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Abstract

In this paper, we introduce a novel self-supervised visual
representation learning method which understands both im-
ages and videos in a joint learning fashion. The proposed
neural network architecture and objectives are designed
to obtain two different Convolutional Neural Networks for
solving visual recognition tasks in the domain of videos
and images. Our method called Video/Image for Visual
Contrastive Learning of Representation(Vi>CLR) uses un-
labeled videos to exploit dynamic and static visual cues for
self-supervised and instances similarity/dissimilarity learn-
ing. Vi?CLR optimization pipeline consists of visual clus-
tering part and representation learning based on groups of
similar positive instances within a cluster and negative ones
from other clusters and learning visual clusters and their
distances. We show how a joint self-supervised visual clus-
tering and instance similarity learning with 2D (image) and
3D (video) CovNet encoders yields such robust and near to
supervised learning performance.

We extensively evaluate the method on downstream tasks
like large scale action recognition, image and object classi-
fication on datasets like Kinetics, ImageNet, Pascal VOC’07
and UCF101 and achieve outstanding results compared to
state-of-the-art self-supervised methods.

1. Introduction

Learning strong and discriminative representations is im-
portant for diverse applications in computer vision tasks
such as image classification, object detection, image seg-
mentation, activity recognition, video classification, medi-
cal imaging as well as natural language processing. More
recently unsupervised or self-supervised representation
learning has received a lot of attention as these methods are
not dependent on manually curated ground-truth labels but
rather utilize the supervision coming from the data itself and
still rapidly close the performance gap with the supervised
training. Most recent state-of-the-art methods are largely
driven by instance [77, 12, 29] or prototype [44, 11] dis-

crimination tasks. These discrimination methods rely on
combination of two key components: (a) contrastive loss
and (b) image [77, 29, 44, 12, 11] or video [28, 27, 56]
augmentation. The contrastive loss [25] encourages small
distances by pulling samples from the same label together
and pushing far apart at least by the margin for the sam-
ples of different labels in feature space. The current con-
trastive loss functions are in the form of noise contrastive
estimator [24] to compare instances (InfoNCE [51]), pro-
totypes (ProtoNCE [44]), instances that include samples
with the same semantic labels (UberNCE [28]) or comple-
mentary views, and multiple instances (Multi-Instance In-
foNCE [45]). The data augmentation or transformation can
be categorized into two types on the basis of the datatype,
namely for images, and for videos. For instance discrimi-
nation [12] each sample of the dataset is treated as a class
and enforce the augmented version of the same sample to be
more similar, while in case of prototypes [44, 11] enforcing
the augmented version of the samples to be closer to the
prototype. Data augmentation plays a crucial role in the im-
ages and videos contrastive representation learning. In par-
ticular, for images [12, 11] the most popular augmentation
methods are color transformation, geometric transformation
and multi-crop; and for videos [28, 27, 56] randomly min-
ing clips from the same video as positives, temporally con-
sistent spatial augmentation, and mining complementary in-
formation from different views of the RGB-stream/optical-
flow data are the transformation methods. See Section 2 in
the related work for an extended review.

In this paper, we propose to extend the self-supervised
training of ConvNets for solving visual recognition tasks
both in videos and images simultaneously. Our contribu-
tion named as Vi?CLR is a method that jointly optimizes
two ConvNets for Videos and Images for Visual Contrastive
Learning of Representation as a multi-task learning prob-
lem. We achieve this by learning both dynamic and static vi-
sual cues simultaneously in an end-to-end learning pipeline.

Vi2CLR optimization utilizes clustering as supervision
for learning an effective visual (2D ConvNets) and video
(3D ConvNets) representations. We believe clustering of-
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fers an ability to bring together a diverse set of samples from
images/videos across the whole dataset, which in turn pro-
vides variability and diversity which is a good way to learn
representations and is an important factor for the increased
performance shown in Section 4. For learning an effective
representation we considered two aspects, they are: (a) all
image or video instances in a given cluster are considered
positive pairs, and negative pairs are mined from the batch
minimizing Multi-Instance InfoNCE loss; and (b) all joint
image-video representations in a given cluster are enforced
to be closer to the cluster centroid, and negatives are the
centroids of the other clusters minimizing our centroid In-
foNCE loss. We name this loss CenterNCE.

