [18] 23.0M 36.7 56.9 38.9 22.6 38.8 50.0
TransCNN-Small (Ours) 22.8M 38.8 59.8 41.3 23.8 42.6 50.6
ResNet50 [3] 37.7M 36.3 55.3 38.6 19.3 40.0 48.8
PVT-Small [18] 34.2M 40.4 61.3 43.0 25.0 42.9 55.7
TransCNN-Base (Ours) 36.5M 43.4 64.2 46.5 27.0 47.4 56.7

Table 5: Instance segmentation performance on the MS-COCO val2017 set [57]. “#Params” refers
to the number of parameters. APb and APm are for bounding box AP and mask AP, respectively.

Backbone #Params Mask R-CNN [5]
APb APb

50 APb
75 APm APm

50 APm
75

ResNet18 [3] 31.2M 34.0 54.0 36.7 31.2 51.0 32.7
PVT-Tiny [18] 32.9M 36.7 59.2 39.3 35.1 56.7 37.3
TransCNN-Small (Ours) 32.7M 40.5 63.0 43.9 37.5 59.8 40.3
ResNet50 [3] 44.2M 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small [18] 44.1M 40.4 62.9 43.8 37.8 60.1 40.3
TransCNN-Base (Ours) 46.4M 44.0 66.4 48.5 40.2 63.3 43.2

and FLOPs of each model. The results are summarized in Tab. 3. We can observe that TransCNN
achieves state-of-the-art performance. Specifically, with similar numbers of parameters and FLOPs,
TransCNN-Small outperforms its counterparts by a large margin, i.e., 9.5%, 7.1%, and 4.2% higher in
classification accuracy than ResNet18 [3], DeiT-Ti [50], and PVT-Tiny [18], respectively. TransCNN-
Base also achieves significantly better accuracy than other counterparts with a similar number of
parameters. When compared to the counterparts with much more parameters, TransCNN-Base attains
very competitive accuracy. In our experiments, we also find that, when increasing the number of
training epochs from 100 to 300, the accuracy of TransCNN-Base is improved from 80.1 (see in
Tab. 2) to 82.2%, while PVT-Small [18] is improved from 75.8% to 79.8% under the same setting.
The performance gap between TransCNN and PVT with 100 training epochs is larger than that with
300 training epochs. This may imply that the transformer and CNN composition would lead to faster
network convergence over previous pure transformer networks. These experiments demonstrate the
effectiveness of TransCNN in fundamental image recognition. Note that TransCNN can provide
feature pyramids needed for many downstream computer vision tasks, while some transformer
networks such as ViT [15], DeiT [50], T2T-ViT [47], and TNT [53], are particularly designed for
image classification.

4.4 Object Detection and Instance Segmentation

Since object detection and instance segmentation are fundamental tasks in computer vision, we
apply the proposed TransCNN-Base to both tasks to further evaluate the effectiveness of TransCNN.
Specifically, we utilize two well-known detectors, i.e., RetinaNet [63] for object detection and Mask
R-CNN [5] for instance segmentation. TransCNN is compared to ResNet [3] and another popular
transformed-based network, i.e., PVT [18], by only replacing the backbone of the above two detectors.
Experiments are conducted on the large-scale MS-COCO dataset [57] by training on train2017
set (∼118K images) and evaluating on val2017 set (5K images). We adopt MMDection toolbox
[64] for experiments and follow the experimental settings of PVT [18] for a fair comparison. During
training, we initialize the backbone weights with the ImageNet-pretrained models. The detectors are
fine-tuned using the AdamW optimizer [60] with an initial learning rate of 1× 10−4 that is decreased
by 10 times after the 8th and 11th epochs, respectively. The whole training lasts for 12 epochs with a
batch size of 16. Each training image is resized to a shorter side of 800 pixels, but the longer side
is not allowed to exceed 1333 pixels. During testing, each image is fixed to a shorter side of 800
pixels. We set G0 = {16, 8, 4} for t-th stage, t = {2, 3, 4}, respectively. The fifth stage is processed
directly.
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The results are displayed in Tab. 4. We can see that TransCNN substantially improves the accuracy
over other network architectures in all cases with a similar number of parameters. Specifically,
when RetinaNet [63] is adopted as the detector, TransCNN-Base attains 7.1%, 8.9%, 7.9% higher
performance over ResNet50 [3] and 3.0%, 2.9%, 3.5% higher performance over PVT [18] in terms
of AP, AP50, and AP75, respectively. For Mask R-CNN [5], TransCNN-Base achieves 3.9%, 3.6%,
and 4.9% higher results than PVT [18] in terms of APb, APb

50, and APb
75 (bounding box metrics),

respectively. TransCNN-Base is 2.4%, 3.1%, and 3.0% better than PVT [18] in terms of APm,
APm

50, and APm
75 (mask metrics), respectively. Such significant improvement in object detection

and instance segmentation shows the superiority of TransCNN in learning effective representations,
making TransCNN have the potential to be applied to various computer vision tasks.

5 Conclusion

This paper tackles the low-efficiency flaw of vision transformer caused by the high computa-
tional/space complexity of MHSA. To this end, we propose a hierarchical framework for computing
MHSA, i.e., H-MHSA, in order to decrease the computational/space complexity. Compared to previ-
ous counterparts [18, 17] in this direction, H-MHSA has two significant advantages: i) modelling
global dependencies of the input directly and ii) having the ability to process large input images
with ease. Moreover, we propose to plug the flexible H-MHSA into CNNs, instead of using an
MLP after attention computation for feature enhancement as in traditional vision transformers [15].
Hence, the proposed TransCNN inherits the merits of both transforms and CNNs, compatible with
previous advanced transform [47–50] and CNN [28, 3, 31, 34] techniques. Experiments on image
classification, object detection, and instance segmentation demonstrate the effectiveness and potential
of TransCNN in representation learning.

The limitation of this paper would be that we only adopt some typical parameter settings without
carefully fine-tuning so that these parameter settings may not be optimal. The reason that we only
use typical settings is that we want to show the generality of TransCNN, as discussed in §3.3. In the
future, we believe that neural architecture search techniques can be applied to TransCNN for optimal
settings, just like CNN [38, 37]. Of course, this is out of the scope of this paper.
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