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Abstract. We propose a method to reduce the computational cost and
memory consumption of existing neural networks, by exploiting spatial
redundancies in images. Our method dynamically splits the image into
blocks and processes low-complexity regions at a lower resolution. Our
novel BlockPad module, implemented in CUDA, replaces zero-padding
in order to prevent the discontinuities at patch borders of which existing
methods suffer, while keeping memory consumption under control. We
demonstrate SegBlocks on Cityscapes semantic segmentation, where the
number of floating point operations is reduced by 30% with only 0.2%
loss in accuracy (mIoU), and an inference speedup of 50% is achieved
with 0.7% decrease in mIoU.

1 Introduction and Related Work

Contemporary deep learning tasks use images with ever higher resolutions, e.g.
2048× 1024 pixels for semantic segmentation on Cityscapes. Meanwhile, there
is a growing interest for deployment on low-computation edge devices such as
mobile phones. Typical neural networks are static: they apply the same opera-
tions on every image and every pixel. However, not every image region is equally
important. Some dynamic execution methods [2,6,8] address this deficiency by
skipping some image regions, but that makes them less suitable for dense pixel
labelling tasks. Moreover, due to their implementation complexity, they do not
demonstrate speed benefits [2], are only suitable for specific network architec-
tures [8] or have low granularity due to large block sizes [6].

Some dynamic methods target segmentation tasks specifically. Patch Pro-
posal Network [9] and Wu et al. [10] both refine predictions based on selected
patches. Processing images in patches introduces a problem at patch borders,
where features cannot propagate between patches when using zero-padding on
each patch. Therefore, these methods use custom architectures with a global
branch and local feature fusing to partly mitigate this issue. Huang et al. [3]
propose to use a small segmentation network and further refine regions using a
large and deeper network. However, since features of the first network are not
re-used, the second network has to perform redundant feature extraction opera-
tions. Moreover, patches are 256× 256 pixels or larger to minimize problems at
patch borders which limits flexibility.
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Fig. 1. Overview: The BlockSample module samples image regions in high or low
resolution based on a complexity criterion. Image regions are efficiently stored in blocks.
The BlockPad module enables feature propagation at block borders.

Our method differs from existing methods in two ways. First, there are no
discontinuities at patch borders due to our novel BlockPad module, efficiently
implemented in CUDA. BlockPad replaces zero-padding and propagates features
as if the network was never processed in blocks, making it possible to adapt exist-
ing architectures without retraining. Also, we can obtain networks with different
levels of complexity simply by changing a single threshold. Patches can be as
small as 8× 8 pixels, without major overhead. Secondly, instead of just skipping
computations at low-complexity regions, we process a downsampled version of
the region. This reduces the computational cost and memory consumption, while
still providing dense pixel-wise labels. Our PyTorch implementation is available
at https://github.com/thomasverelst/segblocks-segmentation-pytorch.

2 Method

Our method introduces several modules for block-based processing (Fig. 1):

BlockSample. The BlockSample module splits the image into blocks and low-
complexity regions are downsampled by a factor 2 to reduce their computational
cost. We use blocks of 128× 128 pixels. As the network pools down feature maps,
the block size is reduced accordingly up to just 4× 4 pixels in the deepest layers,
offering fine granularity. A simple heuristic determines the block complexity Cb.
High-resolution processing is used when Cb exceeds a predefined threshold τ . For
each image block b, we compare the L1 difference between the original image
content of block Ib and a down- and re-upsampled version:

Cb = L1(Ib − nn upsampling(avg pooling(Ib))) (1)

BlockPad. The BlockPad module replaces zero-padding in order to avoid dis-
continuities at block borders, as shown in Fig. 2. For adjacent high-resolution
blocks, BlockPad copies corresponding pixel values from neighboring blocks into
the padding. When padding a low-resolution block, the two nearest pixels of the
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neighboring block are averaged and the value is copied into the padding. Figure 3
demonstrates the benefit of BlockPad compared to standard zero-padding.

BlockCombine. This module upsamples and combines blocks into a single image.
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Fig. 2. Illustration of our modules. The BlockPad module replaces zero-padding for
3× 3 convolutions and avoids discontinuities between patches.
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Fig. 3. Impact of the BlockPad module, by visualizing the intermediate feature maps
and outputs. Zero-padding of individual blocks introduces border artifacts in the corre-
sponding feature maps, resulting in poor segmentation results. The BlockPad module
adds padding as if the image was never split in blocks.

3 Experiments and Results

We test our method on the Cityscapes dataset [1] for semantic segmentation,
consisting of 2975 training and 500 validation images of 2048× 1024 pixels. Our
method is applied on the Swiftnet-RN18 [5] network. Table 1 shows that our Seg-
Blocks models achieve state of the art results for real-time semantic segmenta-
tion, having 75.4% mIoU accuracy with 45 FPS and 61.4 GMACs (=GFLOPS/2)
on a Nvidia 1080 Ti 11GB GPU. This outperforms other dynamic meth-
ods [3,4,9,10] as well as other static networks. We report FPS of other methods
and their normalized equivalents based on a 1080 Ti GPU, similar to [5]. We
did not use TensorRT optimizations. Memory usage is reported for batch size
1, as the total reserved memory by PyTorch. We also experiment with a larger
model based on ResNet-50, where our method shows more relative improvement
as 1× 1 convolutions do not require padding. SegBlocks makes it possible to run
the SwiftNet-RN50 model at real-time speeds of 21 FPS.
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Table 1. Results on Cityscapes semantic segmentation

Method Set mIoU GMAC FPS norm FPS mem

SwiftNet-RN50 (our impl.) val 77.5 206.0 14 @ 1080 Ti 14 2575 MB

SegBlocks-RN50 (τ =0.2) val 77.3 146.6 17 @ 1080 Ti 17 1570 MB

SegBlocks-RN50 (τ =0.3) val 76.8 121.7 21 @ 1080 Ti 21 1268 MB

SwiftNet-RN18 (our impl.) val 76.3 104.1 38 @ 1080 Ti 38 2052 MB

SegBlocks-RN18 (τ =0.3) val 75.5 61.5 45 @ 1080 Ti 45 1182 MB

SegBlocks-RN18 (τ =0.5) val 74.1 46.2 60 @ 1080 Ti 60 1111 MB

Patch Proposal Network [9] val 75.2 – 24 @ 1080 Ti 24 1137 MB

Huang et al. [3] val 76.4 – 1.8 @ 1080 Ti 1.8 –

Wu et al. [10] val 72.9 – 15 @ 980 Ti 33 –

Learning Downsampling [4] val 65.0 34 – – –

SwiftNet-RN18 [5] val 75.4 104.0 40 @ 1080 Ti 40 –

BiSeNet-RN18 [11] val 74.8 – 66 @TitanXP 64 –

ERFNet [7] test 69.7 27.7 11 @ Titan X 18 –

4 Conclusion

We proposed a method to adapt existing segmentation networks for adaptive res-
olution processing. Our method achieves state-of-the-art results on Cityscapes,
and can be applied on other network architectures and tasks.
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