We validate our Vi?CLR based 2D and 3D ConvNets by
fine-tuning them on downstream tasks and evaluating them
on several standard downstream video and image classifica-
tion benchmarks. For 3D ConvNets they are fine-tuned on
target action recognition datasets, and for 2D ConvNets we
use the learned features without fine-tuning and rather only
employ an MLP projection head (i.e. linear classifier) on
top of the frozen features, following [11]. Our 3D ConvNet
is evaluated on three challenging benchmark action recogni-
tion datasets namely UCF101, HMDBS51 and Kinetics-400.
We experimentally show that our Vi2CLR achieves state-
of-the-art performance on UCF101 (88.9%), HMDBS5I
(55.7%) and Kinetics-400 (71.2%) outperforming all cur-
rent video contrastive learning methods [28, 27, 56]. Our
2D ConvNet is evaluated using the ImageNet linear evalua-
tion protocol. We have also presented that our Vi2CLR out-
performs SimCLR [12], SWAV [11] with achieving 74.6%
top-1 accuracy on ImageNet.

2. Related work

This section discusses self-supervised image and video
representation learning.
Popular contrastive learning methods. We aim to learn a
representation that exhibits small distances between sam-
ples from the category, and large distances from differ-
ent category in feature space, using contrastive loss func-
tion [25] one could achieve that by pulling samples from the
same class closer and pushing samples from a different class
further away. Of more relevance here is the line of research
using contrastive learning in images [77, 29, 44, 12, 11] and
videos [28, 27, 56]. The memory bank [77, 46] method
accumulates the previously computed instance class repre-
sentation, and then use that to form positive and negative
pairs. They use noise contrastive estimator [24] to com-
pare instances, which is a special form of contrastive learn-
ing [31, 51]. The end-to-end [81, 69, 12] method gener-
ates distinct representations of the same sample within the
current mini-batch, replacing the memory bank. The mo-
mentum encoder [29] method uses a momentum-updated
encoder which acts as a dynamic dictionary lookup for en-

coding samples on-the-fly. The contrastive clustering [44,
11] methods such as Prototypical Contrastive Learning
(PCL) [44], or Swapping Assignment between multiple
views (SwAV) [11] aims to learn the class prototype and
enforce for samples belonging to a cluster to stay close.

Memory-augmented  Dense  Predictive  Coding
(MemDPC) [27] utilizes compressed memory (i.e.
memory bank) for self-supervised video representation
learning from RGB frames, or unsupervised optical flow.
Contrastive Video Representation Learning (CVRL) [56]
builds upon SimCLR [12] and perform temporally consis-
tent spatial augmentation to train the network to pull clips
from the same video and push clips from different videos in
the feature space. In contrast to these works, in our work,
we jointly optimize two ConvNets for Videos and Images
for Visual Contrastive Learning of Representation as a
multi-task learning problem using a clustering objective as
supervision for learning. Next, the various pretext tasks
and pseudo-labels strategies discussed below are based on
contrastive learning.

Pretext tasks based on self-supervised learning. Self-
supervised representation learning is increasing in popular-
ity in recent years. This learning paradigm obtains super-
vision by exploiting the structure within the data, and thus
removes the need for an often costly labeling effort.

For example, one may learn image representations via
in-painting [52], patch prediction [16], solving the jig-
saw puzzle [49], colorization [84], geometric transforma-
tion [18], learning to generate an accurate distribution
of real images [33], predicting the future in egocentric
videos [85], learning the steadiness of visual change that
temporally close frames exhibit only small differences in
feature space [32] or to recognize complex, long-term ac-
tivities [42], learned through a proxy task of inferring the
temporal ordering of a set of unordered videos in a time-
line [64], predicting the geometric transformation that is
applied to the image [22] or video [35], counting the num-
ber of visual primitives in the image wrt. scaling and
tiling [50], predicting the future frames [15, 27, 71], predict-
ing the speed [0, 19, 73], correspondence between video-
and-narrations [45] or frames-and-audio [1, 2, 3, 38, 53,
55, 5], predicting optical-flow [48], transfer knowledge be-
tween flow-and-rgb network [67] or image-and-video [14],
more recently predicting similar images invariant to their
multiple data augmentation (data transformation) [12].
Pseudo-labels based on self-supervised learning. Pseudo-
labels based discriminative representation learning has at-
tracted quite some attention because it removes the need for
an often costly labeling effort. For example, some pretext
tasks form pseudo-labels by posing the problem as a non-
parametric classification problem at the instance-level [77],
augmenting the data by applying a random set of transfor-
mations to each patch and the considering it as a unique la-

1503



fo

Xvideo | —>

<.-.-_.-.

