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Abstract. Several new algorithms for camera-based fall detection have been proposed, with the aim of reliably alerting caregivers
about older persons’ falls at home. These algorithms have been evaluated almost exclusively using brief segments of video data
captured in artificial environments under optimal conditions and with falls simulated by actors. By contrast, we collected real-life
video data recorded over several months at seven older persons’ residences. Here, we report on our fall-detection algorithm based
on the state-of-the-art, and we present an analysis of the real-life video data. The performance of our detection algorithm was
compared with the performance of three previously reported algorithms that used a publicly available simulation data set. All
four algorithms produced similar results when using the simulated data. However, the performance of our algorithm degraded
drastically when evaluating falls in the real-life data. The false alarm rate was especially high, showing that some challenges still
need to be met to make the system sufficiently robust to deploy in real-world situations. We conclude that using more realistic
data sets that include longer video recordings and a broad range of activities are essential to reveal weaknesses in fall-detection
algorithms.
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1. Introduction

Between 30 and 45% of the community-dwelling
persons aged 65 or over and more than half of the in-
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stitutionalized older persons fall at least once a year
[33,34,55]. Severe injuries are suffered in 10 to 15%
of these falls [34]. A large number of persons are not
able to get up without help after falling. This occurs
in 20% to 43% of community-dwelling older persons
and 66% to 100% of residents in institutional settings
[10,36,56]. Not receiving aid in time can lead to fur-
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ther complications such as dehydration, pressure ul-
cers, and even death. Not only physical injuries but
also psychological consequences are important, par-
ticularly fear of falling which leads to loss of self-
confidence and independence [10,34]. Taking into ac-
count the ever-increasing aging of the population, it is
obvious that rapid and accurate detection of fall inci-
dents is becoming increasingly important to reduce the
clinical risks associated with lying on the floor for long
periods.

Different types of fall detectors are presently avail-
able, an overview of which can be found in [35] and
[62]. Currently wearable sensors are used most fre-
quently. However, a market study conducted by Se-
niorWatch [49] discovered that fall sensors are not
worn continuously (e.g., removed at bedtime). Also,
for devices requiring a button to be pressed, as with a
panic button, older persons and especially those with
cognitive impairment are not always capable of acti-
vating the alarm system through a button press [10].
As a result, many falls remain undetected. A camera-
based system, on the other hand, has the potential to
overcome these limitations, because it is contactless
(i.e., mounted in the environment, not on the person)
and does not require initiative of the person to be op-
erated.

Because of these advantages, several research groups
have focused on camera-based fall detection algo-
rithms in the last decade [1,3–6,11,15,16,18,20,23–
25,29,31,32,37,38,44–47,50,53,54,57]. However, to
the best of our knowledge, performance of all systems
published to date has always been evaluated using sim-
ulated data sets. Moreover, the falls were recorded in
artificial environments, and the simulators were mostly
younger persons. More has to be considered than sim-
ply the difference between simulated falls and real-
world falls when evaluating fall-detection systems.
Also, it is important to consider that most fallers fall
only once a year (although one-third of seniors fall at
least twice or more a year) [34]. Table 1 shows some
examples of the number of fall- versus non-fall-related
data in the literature that report using simulation data
sets. Most research has focused almost exclusively on
detecting falls using data sets that comprise mostly
fall simulations, without verifying the systems’ robust-
ness with regard to rejecting non-fall-related activities.
Also, the length of video fragments used previously
appears to be especially short, given that a real-world
fall-detection system has to work continuously.

By contrast, the present study used an extensive
real-life video data set. We installed cameras to mon-

itor seven older persons at their residence for a period
ranging from 3 months to 1.5 years. Four of the per-
sons had a documented high risk of falling. For a num-
ber of the fall events that were recorded, an analysis
was performed from a clinical point of view, the results
of which can be found in [59].

The aim of this study was threefold: Can conclu-
sions derived from the analyses of simulated data be
extrapolated to real-life data? Can we reliably detect
real-life falls using a state-of-the-art system that is
benchmarked only on simulated data? What is the per-
formance of a state-of-the-art fall-detection algorithm
using real-life data?

