
Uncertainty based model selection for fast semantic segmentation

Yu-Hui Huang
KU Leuven

yu-hui.huang@esat.kuleuven.be

Stamatios Georgoulis
ETHZ

georgous@vision.ee.ethz.ch

Marc Proesmans
KU Leuven

marc.proesmans@esat.kuleuven.be

Luc Van Gool
KU Leuven / ETHZ

vangool@vision.ee.ethz.ch

Abstract

Semantic segmentation approaches can largely be
divided into two categories. One with accurate results
but slow inference, and another one with real-time in-
ference but sacrificing some performance for speed. In
this paper, we try to exploit the benefits of both cat-
egories, i.e. accuracy and speed, through the use of
model selection techniques. Using the uncertainty, cal-
culated from the entropy map, as our selection crite-
rion, we leverage the speed of the fast, but not so accu-
rate, model for regions with high certainty, that com-
prise the majority of the input image, while for a few,
carefully selected regions with low certainty we employ
an accurate, yet expensive, model, to predict the se-
mantic labels. Our experimental results show that our
method greatly boosts the performance of the baseline
model, while retaining reasonable inference speeds.

1 Introduction

Semantic segmentation is the task of assigning se-
mantic labels from a predefined set of classes at every
pixel of an input image. With the recent advent of
Convolutional Neural Networks (CNNs) [1] this task
has received renewed interest. The improved perfor-
mance with CNN architectures has enabled applica-
tions in a broad number of fields, such as autonomous
driving, augmented reality, human-computer interac-
tion, and video surveillance. Apart from accurate seg-
mentation results these applications typically require
efficient inference speeds in order to be deployed in
real-time systems. However, most state-of-the-art ap-
proaches in semantic segmentation usually excel on one
of these aspects, i.e. performance or speed, sacrificing
the other.

On the one hand, methods like PSPNet [2] and the
DeepLab models [8, 7] employ very deep architectures
trained on large datasets to achieve high performance.
On top of that, they add spatial pyramid pooling mod-
ules to segment objects at different scales. On the
other hand, real-time semantic segmentation models,
like ENet [4] and ICNet [3], use different design choices
to achieve efficient inference speeds. The input im-
ages are downsampled to reduce the computational

Figure 1. The pipeline of our model selection ap-
proach. The fast model on the left operates on
the full image, and outputs an initial segmenta-
tion map and an uncertainty map indicating the
image blocks with lower accuracy. The accurate
network on the right processes the corresponding
blocks, and the results are inserted into the initial
response to create a final output.

complexity and the number of feature channels are de-
creased to boost the inference speed. However, these
design choices compromise the segmentation results as
they essentially sacrifice the accuracy for faster infer-
ence. If possible, one would like to have both of these
aspects, i.e. accuracy and speed, in a single framework.

To get the best of both worlds, in this paper we
propose a model selection technique for the semantic

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

03-03



segmentation problem. The selection is done on the
basis of per-pixel values of the uncertainty map (see
Fig. 2) generated by a real-time segmentation model,
like [4, 3]. This allows us to leverage the speed of the
fast, but not so accurate, model for regions with high
certainty, while for regions with low certainty we em-
ploy an accurate, yet expensive, model, like [2, 7], to
predict the semantic labels. As will be shown in the fol-
lowing sections, our approach exploits the fact that re-
gions with high prediction certainty, even for real-time
segmentation models, comprise the majority of the in-
put image, essentially allowing us to combine the fast
and accurate parts of a real-time segmentation model
with a few, carefully selected, low certainty parts where
the expensive model is computed. These selected, low
certainty parts are not only few, but also very low in
size compared to the input image, greatly reducing the
computational burden of the expensive model. Fig. 1
gives an overview of our model selection pipeline.