Ximage | —>

S

3D Conv Encoder

gVideoNCE

fvr ﬁ
€ centerNCE .
im

2D Conv Encoder

-5 Yimgnce
ma Visual Clusters

Figure 1. Vi*CLR training pipeline. Illustration of our approach for jointly learning image and video representations. Vi>*CLR optimiza-
tion utilizes a combination of three contrastive losses optimizing cluster-based, video and image sample-based contrastive learning based
on positive and negative sample similarities within visual clusters. fy and f; denote visual encoder of video and image streams.

bel (Exemplar-CNN) [18], using K-means clustering algo-
rithm with a pre-determined number of clusters as a means
of generating pseudo labels [9] or the FINCH clustering al-
gorithm that automatically estimates the number of clus-
ters [58, 63], jointly optimize clustering and representa-
tion learning [82, 9, 58, 10, 1], via maximising mutual in-
formation objective between the class assignments of each
pair [34], by aligning the features to the noise as targets [7],
or using optimization-based approach [70].

Finally, it is worth noting the work using temporal con-
tinuity or ordering as a signal for supervision. For exam-
ple, one may obtain pseudo-labels via shuffling frames [47],
finding an odd frame [21], by sorting distances [61, 60],
using tracking information [74, 62], predicting whether
a video flows forwards or backwards [54, 76], inferring
the temporal ordering [80, 64, 43], by temporal coher-
ence [40, 41, 72, 75]. In contrast to these, our work differs
substantially in scope and technical approach. Our contri-
bution is a method that utilizes clustering assignments as
supervision for learning an effective visual and video rep-
resentation together. To the best of our knowledge, the
Vi2CLR is the first of its kind self-supervised neural net-
work to tackle both video and image recognition task si-
multaneously by only using one source of data.

3. Methodology

Given tremendous successes with deep learning, creat-
ing an effective image or video representation seems not
far fetched via self-supervised representation learning any-
more. We aim to learn representations that embody seman-
tic information relating to images to video and vice-versa.

Our goal is to learn solving visual recognition tasks both in
videos and images simultaneously from unlabeled videos in
an end-to-end pipeline. We propose a method that jointly
optimizes a 3D ConvNet for Videos and a 2D ConvNet for
Images. Furthermore, our method utilizes clustering as su-
pervision for representation learning in a multi-task learn-
ing setup.

We first introduce the preliminaries in Section 3.1
on self-supervised learning with InfoNCE used by [12]
and Multi-Instance InfoNCE used by [28].Finally in Sec-
tion 3.2, we introduce our video/image contrastive learn-
ing of representation (Vi?’CLR) pipeline using clustering
and instance discrimination objective in a contrastive learn-
ing setup. Algorithm 1 sketches the steps of the proposed
Vi2CLR. Note that, our method yields two trained deep
ConvNet models, one for videos (3D ConvNets) and one
for images (2D ConvNets) at the end trained with an only
single source of unlabeled videos in end-to-end learning.

3.1. Self-Supervised Learning by InfoNCE

Assume we have a set of unlabeled video clips with
N samples, X = {z1,x2,..,£x}. One can train a self-
supervised representation neural network f(.) with the In-
foNCE [12, 28] objective loss function. The objective of
InfoNCE works as an instance discriminator, that pulls pos-
itive sample representations closer while it repels negative
samples apart in the feature space. This approach of self-
supervised training network can be utilized in other tasks
for video understanding like action recognition, video cap-
tioning, retrieval, etc. Let’s assume the query sample rep-
resentation be r; = f(x;), the InfoNCE contrastive loss
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where 7, is a positive sample feature representation, for in-
stance, x; which is and augmented set of the original sam-
ple, while N; conversely refers to an associated set of neg-
ative samples where r,, is a negative sample representation
in the mini-batch, and 7 is the temperature hyper-parameter.
Multi-Instance InfoNCE. Assume we have a set of mul-
tiple positive instances for a query instance, here we ad-
dress the Multi-Instance InfoNCE (MIL-NCE) [45] objec-
tive loss function. The objective of MIL-NCE works simi-
lar to InfoNCE while considering one-or-more actual posi-
tives within the P. Based on a positive sample set P and a
negative sample set ', the MIL-NCE objective loss func-
tion (L1 —Ncg) is defined as:

n

> —log 2yer, 5P (1 o/ 7)
i1 Zpe’Pi exp (7 - Tp/T) + ZnGNi exp (7"1‘ : Tn/T)
2)
The positive set may contain multiple positive samples for
a given query plus its own augmentations, and the nega-
tive set contains all other samples in the mini-batch, and
their augmentations. Because of MIL-NCE ability to han-
dle multiple instances, recently the objective has been used
for training self-supervised contrastive methods in the do-
main of images [45] or videos [28] in different setups.