In the remainder of the paper, we provide an
overview of the literature on camera-based fall detec-
tion. In Section 3, the data sets we used in this study
are discussed and an overview of the real-life falls is
given. Our new fall-detection algorithm is discussed in
detail in Section 4, while Section 5 presents the vali-
dation results of the proposed algorithm, which used
both simulated and real-life video data. A discussion
of the results and some possible improvements in the
fall-detection system are presented in Section 6. We
conclude in Section 7.

2. Related work

Two main approaches have been used in most fall
detection systems reported in the literature: (1) one
that attempts to detect the action of falling directly
(e.g., [1,4–6,11,15,16,18,20,23–25,29,32,44,46,47,
53,54,57]); and (2) one that is designed to detect un-
usual events, like changes in a person’s life pattern,
in general (e.g., [3,31,37,38,45,50]). Approaches in
the latter category rely on collecting indirect evidence
to infer fall incidents, such as prolonged inactivity at
unusual locations. The disadvantage of this approach
is that a longer response time is required, since a cer-
tain amount of time needs to pass in order to detect
abnormal inactivity.

More recently, some research groups have started
using multi-camera networks of four or more cameras
in the same room for fall detection (e.g., [3]). Also, 3D
video acquisition has gained much attention recently
([8,24,26,27,47]). Although these approaches provide
more information about the scene, a disadvantage is
that often calibration of the system is needed, and the
cost is higher than a system using regular cameras with
fewer constraints of placement and overlap of view.
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Table 1

Overview of events used in different studies in the literature com-
pared to ours using real-life data.

Study Number of Other events Amount of data Type of data Publicly

falls available

Auvinet et al. [3], Hung et

al. [18], Rougier et al. [46]
25 24 10 minutes over 24 fragments Simulation Yes

Charfi et al. [4] 192 57 ± 125 minutes over 249 fragments Simulation Yes

Chua et al. [5] 21 30 naa Simulation No

Foroughi et al. [11] 375 875 na Simulation No

Hartmann et al. [15] 45 45 na Simulation No

Htike et al. [16] 43 30 na Simulation No

Miao et al. [31] 240 240 na Simulation No

Shieh et al. [50] 60 40 na Simulation No

Young et al. [23] 5 49 na Simulation No

Young et al. [24] 92 56 na Simulation No

Our real-life data set used in
the present study

21 Virtually unlimited 504 hours used Real life No

a na: not available

Ozcan et al. [41] have proposed using a wearable
camera. This approach has the potential of overcom-
ing some of the challenges faced by fixed camera sys-
tems. Certainly, the problem of the subject falling out
of the camera’s view is solved in this case, but the ma-
jor disadvantage is that it is not contactless, and so has
the same disadvantages of other wearable systems as
mentioned above.

Currently, the most frequently used approach for
fixed camera-based fall detection reported in the lit-
erature is combining relatively simple, low-level cues
with available domain knowledge (e.g., exploiting the
fact that the speed of a person falling is mostly greater
than his speed during normal activities, or the fact
that the posture of a person changes during a fall,
etc.). The use of more complex methods, like ac-
tion recognition (e.g., [53]) and person detection
(e.g., [61]), seems promising, but still needs further
study and probably will require more training data
to be reliable. Since the cameras are static, back-
ground subtraction can be applied to find the mov-
ing foreground objects, including a person. Likewise,
one can build on domain knowledge to design sim-
ple yet robust fall features, such as the aspect ratio of
the foreground region [1,4,6,11,20,24,25,32,60] , or
the speed of the person’s head [4,11,29,44,47] (ex-
ploiting the fact that the head remains mostly visible
during a fall). Background subtraction, in which the
background is modeled using previously visible infor-
mation in the video and then the foreground is found
by calculating the difference between the current im-