The input image first passes through a real-time seg-
mentation network, like ENet [4] or ICNet [3], where
both a segmentation and an uncertainty map are pre-
dicted. We propose to use the entropy map as a way to
measure the prediction uncertainty. Consequently, we
split the image into blocks of fixed size, e.g. 256×256
or 512×512, and for each block we compute the aver-
age uncertainty from the predicted uncertainty map. If
the average uncertainty for a specific block is below a
certain threshold we select the predicted segmentation
map of the fast model that corresponds to that spe-
cific block. As such, this threshold serves as our model
selection criterion. For those blocks with higher uncer-
tainty w.r.t. the selected threshold, we crop the corre-
sponding part of the input image and pass it through
an expensive segmentation model, like PSPNet [2].

Our contributions can be summarized as follows:

• a model selection technique for combining the
speed of fast segmentation models with the accu-
racy of high performing segmentation approaches.

• an adaptive selection procedure that can change
the ratio of speed versus accuracy on-the-fly by
changing the selected threshold value in a slider
fashion.

2 Uncertainty estimation

In order to present our uncertainty model, let us con-
sider a deep segmentation network F . Forward passing
an image I through the network F , we obtain a logit
vector y for every pixel of I. Then, a softmax operation
is applied to normalize the logits, which after argmax
serves as the classification result. As indicated in the
literature, the certainty of the classifier can be defined
by measuring the classification margin. For deep neural
networks the softmax value is the most obvious choice.
In particular, if the difference between the highest and

Figure 2. (a) An example of the entropy map
estimated from ENet segmentation result. The
higher value means a more uncertain prediction.
(b) Corresponding error map of the left figure.
Value 1 means correct and 0 means wrong.

the second highest value is large, we can claim the pre-
dicted class with higher certainty.

Inspired by [5], we select the entropy map as our
uncertainty measure. Given the prediction probabil-
ity after softmax z, the entropy map is computed as
follows:

H[z] = −
K∑
i=1

zi ∗ log2(zi) (1)

Fig. 2 illustrates an example entropy map and error
map estimated from ENet’s segmentation result. We
can easily observe that the entropy map has high cor-
relation to the error map. In particular, in the plain
area, such as road, where ENet is confident it has
lower uncertainty value, while on the boundary of ob-
jects, where segmentation networks typically fail, it has
higher intensity in the entropy map.

3 Model selection

Let us assume that we have two segmentation mod-
els: a fast, but not so accurate, model, such as [4, 3], re-
ferred to as fast, and an accurate, yet expensive, model,
like [2, 7], referred to as accurate. Given an input im-
age, we first pass it through the fast network, to get a
segmentation map as well as an uncertainty map ui, as
explained in the previous section. The predicted un-
certainty map is then used to perform model selection
based on a threshold value θ that serves as our selection
criterion. Below, we describe both a pixel-wise and a
block-wise selection mechanism.

3.1 Pixel-wise selection

For pixel-wise selection, we simply select the accu-
rate model for the higher uncertainty pixels, and the
fast one for the rest. In practice, we binarize the en-
tropy map based on the threshold value1 and for a spe-
cific pixel coordinate (x,y) we select the result from

1Here, we assume that we have only two models to select
from, and this is why we need only one binary selection vector.
However, the same technique can be extended to N models in



Figure 3. Example of pixel-wise oracle selection
applied to the same image (a). (b) from ENet
and PSPNet. (c) from ICNet and PSPNet. (No-
tation: white color: both models are correct, pink
color: only the accurate model is correct, green
color: only the fast model is correct, and black
color: both models are wrong.)

the corresponding model i. Note that, pixel-wise se-
lection requires the segmentation map of both models
estimated in advance, which is computationally-wise
expensive, but it serves as the theoretical maximum
performance one would be able to obtain if the per-
pixel selection criterion was possible. We refer to this
in the remainder of this paper as the oracle selection.
For more details and analysis regarding this we refer
the reader to Sec. 4.2.