3.2. Vi’CLR

This section describes the proposed approach to train our
self-supervised Vi?CLR. The Vi?CLR optimization utilizes
clustering as supervision for learning an effective visual (2D
ConvNets) and video (3D ConvNets) representation. More
specifically, we train both the video and image data stream
together via their respective 3D and 2D ConvNets simulta-
neously. The training objective is to contrast between mul-
tiple positive and negative instances for a given query via
comparing their cluster assignments. The Vi2CLR training
routine proceeds in two steps: first learning representation
and second clustering of samples. Algorithm 1 sketches the
steps of the proposed Vi?CLR. The clusters are constructed
from joint 2D/3D learned feature representations (discussed
later) to exploit both dynamic and static visual cues. The to-
tal objective function is a combination of three contrastive
losses optimizing cluster-based, video and image sample-
based contrastive learning to capture higher-level semantic
knowledge utilizing global and local similarities and dis-
similarities. Figure 1 illustrates our approach.

Our Vi?CLR learns two objective functions: fy/(.) and
f1(.),wherery = fy(x)and r; = f;(&) refer to the repre-
sentation of the 3D ConvNet (video) and 2D ConvNet (im-
age) encoder, where x is the video clip and Z is an image.

As 2D ConvNets expect images as input which are 2D (spa-
tial) in nature, we extract a frame from middle of the video
clip and feed it as input to the 2D ConvNets. The video
clip itself (spatial + temporal dimension) forms the input to
the 3D ConvNets. Formally, fy : © — v, 7y € R4 and
fr @ — rr,r; € R%, where d; and d, denotes dimen-
sionality of the encoded video and image embedding space,
respectively. As mentioned earlier, we perform clustering
on joint 2D/3D representations. For that, after we have ex-
tracted the video and image encoded representations, we
first concatenate the feature maps and then feed it to a non-
linear layer to obtain r; € R? where d denotes the encoded
feature dimension, which we refer to as joint 2D/3D repre-
sentation. In each epoch of Vi2CLR training, we first ex-
tract the features of the entire dataset, form a joint 2D/3D
representation R; and then perform clustering [4, 58] on
the features to obtain cluster assignments. More details on
clustering can be found in the experimental section.
CenterNCE loss: The joint 2D/3D representation is also
used for computing the CenterNCE loss. After obtaining
joint 2D/3D representation based cluster assignments for
each instance, we compute and store the cluster centroids
for each cluster. In practice during training, for a given
query sample x;, the sample is enforced to be closer to the
cluster centroid it belongs to, and negatives are the centroids
of the other clusters in the mini-batch. In the similar spirit
of other contrastive learning research like [11, 44], our cen-
troid based CenterNCE 10ss (LcenterncE) 1S as follows:
exp (rJi : Cs/(bs)

Z —log P
s > j—16xp(ryi-cj/¢;)

where r; = fy(x;) is the joint 2D/3D representation, n is
the batch-size, k is the #clusters in the dataset, ¢ is the cen-
troid of the cluster that z; belongs to, and ¢ denotes concen-
tration estimate of each cluster to ensure learning of more
balanced cluster [44].

Since we have access to cluster assignments for each
sample, we can take advantage of mining promising groups
of positive and negative sets based on the clustering. For
learning an effective representation, we thus considered
mining positive and negative pairs using cluster assign-
ments. In specific, for both ry = fy () in video space (3D)
and r; = f;(Z) in image space (2D) streams, we have sep-
arate MIL-NCE objective functions, defined as Ly ;qeonCE
and Lymgncr and are based on Eq. 2. The total loss func-
tion for Vi2CLR with two ConvNets (2D ConvNet and 3D
ConvNet) encoder is given as:

3

Lyizcrr = LcenteNCE + LvideoNCE + Limgnce (4

where equal weight was given to each loss.
Positive/Negative Samples: For each instance in a given
cluster, we randomly mine samples from the same cluster
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as positive pairs, and negative samples are mined from other
clusters in the mini-batch during training.