age and this model, has been used by many systems
(e.g., [1,3,5,6,11,15,16,18,20,23–26,29–32,38,44,45,
50,51,53,54,57,60]). In many cases, it is assumed that
this results in an accurate silhouette of the person,
based on which the person’s posture can be deter-
mined (e.g., [1,5,6,11,16,20,23,25,26,31,38,50,51]).
However, observations on real-life data show that an
accurate silhouette is often unavailable. Due to the
lower image quality, as well as problems with over-
exposure, occlusions, and changing illumination con-
ditions, background subtraction only provides a rough
idea of where the person might be (even after shadow
removal). Also, the fact that older persons often re-
main seated at the same place over long periods of
time does not help in this respect [7]. In this case,
due to the nature of background subtraction, the person
is sometimes unintentionally integrated into the back-
ground, which causes ghost figures when the person
starts moving again.

Methods exploiting relatively low-level cues (e.g.,
[22,44,45,54]) seem most promising in a real-life con-
text. They are robust, fast to compute, and relatively
generic (i.e., no need for retraining or calibration for
each new camera setup).

The new object-detection method proposed in this
paper is based on background subtraction to find the
person in the image. This will be described in detail in
Section 4.1. From this image of the detected person,
several low-level features are extracted and combined.
Additionally, temporal information is included in the
algorithm to detect a fall.
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3. Video data

This section gives an overview of our real-life data
set and other publicly available, simulated data sets.
We compare and contrast the most important charac-
teristics of these data sets.

3.1. Real-life fall data set

This study was approved by the Medical Ethics
Committee of the Leuven University Hospitals in Leu-
ven, Belgium. From 2009-2013, camera systems were
installed at the residences of seven older persons: two
in a house of community-dwelling older persons, one
in an older person’s private living room at his nurs-
ing home, and four in an assisted living room (ALR).
All participants received oral and written information
about the study and the camera system, and all gave
their informed consent. The participants’ age ranged
from 74 to 95 years. For each residence, 4 to 6 wall-
mounted, internet protocol (IP) cameras were used.
They had a resolution of 640 by 480 pixels and a frame
rate of 12 frames per second. Images were recorded
continuously, at night, and in low light conditions us-
ing near-infrared lights. The cameras were installed
only in the corners of the room, with the aim of cov-
ering the entire room in the camera’s field of view. For
privacy reasons, a camera was not installed in the bath-
rooms, except for the bathroom of one person, who in-
sisted because he had fallen twice at that location pre-
viously. A control panel was provided to allow the par-
ticipants to switch off the system whenever they de-
sired.

The participants’ fall risk was measured using the
Timed Get-Up-and-Go Test (TGUGT) [21]. During
this test, the subject is asked to rise from a chair, walk
three meters, turn around, return to the chair, and sit
down. The manually recorded time needed to complete
the test and observations by the health-care worker
(e.g., shuffling or unstable gait) are used to quantify
fall risk. The TGUGT indicates that the subject has
an increased fall risk when more than 14 seconds are
needed to complete the test [21]. A result of over 20
seconds represents a high risk of falling. Based on this
test, four participants had a high risk of falling, while
one had an increased risk of falling. The two other sub-
jects had a normal walking pattern, and little risk for
falling, as assessed with the TGUGT.

Camera recordings were made 24 hours a day, 7
days a week. In total, over 21,000 hours of video were
stored. The required storage for these data was over

180 TB. For privacy reasons, the recordings were al-
ways stored on a pc lacking internet access in the house
of the participant. Every two weeks, the researchers
exchanged the computers’ filled hard drives for fresh
ones to continue the recordings. During the video ac-
quisition period, 29 falls were registered, and a huge
amount of non-fall related data were recorded. Two
persons fell a combined 25 times. Two participants
never fell and were therefore excluded from the re-
mainder of this study. More detailed information about
the remaining participants can be found in Table 2.

To the best of our knowledge, the data we collected
comprise a unique data set. Robinovitch et al. con-
ducted an observational study on real-life falls, but
only common areas (e.g., dining rooms, lounges, and
hallways) were monitored [43]. In our study, on the
other hand, falls were recorded in the actual living
quarters of these persons. The videos of Robinovitch
et al. were, to the best of our knowledge, also not
used for automatic fall detection, only for researcher-
viewed observations.