3.2 Block-wise selection

As explained, although pixel-wise selection gives us
accurate results, it is not feasible for the real-time set-
ting we are targeting in this paper, because we would
still need to apply the inference to the full image for
all models. Instead, we propose block-wise selection to
get a better balance between accuracy and speed. Mo-
tivated by [6], we crop the image into blocks and for
each block we decide which model to do inference from
based on our selection criterion. We begin by applying
average pooling to each block of the fast model’s un-
certainty map. For each block, the pooling size/stride
equals to the size of the block itself. Based on the se-
lected threshold’s value we then determine which block
will go through the accurate model. By using a high
threshold, less blocks have to go through the accurate
model which leads to a faster, but possibly less accu-
rate, result. On the contrary using a low threshold
leads to more accurate results with higher inference
times as well, since more blocks have to go through the
accurate model. In general, the selection criterion, i.e.
threshold θ in our case, serves as a slider that deter-
mines the desired ratio of speed versus accuracy. We
can choose different threshold depending on the ap-
plication. Take autonomous driving for example, it is
especially critical to have a fast but accurate model.
With our model selection, we can get the balance be-
tween these two criteria.

a cascaded fashion, in which case we would need N − 1 binary
vectors.

4 Experiments

4.1 Settings

Models to select We perform our experiments
on the following state-of-the-art models, ENet [4], IC-
Net [3] and PSPNet [2], where ENet and ICNet serve as
fast models and PSPNet as accurate model. The PSP-
Net in our experiments is trained with Resnet-50 [10]
as the backbone. In order to simulate the real-time ap-
plication, we only do the single-scale inference without
flipping during the inference time.

Dataset We select Cityscapes dataset [9] to evalu-
ate our model. The segmentation models we use were
trained on the train set only without coarse labels.
There are in total 5,000 images with a resolution of
1024 by 2048 pixels. Among those images, 2,975 images
are in the train set, 500 images are in the validation
set and 1,525 images in the test set. The performance
is evaluated in terms of mean Intersection-over-Union
(IoU). The first rows of Table 1 show the mean IoU
and inference time of each model, which is regarded as
our baseline for model selection. The inference time
is calculated image-wise on a single NVidia GeForce
GTX 1080 Ti and Intel Core i7-6800K CPU. Among
these three models, ENet is the fastest one (13ms) but
with inferior accuracy (60.1%), while PSPNet is the
most accurate one (77.6%) but with long inference time
(1652ms).

4.2 Error analysis

Before we present the practical results on model se-
lection, we performed an error analysis of the different
segmentation models with respect to one another. In
particular, we compare the results of each segmentation
model (Mi) with the ground-truth labels (L). We de-
fine the difference between these two as the error map
(E),

EMi(i, j) =

{
1, if Mi(i, j) 6= L(i, j),

0, if Mi(i, j) = L(i, j).

Using the generated error maps, we apply model selec-
tion in an oracle way - we select all correct labels from
the current model w.r.t. ground-truth labels, before
moving to the next model - to analyze if those mod-
els are complementary to each other. The purpose of
this experiment is to verify whether the different mod-
els do different mistakes, and as such there is merit in
applying a model selection technique.

For pixel-wise selection, we start from the fast model
(ENet or ICNet) and apply the selection. That is, from
the error map of ENet (E1) we select ENet’s output
only if the value of E1 equals zero, otherwise we se-
lect the outputs from PSPNet. After evaluation on the
validation set of Cityscapes, we obtain a mean IoU of
83.3% which serves as the upper bound of pixel-wise



selection from ENet and PSPNet. Similarly, we apply
the oracle selection to ICNet and PSPNet and obtain
a mean IoU of 83.1%.

To further analyze where the fast models perform
better than the accurate model, we perform the same
oracle selection in the opposite direction, i.e. we first
select the result from the most accurate model (PSP-
Net), then from the erroneous regions of PSPNet we
select the segmentation result from ICNet and so on.
Fig. 3 illustrates the guidance for pixel-wise oracle se-
lection. Note that, the green color appears at the ob-
ject boundaries, e.g. poles, pedestrian, indicating that
fast models can make correct predictions for regions
where accurate models fail. Also, from Fig. 3(b) and
(c), we can find that different fast model makes differ-
ent mistakes.