Note that, as the training proceeds, in each epoch the net-
work gains stronger representations, thus leading to mine
better positive pairs. We believe, this in turn, progressively
leads to semantically-meaningful clusters that accounts for
improving the performance of the 2D and 3D ConvNet en-
coders. After the encoders are trained, we use them for per-
forming various downstream tasks, such as action recogni-
tion and image classification.

Algorithm 1 Vi?CLR Training.
Input: Video Clips X = {z1,z2,..,2n}, Video encoder
fv(x), Image encoder f; (). Where z is the video clip and
Z is the middle frame of =
while Not M ax Epoch do
Ry = fvi(X)
// Joint 2D, 3D representation
C = Clustering(Ry)
// Clustering Assignment
for x in Batch(X) do
ry = fv(x), 1 = f1(2),r; = fvi(x)
»CCenterNCE(rJa C)
LvideoNce(Tv, Pe.z)
Limence(r1, Pe,z)
Lyizcrr = LcenterNCE + LvideoNCE + LimgNCE

end

end

4. Experiments

In this section, we first introduce the datasets used for
Vi2CLR training and downstream tasks (image and video)
datasets for evaluation. Followed by the implementation de-
tails. Finally, we compare to state-of-the-art self-supervised
methods on image classification, video classification and
video retrieval tasks.

4.1. Datasets

To train our Vi2CLR 2D/3D model, we use the Kinetics-
400 [36] training set consisting of ~250K video clips with
a maximum duration of 10 seconds. For the downstream
video recognition task, we benchmark on the Kinetics,
UCF101 [66] and HMBDS51 [39] and for image recognition
task, we benchmark on the ImageNet ILSVRC-2012 [57]
and Pascal VOC2007 [20] datasets.

4.2. Vi2CLR Implementation Details

We choose ResNet-50 and S3D [79] as our 2D and 3D
ConvNet encoders for Vi?CLR training, and which are then
used for downstream tasks. Same as recent contrastive
learning methods, SimCLR [12] and CoCLR [28], for both
encoders, we attach a non-linear MLP projection head with

Clustering Method ‘ Epoch #50  Epoch #100  Epoch #200

Vi2CLR (Kmeans) 64.3 71.3 73.7
Vi?CLR (FINCH) 65.5 72.9 74.3

Table 1. Impact of Clustering on Vi2CLR. Top-1 accuracy for
linear image classification task with frozen weights and a single
classification layer trained on ImageNet using ResNet-50.

Method | ImageNet VOC07
Supervised | 76.5 87.5
Jigsaw [49] 45.7 64.9
Colorization [84] 39.6 55.6
BigBiGAN [17] 56.6 -
MoCo [29] 60.6 79.2
PIRL [46] 63.6 81.1
SeLa [82] 61.5 -
CPCv2 [30] 65.9 -
SimCLR [12] 61.9 -
SimCLR [12] 69.3 -
PCL [44] 67.6 85.4
MoCov2 [13] 71.1 -
SwAV [11] 74.2 88.9
Vi’CLR | 74.6 89.4

Table 2. Linear classification on ImageNet. Top-1 accuracy for
linear classification task with frozen weights and a single classifi-
cation layer trained on ImageNet. All the methods use ResNet-50
as backbone architecture with 24M parameters.

Method | k=1 k=2 k=4 k=8 k=16

Supervised ‘54.3 67.8 739 796 823

Jigsaw [49] 265 31.1 40.0 46.7 51.8
SimCLR [12] | 32.7 43.1 525 61.0 67.1
MoCo [29] 314 420 495 600 659
PCL [44] 479 596 662 745 783

Vi?CLR ‘49.1 622 684 768 80.6

Table 3. Few-shot classification on Pascal VOCO07 dataset using
linear SVMs trained on fixed representations. All the compared
methods use ResNet-50 pre-trained on ImageNet for feature ex-
traction.