It was impractical to use the complete real-life data
set of over 21,000 hours for this validation study. We
decided instead to use a fragment of the 24 hours of
video recorded before each fall. The fall was included
at the end of the video fragment. The camera, on which
the fall was best visible, was manually selected.

Several inclusion criteria were formulated that had
to be met for the video to be included in this study. The
first was that 24 hours of video before the fall had to
be available. Additionally, the fall had to occur while
no one else was present in the same room. Someone
else was allowed to be present in another room of the
house or another portion of the video to remain eligi-
ble. And finally, the person had to fall in the camera’s
field of view. Occlusions, as shown in the upper panel
of Figure 2, were allowed. Thus, only 21 of the 29 falls
recorded as part of the real-life data set were eligible
for inclusion. One fall was excluded, because the 24
hours of video before the fall were lost due to a hard
drive failure. Three falls were excluded, because an-
other person was in the same room when the falls oc-
curred. Note that, in real-world situations, the detec-
tion of such fall incidents is less critical, since some-
one is present to immediately offer help. Four other
falls were excluded, because part of the fall took place
beyond the camera’s field of view.

Figure 1 gives an overview of all included falls trun-
cated into groups of three informative video frames:
one immediately before the fall, one during the fall,
and one after the fall. Table 3 gives an overview of the
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Table 2

Baseline characteristics of the participants that fell during the video acquisition period.

Participant Age Sex Home TGUGT Walking aid Acquisition Fall Falls on Falls fulfilling

results period incidents camera inclusion criteria

A 95 f ALR 24 sec walking frame 5 months 1 1 1

B 95 f ALR 32 sec rollator 7 months 12 10 6

C 85 f RCR 27 sec rollator 5 months 17 15 11

D 74 m CD 11 sec none 20 months 2 2 2

E 75 f ALR 16 sec walker, cane, nonea 3 months 2 1 1
a Participant E switched between walker, cane, and not using a walking aid during the day.

(TGUGT: Timed Get-Up-and-Go Test; ALR: Assisted Living Room; RCR: Residential Care Room; CD: Community Dwelling)

most important fall characteristics. In 38% of the falls,
a walking aid was being used. In 29% and 38% of the
falls, the person was partially or completely occluded
in the video after falling, respectively. Thus, in 67% of
the falls, it was not possible to extract a complete and
accurate silhouette of the person for fall detection. Fur-
niture was shifted in 67% of the cases. The direction
in which a fall happened, as viewed from a given cam-
era position, was also diverse. In 67% of the falls, the
person fell sideways as viewed from the camera angle,
while in 33%, the person fell towards or away from the
camera. Most of the falls started from an upright pos-
ture (76%), while in 14%, the person was sitting be-
fore falling. In one fall, the person was crouching near
the bed, and in another, the person was bending over
to pick up something from the floor. As mentioned be-
fore, it is most important to generate an alarm if the
person is unable to get up. In 86% of the falls, the per-
son remained laying on the floor for an extended time
and had to be aided to get up again.

Although we manually selected fall incidents and
camera viewpoints, a fair comparison could still be
made, since the goal of this study was to evaluate the
fall detection algorithm, not the complete system. Ex-
cluded falls might have been acceptable for analysis
if more cameras had been available, or if they were
placed differently, a more favorable angle may have
been chosen. Even after the selection of the best cam-
era view, however, the data set remained very challeng-
ing to analyze.

3.2. Simulated fall data sets

During our literature search, we discovered only two
data sets that are publicly available to evaluate fall de-
tection algorithms. These are provided in the papers of
Auvinet et al. [2] and Charfi et al. [4]. Both data sets
were recorded in a simulated environment, in which
younger actors simulated both falls and other activities

of daily living. The data set of Auvinet et al. used a net-
work of eight calibrated cameras for video acquisition.
The data set consists of 24 videos, ranging from 30
seconds to over 4 minutes. It contains 25 falls and 24
other events (11 crouching, 9 sitting, and 4 lying on a
sofa). Some examples are shown in Figure 6. The data
set of Charfi et al. used a single camera setup and con-
sists of 249 videos, ranging from 10 seconds up to 45
seconds. One hundred and ninety-two videos contain
falls, and 57 contain several normal activities, such as
walking in different directions, sitting down, standing
up, housekeeping, moving a chair, etc. Some selected
characteristics of the falls for these two data sets and
several others can be found in Table 1.