Similarly, we perform block-wise model selection in
an oracle way. We choose two sizes of blocks, that is
256×256 and 512×512 with ENet/ICNet and PSPNet
to select from. The selection procedure is the same
with one difference. For each block, we compare the
segmentation result from each model with the ground-
truth labels and select the model with the most correct
predictions within the block. However, if the number
of within-block correct predictions are the same among
some models, then we give the faster model higher pri-
ority. The result can be found in the second big row
of the Table 1. For the case of ICNet plus PSPNet in
256×256 block, the performance is 79.4% which is bet-
ter than the models it chose from. The results coincide
with the pixel-wise experiment which is a strongest in-
dication that irrespective of the selection mechanism
the segmentation models are complementary to each
other.

4.3 Block-wise inference for PSPNet

As already explained, for block-wise inference we
divide the image into rectangular blocks - we exper-
imented with three different sizes of blocks - and eval-
uate the segmentation performance. The accurate net-
work’s input is a single block at a time - depending on
the threshold a different number of blocks pass through
- and the inference was done without flipping nor multi-
scale sampling to achieve fair comparisons. To measure
the accuracy, we reassemble the cropped segmentation
result back to the original position and measure the
performance as in Cityscapes benchmark. In order to
obtain the best performance, we finetune the accurate
model for the different crop sizes (eg. 256×256 and
512×512). We measure the inference time at all pos-
sible locations of the crops and take the mean value.
Below, we report their average statistics over all blocks
and images for PSPNet.

Table 2 shows the performance w.r.t. accuracy and
speed on Cityscapes validation set. The baseline model
was trained on 864×864 crops. We observe that the
performance in mIoU drops as the crop size becomes

Table 1. Performance of the model selection on
different block size and threshold with corre-
sponding baselines. The first two big rows present
the baseline models and oracle selections and the
later two big rows show the results of different
model selection. The third column (thres) is the
threshold applied to uncertainty map estimated
from the faster model (ENet or ICNet). The fifth
column (avg. time) presents the average compu-
tation time from the whole validation set. And
the last column denotes the number of blocks that
go through the PSPNet in average per image. (*)
denotes overlapping blocks.

Models block size thres mIoU avg. time blocks

b
as

el
in

e ENet(E)[4] / 60.1% 13ms /
ICNet(I) [3] / 67.3% 33ms /
PSPNet(P) [2] / 77.6% 1652ms /

o
ra

cl
e E+P 256×256 / 78.8% 1652ms 30.8/32

E+P 512×512 / 78.4% 1652ms 7.8/8
I+P 256×256 / 79.4% 1652ms 27.8/32
I+P 512×512 / 78.9% 1652ms 7.0/8

E
N

et
+

P
S
P E+P 256×256 0.25 71.6% 471ms 16.0/32

E+P 256×256 0.5 70.1% 288ms 9.6/32
E+P 512×512 0.25 73.7% 366ms 4.8/8
E+P 512×512 0.5 70.6% 210ms 2.7/8
E+P 480×480(*) 0.25 76.2% 842ms 12.3/18
E+P 480×480(*) 0.5 73.7% 459ms 6.6/18

IC
N

et
+

P
S
P I+P 256×256 0.25 71.8% 339ms 10.7/32

I+P 256×256 0.5 71.5% 169ms 4.7/32
I+P 512×512 0.25 74.2% 268ms 3.2/8
I+P 512×512 0.5 70.3% 89ms 0.76/8
I+P 480×480(*) 0.25 76.4% 571ms 8.0/18
I+P 480×480(*) 0.5 71.5% 149ms 1.7/18

smaller. In particular, it drops from 77.6% to 70.9% as
the image size goes from 864×864 to 256×256 respec-
tively. This is to be expected as the cropped image
restricts the amount of context information available
in the input image, which is crucial for segmentation
networks. On the other hand, the smaller the cropped
image, the faster the inference time is.