128-dimensions (i.e. d; = 128 and dy = 128). The con-
catenated output of the two encoders is fed to another MLP
projection head of 128-dimensions (i.e. d = 128) resulting
in joint 2D/3D representation for computing Center NCE
loss. We remove the MLP projection heads for both 2D/3D
encoders for downstream task evaluations, as done in Sim-
CLR [12]. For Vi?CLR 3D ConvNet training, we resize the
video clips with a spatial resolution of 128 x 128, where we
extract the middle frame of the video clip for 2D ConvNet.
Note that while one can use a random frame from the video
clip for the 2D input we empirically found that choosing

1506



Method Learning Method # Training Epoch 1% Labeled Images 10% Labeled Images
top-1 top-5 top-1 top-5
Supervised - - 25.4 48.4 56.4 80.4
UDA [78] label-propagation - - - 68.8 88.5
FixMatch [65] label-propagation - - - 71.5 89.1
Pseudolabels [83] Semi-supervised - - - 51.6 82.4
S*L Exemplar [83] Semi-supervised - - - 47.0 83.7
S*L Rotation [83] Semi-supervised - - - 534 83.8
PIRL [46] Self-supervised 800 30.7 57.2 60.4 83.8
Jigsaw [49] Self-supervised 90 - - 45.3 79.3
SimCLR [12] Self-supervised 200 - - 56.5 82.7
MoCo [29] Self-supervised 200 - - 56.9 83.0
PCL [44] Self-supervised 200 - - 75.3 85.6
SwAV [11] Self-supervised 800 53.9 78.5 70.2 89.9
SwAV [11] Self-supervised 300 52.7 77.0 68.9 88.7
Vi2CLR Self-supervised 300 53.3 77.8 69.7 89.1

Table 4. Semi-Supervised Learning on ImageNet. We show top-1 and top-5 accuracy results on ImageNet validation set when fine-tuned

on 1% or 10% labeled data.

a frame from middle of the video results in better perfor-
mance. We use temporally consistent spatial augmentations
by random crop, Gaussian blur and color jittering. Further,
we also perform random temporal cropping with size 32
frames from the same video as positives. We train Vi2CLR
for 300 epochs with a batch-size of 64 on each GPU. We
use 8 V100 32GB GPUs for our model training. For lin-
ear classification experiments, we train the image and video
encoders for 100 epochs on both setups: (1) frozen weights
, and (2) full fine-tuning. We use Adam optimizer, with a
weight decay of 0.0001 and an initial learning rate of 0.01,
which is reduced by a factor of 10 every 100 epochs. For all
experiments, the temperature parameter is set to 0.08.

4.3. Impact of Clustering on Vi?CLR

Integral to our core method, we adopt the recently pro-
posed FINCH algorithm [58] to obtain weak labels from
clustering. FINCH belongs to the family of hierarchical
clustering algorithms and automatically discovers mean-
ingful partitions without requiring hyper-parameters such
as the number of clusters K. In contrast, existing self-
supervised clustering based methods such as [44, 9, 10]
specify the number of clusters manually. Additionally,
FINCH provides clusters with very high purity at early par-
titions; and it is a fast and scalable algorithm with compu-
tational complexity of O(Nlog(N)). Following the sug-
gestions given in [63, 59], we use clusters from the second
partition, to mine cluster assignments as this partition in-
creases diversity, without compromising on the quality of
the labels.

In Table 1, we show the results for linear classifica-
tion task with frozen weights and where only a single lin-

ear layer is trained with cross-entropy loss on the Ima-
geNet dataset. As an alternative to FINCH, we also per-
form experiments with K-means [4] as a baseline to obtain
clusters. Note that K-means requires a prior knowledge
such as number of clusters. For a fair empirical compar-
ison, we use the FINCH estimated clusters K as input to
K-means.We can observe that FINCH not only automati-
cally discovers meaningful partitions of the data, but also
achieves higher performance as compared to K-means. We
observed the FINCH partition provides 10K-15K clusters
within our training setup.

4.4. Image Classification

Linear classification. We evaluate the learned representa-
tion of a ResNet-50, a 2D ConvNet encoder trained with
Vi2CLR. For this evaluation, we follow the same setup
from [12, 44] and perform linear classification task with
frozen weights and only a single linear layer is trained
with cross-entropy loss on ImageNet and Pascal VOC2007
datasets. In Table 2, we report the results. Vi?’CLR
achieves the highest single-crop top-1 accuracy among all
self-supervised methods that use a ResNet-50 model with
no more than 300 pre-training epochs.