For our analysis of simulated falls, we chose the
video data set of Auvinet et al. [2]. This data set was
also used in three other studies [3,18,46], while, to our
knowledge, the data set of Charfie et al. [4] has been
used only once. The data set of Auvinet et al. com-
prises eight different views of the monitored room:
four from the corners and four from a position in the
middle of the walls. To mimic as closely as possible
the real-life setup of our data set, we analyzed video
only from the corner cameras. From this subset, we
manually selected the video from the camera on which
the fall was best visible.

3.3. Comparison of data set characteristics

Table 4 shows a more detailed summary of the char-
acteristics of our real-life data set, along with those of
the simulated data sets of Charfi et al. and Auvinet et

al. Not all falls occur in the same way. They can oc-
cur while walking or picking something up, for exam-
ple. Often the person falls forward but sometimes also
backwards. These different types are contained in all
data sets. To produce falls that are more diverse in sim-
ulated data sets, multiple participants can be used, but
Auvinet et al. used only one person to simulate the
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Fig. 1. Overview of all falls meeting the inclusion criteria in the real-life data set. The participants’ heads are intentionally blurred in post-editing
to maintain anonymity. For falls 12 and 14, only the silhouette of the person is shown to maintain anonymity.



Debard et al. / Camera-based fall detection using real-world versus simulated data: how far are we from the solution? 7

Table 3

Overview of the most important characteristics of the included real-life falls. The last two columns show whether the fall was correctly detected
using our algorithm for a given β-valuea .

Fall Fall direction Direction seen Walking aid Occluded Furniture Posture Remained Fall detected

from camera used? after fall moved at start on floor β = 20 β = 40

1 Backwards Sideways Rollator No Yes Standing Yes Yes Yes

2 Backwards Sideways No Yes Yes Standing Yes No Yes

3 Sideways Sideways Wheelchair No Short distance Standing Yes Yes Yes

4 Sideways Away Rollator Yes Rollator Standing Yes No Yes

5 Backwards Away Rollator Yes Yes Standing Yes No No

6 Frontal Sideways No No No Standing Yes Yes Yes

7 Sideways Sideways No Yes Yes Standing Yes No Yes

8 Sideways Towards No Partially Yes Standing Yes Yes Yes

9 Backwards Sideways Rollator Partially Yes Standing Yes Yes Yes

10 Sideways Sideways No No No Crouching Yes Yes Yes

11 Downwards Towards Wheelchair Partially Wheelchair Sitting Yes No No

12 Sideways Sideways No No No Standing No No No

13 Sideways Sideways No Yes Yes Standing Yes No No

14 Frontal Towards No Partially Yes Bending over Yes No Yes

15 Backwards Sideways No Yes Yes Standing Yes Yes Yes

16 Frontal Sideways No Partially No Standing Yes Yes Yes

17 Sideways Sideways No No No Sitting No No No

18 Frontal Sideways No Partially Yes Sitting No No No

19 Backwards Towards Wheelchair No No Standing Yes No Yes

20 Backwards Away Yes Yes No Standing Yes No No

21 Backwards Sideways No Yes Yes Standing Yes No No
a See Section 4.3

falls. Charfi et al. used multiple younger persons as ac-
tors. Our data set contained falls from five older per-
sons, but as mentioned before, 86% of the incidents
occurred in two people.

The real-life recordings showed that while falling, a
person might shift the furniture, as shown in Figure 2.
This can hinder the accurate detection of a fall. From
the two simulated data sets, only Auvinet et al. took
this into account in a small proportion of their falls.
Additionally, our data set contained falls in which the
person is (partly) occluded, or contained falls while the
participant was using a walking aid, as shown at the
bottom of Figure 2. During daytime, many different ac-
tivities naturally occur, some of which can cause false
alarms. However, in contrast to the real-life data set,
both simulated data sets included only a limited num-
ber of different activities in (sometimes very) short
fragments. In a real-life situation, the living quarters
of a person changes constantly, for example, furniture
shifting, doors and curtains opening and closing, and
televisions being switched on or off. Also, the lighting
conditions change during the day. These challenging

conditions were included in the real-life data set, but
are only meagerly present in the simulated data sets.