4.4 Model selection

In this section, we apply our full pipeline, i.e. block-
wise model, in the two-model selection setting. In par-
ticular, we test the performance of our full pipeline
when using one fast and one accurate model as base-
lines. Again, as fast model we choose either ENet or IC-
Net, and for the accurate model we adopt PSPNet. The
selection criterion is determined by the uncertainty of
the fast model. In particular, we compute the entropy
map from the segmentation result of the fast model af-
ter softmax. For block size, we choose either 256×256
or 512×512, since block sizes larger than 512×512 take
too much time for inference on PSPNet. To see the
effect of overlapping blocks, we also conduct the exper-
iments on 480×480 blocks with two-third stride. For
each experiment, we set a threshold value θ for the
selection.



The third/forth big row of Table 1 presents the re-
sults of model selection between ENet/ICNet and PSP-
Net. Based on the uncertainty estimated from the
ENet/ICNet segmentation result, we compute the aver-
age pooling as mentioned in Sec. 3.2. The blocks with
uncertainty value greater than the defined threshold
will pass through PSPNet. As we can observe from
the table, the combination of ENet and PSPNet takes
longer inference time compared to ICNet and PSPNet.
For the same model and the same threshold, inference
on larger blocks takes less time than on smaller blocks
and it also gives better accuracy.

Compared with the baseline models in the first rows
of Table 1, the most accurate one from our models
achieves 76.4% for ICNet+PSPNet with the average
inference time of 571ms which is about one third of the
inference time from the baseline PSPNet model. Fig. 4
illustrates our selection results from ICNet and PSPNet
on the Cityscapes validation set. It can be seen that
our model improves the train, sidewalk and pole class
compared to baseline ICNet. Compared with PSPNet,
our result removes some misclassified pole class.

To further analyze the relationship between the
threshold value θ and the total inference time, we esti-
mate the average inference time with θ equals to 0.25
to 0.5. The result can be found in Fig. 6. From the
scatter plot, there is a clear trend for each combina-
tion. As we increase the threshold, the inference time
decreases linearly. Fig. 5 presents a similar scatter plot
showing mean IoU versus inference time for different
model combinations. From the plot, we can observe
that our model selection results are located in between
two baseline models. Depending on the application
and the given target inference time, we can select the
model with the best accuracy. This is very practical
for autonomous driving scenarios where inference time
is crucial. For example, if speed is preferred we can
apply the model selection from 512×512 blocks with
smaller threshold. In the case where the inference time
is less important, we can select the overlapping blocks
to boost the accuracy. The latter can be automatically
selected based on the frame rates.

Table 3 illustrates class-wise quantitative results on
the Cityscapes validation set. For E+P setting, our
model has similar performance to the accurate model in
6 out of 19 classes. For I+P setting, ours outperforms
PSPNet in truck class by five percentage points and
have similar performance in another 5 out of 19 classes.

5 Conclusion

In this paper, we presented a model selection ap-
proach to find the balance between the speed of existing
fast – but less accurate – networks, and the accuracy
of the larger – yet slower – networks. The selection cri-
terion is based on an uncertainty map that assigns the
parts of the image to be processed by the faster or accu-
rate networks. As future work, we plan to include more

Table 2. Performance of PSPNet evaluated on
non-overlapping/overlapping(*) sub-regions on
Cityscapes validation set. The first and sec-
ond column shows the block size and the cor-
responding performance in mIoU. The third and
fourth columns present the average inference time
with/without I/O in millisecond. (*) means with
overlapping of two third of the previous block.

Block size mIoU avg. inf. time
with I/O without I/O

256×256 70.9% 26ms 24ms
480×480(*) 76.3% 62ms 55ms
512×512 74.6% 65ms 58ms
864×864(*) 77.6% 167ms 147ms
1024×1024 77.3% 223ms 196ms

models and apply them in a cascaded way to further
improve the segmentation accuracy vs. speed perfor-
mance.
Acknowledgments This work was supported by Toy-
ota Motor Europe.