Few shot classification. For this evaluation, we use
the learned representation of our 2D ConvNet encoder
trained with Vi?CLR for object classification with few
training samples per-category. Following the same setup
from [23], we train linear SVMs using fixed representations
on PASCAL VOC2007 [20]. We vary the number %k of
samples per-class and report the results average over 5
runs. In Table 3, we show the results. One can observe
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Method UCF HMDB
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

Jigsaw [49] 19.7 28.5 335 40.0 - - - -
OPN [43] 19.9 28.7 34.0 40.6 - - - -
Buchler [8] 25.7 36.2 42.2 49.2 - - - -
VCOP [80] 14.1 30.3 40.4 51.1 7.6 22.9 344 48.8
MemDPC [27] 20.2 40.4 524 64.7 7.7 25.7 40.6 57.7
CoCLR-RGB [28] 533 69.4 76.6 82.0 23.2 43.2 53.5 65.5
Vi2CLR ‘ 554 70.9 78.3 83.6 ‘ 24.6 45.1 54.9 67.6

Table 5. Video Retrieval. Comparison of Vi?CLR with the state-of-the-art on nearest-neighbour video retrieval on UCF101 and HMDB51.
Given query test clips, our goal is to find training clips that are from the same class using Recall at k£ (R@k) metric.

Method |ImageNet VOC’07 UCF101 HMDB51
Vi?CLR-LimencE 71.2 86.1 - -
Vi?CLR-Lvigeonce | - - 866 512
Vi?CLR-Lcenernce| 727 88 878 534
Vi’CLR-Full | 746 894  89.1 55.7

Table 6. Performance comparison of using different contrastive ob-
jective functions to train Vi2CLR

Vi2CLR outperforms MoCo [29], PCL [44], SimCLR [12]
by a great margin.

Semi-supervised classification. For this evaluation, we
use the learned representation of our 2D ConvNet encoder
trained with Vi2CLR for image classification with fine-
tuning the entire encoder and a linear classification layer
on a randomly selected subset (1% or 10%) of ImageNet
training data (with few labels). We follow the same setup
from [46]. In Table 4, we show top-1 and top-5 accuracy
results on ImageNet validation set. Our method substan-
tially outperforms the previous state-of-the-art on both self-
supervised and semi-supervised learning methods.

4.5. Video Retrieval and Classification

Video retrieval. For this evaluation, we use the learned
representation of an S3D, a 3D ConvNet encoder trained
with Vi2CLR on video retrieval downstream task. For
the retrieval task, we evaluate the extracted representation
directly for nearest-neighbour (NN) retrieval without any
further training. We apply the setup from [47] and test if the
query (test set) clip and its nearest neighbors in the gallery
set (train set) belong to the same class. The performance
is measured using Recall at £ (R@k). In Table 5, we
show the results. We show that a better representation
learned using Vi2CLR helps obtain effective video retrieval.

Video Classification. For video classification evaluation,
we use the learned representation of our 3D ConvNet en-
coder trained with Vi2CLR for video classification down-
stream task. We consider two setups, (a) the entire encoder

weights are frozen and only a single linear classification
layer is trained, and (b) the entire encoder and a linear clas-
sification layer are fine-tuned. The classification layer is
trained with cross-entropy loss on target datasets, UCF101,
HMDB51 and Kinetics-400. In Table 7, we show the com-
parison of our method to state-of-the-art methods in light
of the recent self-supervised action classification method
on these datasets. We can observer that the trained S3D
model by our Vi2CLR surpasses and achieves superior re-
sults than methods which use other modality of data like
optical flow [28], multi-modal information. There are some
results from ELO [55] or XDC [1] and they use datasets
like Youtube8M and IG65M which are 100-150 times larger
than Kinetics dataset that we used.

4.6. Ablation Study

We have studied the impact of each objective function
for video and image streams to show the effectiveness of
the whole training set up of Vi?CLR. Since our proposed
method is trained with three different objective functions,
we present the performance of each separately on the down-
stream tasks. Therefore, we had to train models in three
different setups; joint training of video and image with
LcenerNce only; training image stream with Limgnce; and
video stream with Lyigeonce independently. For all three
setups, we utilize clustering and instance cluster assign-
ments and additionally for the later two setups, we further
perform sampling using the positive and negative pairs for
the loss calculation. For joint training, we perform clus-
tering on joint 2D/3D embedding, while when training the
video or image stream encoder we performed clustering on
each streams embedding as described in Section 3.2. For
the single-stream training setup, the corresponding datasets
used for down-stream tasks were ImageNet and Pascal
VOC2007 for image stream; and UCF101 and HMDB51
for video stream training.

In Table 6, we compare full Vi2CLR training total loss
against each objective function on corresponding down-
stream tasks. It can be observed in all cases, the full
Vi2CLR achieves superior results compared to training with
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Method ‘ Training Dataset ConvNet Arch. Input Res. Weight Frozen ‘ UCF101 HMDBS51 Kinetics-400
S3D [79] Kinetics-400 S3D 224 Supervised 96.8 75.9 74.7
DynamoNet [15] Kinetics-400 STCNet 112 Supervised 97.8 76.8 71.9
R(2+1)D [15] Kinetics-400 3D ResNet-50 224 Supervised 96.8 74.5 74.3
CBT [68] Kinetics-600 S3D 112 v 54.0 29.5 -
MemDPC [27] Kinetics-400 R-2D3D 224 v 54.1 30.5 -
MIL-NCE [45] HTM S3D 224- v 82.7 53.1 -
XDC [1] IG65M R(2+1)D 224 v 85.3 56.0 -
ELO [55] Youtube8M RQ2+1)D 224 v - 64.5 -
CoCLR [28] UCF S3D 128 v 70.2 39.1 -
CoCLR [28] Kinetics-400 S3D 128 v 74.5 46.1 -
Vi?CLR UCF S3D 128 v 70.8 39.6 -
Vi?CLR Kinetics-400 S3D 128 v 75.4 47.3 63.4
OPN [43] UCF VGG 227 X 59.6 23.8 -
3D-RotNet [35] Kinetics-400 R3D 112 X 62.9 33.7 -
ST-Puzzle [37] Kinetics-400 R3D 224 X 63.9 33.7 -
VCOP [80] UCF RQ2+1)D 112 X 72.4 30.9 -
DPC [26] Kinetics-400 R-2D3D 128 X 75.7 35.7 -
CBT [68] Kinetics-400 S3D 112 X 79.5 44.6 -
DynamoNet [15] Kinetics-400 STCNet 112 X 88.1 59.9 -
SpeedNet [6] Kinetics-400 S3D-G 224 X 81.1 48.8 -
MemDPC [27] Kinetics-400 R-2D3D 224 X 86.1 54.5 -
AVTS [38] Kinetics-400 13D 224 X 83.7 53.0 -
XDC [1] Kinetics-400 RQ2+1)D 224 X 84.2 47.1 -
XDC [1] IG65M R(2+1)D 224 X 94.2 67.4 -
GDT [53] Kinetics-400 RQ2+1)D 112 X 89.3 60.0 -
MIL-NCE [45] HTM S3D 224 X 91.3 61.0 -
ELO [55] Youtube8M R(2+1)D 224 X 93.8 67.4 -
CVRL [56] Kinetics-400 R3D-50 224 X 92.2 66.7 70.4
CoCLR [28] UCF S3D 128 X 81.4 52.1 -
CoCLR [28] Kinetics-400 S3D 128 X 87.9 54.6 -
Vi?CLR UCF S3D 128 X 82.8 52.9 -
Vi?CLR Kinetics-400 S3D 128 X 89.1 55.7 71.2

Table 7. Video Classification. Comparison of self-supervised methods. All of the methods (except Weight Frozen: Supervised) has been
trained with a self-supervised method and then fine-tuned on UCF101, HMDBS51, and Kinetics-400. The v/ means the encoder weights are
frozen and a classification layer is trained, and X means the entire encoder and a classification layer are fine-tuned.

a single objective function. We believe the process of joint
training of video/image encoders, and cluster learning op-
timizes the contrastive objectives which lead to learning a
robust and effective visual representation.

5. Conclusion

Recently self-supervised learning efforts like contrastive
learning techniques have shown substantial progress in
comparison to supervised pipelines. The community has
witnessed the great impact of the self-supervised works on
transfer learning as well. In this work, We have presented a
joint self-supervised contrastive visual representation learn-
ing for videos and images. The method, Video/Image for
Visual Contrastive Learning of Representation (Vi?’CLR)
offers a complementary learning process with dynamic and
static visual clues to learn semantic clusters and find simi-

lar instances in the representation space. Vi?CLR broadly
shows how different visual understanding ConvNets for
downstream tasks like video action recognition, video re-
trieval, image and object classification can be benefited
from robust and discriminative feature representation and
a pre-training stage. The extensive evaluations on the pro-
posed method prove state-of-the-art performances in the
field of self-supervised learning for videos and images.
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