References

[1] A. Krizhevsky et al.: “Imagenet classification with
deep convolutional neural networks,” Advances in neu-
ral information processing systems, 2012

[2] H. Zhao et al.: “Pyramid Scene Parsing Network,”
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2017

[3] H. Zhao et al.: “ICNet for Real-Time Semantic Seg-
mentation on High-Resolution Images,” The European
Conference on Computer Vision, 2018

[4] A. Paszke et al.: “ENet: A Deep Neural Network Ar-
chitecture for Real-Time Semantic,” CoRR, abs/1606.02147,
2016

[5] H. Wang et al.: “Gated convolutional neural network
for semantic segmentation in high-resolution images,”
Remote Sensing, vol.9, no.5, pp.446, 2017

[6] Z. Wu et al.: “Real-time Semantic Image Segmen-
tation via Spatial Sparsity,” CoRR, abs/1712.00213,
2017

[7] L.-C. Chen et al.: “Rethinking atrous convolution for
semantic image segmentation,” CoRR, abs/1706.05587,
2017

[8] L.-C. Chen et al.: “Deeplab: Semantic image segmen-
tation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol.40, no.4,
pp.834, 2018

[9] M. Cordts et al.: “The Cityscapes Dataset for Seman-
tic Urban Scene Understanding,” Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2016

[10] K. He et al.: “Deep Residual Learning for Image Recog-



Figure 4. Visualization results on the Cityscapes validation set. (a) input image, (b) ground truth label, (c)
segmentation result from ICNet, (d) our model selection result with block size of 256×256. (e) result from
PSPNet baseline. (f) result from PSPNet 256×256 non-overlapping crop inference.

Figure 6. Scatter plot of the threshold (θ) applied
on top of the entropy map estimated from both
ENet and ICNet vs. mean IoU.

Figure 5. Scatter plot of the mIoU(%) vs. average
inference time in millisecond.

nition,” Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2016

Table 3. Quantitative results on the Cityscapes validation set.

Method road sidewalk building wall fence pole tr.light tr.sign vege. terrain sky person rider car truck bus train mbike bike mIoU
ENet [4] 94.4 71.2 85.2 46.1 44.2 45.1 43.2 53.7 87.8 52.4 89.6 61.1 42.2 87.8 42.7 60.5 46.0 29.0 59.5 60.1
ICNet [3] 97.4 79.5 89.5 49.2 52.3 46.4 48.3 61.1 90.4 58.6 93.5 70.0 43.5 91.4 64.4 75.3 58.7 43.8 65.3 67.3
PSPNet [2] 98.1 84.9 92.4 58.7 59.2 64.3 70.5 78.3 92.5 65.8 94.3 82.0 62.7 94.9 64.5 86.8 79.8 67.7 77.4 77.6
(E+P)
oracleblock512 98.2 85.8 92.6 62.3 62.0 64.1 70.4 78.2 92.7 63.1 94.4 81.7 62.9 95.1 70.2 87.3 79.8 67.6 77.1 78.4
oracleblock256 98.3 86.3 92.9 63.3 62.7 64.5 70.3 78.4 92.8 69.0 94.5 82.0 64.3 95.1 71.1 87.2 79.4 67.5 77.2 78.8
Ours 97.5 83.5 91.9 52.2 58.8 63.0 70.3 77.9 92.3 62.7 94.2 81.1 59.8 94.1 61.4 86.2 76.2 67.0 77.3 76.2
(I+P)
oracleblock512 98.4 86.7 92.8 62.6 63.2 64.1 70.4 77.8 92.8 63.3 94.8 81.6 63.0 94.9 74.8 89.0 79.8 67.9 77.1 78.9
oracleblock256 98.5 87.1 93.0 64.9 64.5 64.4 70.5 78.3 92.9 69.0 95.0 82.0 63.6 95.1 76.6 88.6 79.9 67.9 77.3 79.4
Ours 97.7 82.7 91.7 53.3 59.2 61.5 69.2 75.9 92.3 63.1 94.2 80.3 59.8 94.1 69.8 86.7 76.7 66.8 76.6 76.4