4. Methods

First, we provide an explanation about how a per-
son is detected in the videos using our new algorithm.
Then, we explain how the different features are ex-
tracted from the detected person. Finally, we show how
these features are combined to determine whether a fall
has occurred.

4.1. Person Detection

The videos were first converted to gray-scale images
to standardize the processing of images acquired dur-
ing the day and during the night when near-infrared
light was used. The disadvantage of this conversion
is that no color information is then available that
might be used to distinguish features of the room from
the person. The first step in the new algorithm in-
volves identifying the person using foreground detec-
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Fig. 2. Some challenges for camera-based fall detection. Upper panels: The table and chairs are pushed away while falling, and the upper body
of the person is occluded at the end of the fall. Lower panels: While falling, the rollator walker is pushed and rolls away from the person.

Table 4

Most important characteristics of the different data sets

Simulated data set of Charfi et al. Simulated data set of Auvinet et al. Our real-world data set

Falls Several different kinds of falls Includes falls against furniture Different falls, against furniture,
partly occluded, with walking aids

Normal
activities

Some, but not lying down Some, but also some that seem un-
natural for older persons

Normal activities during complete
day

Setting Several different rooms; only few
pieces of furniture present

Only one room, with only small
amount of furniture

5 different houses with different
rooms; most full of furniture

Participants Several actors with different types
of clothing

One actor wearing different shirts 5 older persons, even while chang-
ing clothes in view

Lighting Different light sources, including
(sun)light through window

Only one fixed light source Several light sources; changing
conditions during day

Video length Very short (10-45 sec) Rather short (30-60 sec), with only
2 longer videos (2-4 min)

Continuous (evaluation via frag-
ments of 21 videos of 24 hours)

Furniture Shifted chairs and some other small
objects; also opening of doors

Moving sofas, chairs, and other ob-
jects, even during falls

Moving furniture, opening of doors,
TV switched on, etc.

Camera per-
spective

Only one perspective; sometimes
very close to fall itself

8 different fixed perspectives, simi-
lar to placement in real room

Fixed perspectives; always from
upper corner of rooms

Occlusions Occlusions present; sometimes per-
son is only partially in view of cam-
era

Occlusions caused by furniture Numerous occlusions caused by
furniture and person exiting view of
camera
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tion. This is accomplished through several steps, as
shown in Figure 3. First, the foreground is segmented
out from the background using background subtrac-
tion. After this, the shadow is removed and the remain-
ing foreground is cleaned up. From this foreground,
the region of interest (ROI) is determined.

4.1.1. Background Subtraction

First, the foreground is segmented out from the
background. For this, a background subtraction tech-
nique is used based on an approximate median filter
[28]. This technique approximates the median pixel in-
tensity over all images acquired over a certain amount
of time. Median filtering for background subtraction is
based on the assumption that the background is visible
more than half of the time. The advantages of using
the approximate median filter are its low memory con-
sumption, fast computation, and robustness. The draw-
backs are its rather slow update in response to large
changes in illumination, and as with any background
subtraction method in which a dynamic background is
present, the influence of the foreground on the back-
ground. This influence can lead to the appearance of
a ghost figure in the video processing results (see Fig-
ure 8 f-h). When a person is sitting still on a couch for
a long period, for example, the background updating
process incorporates the person into the background. If
he stands up, the region of the couch that was occluded
previously will also differ from the background, and
it is detected as foreground. This could influence the
extraction of features used to detect a fall.

4.1.2. Shadow Removal

In video processing, a shadow that is cast by a
moving object is falsely detected as being part of the
foreground, since it makes the underlying pixels ap-
pear darker. This makes the detected foreground region
larger than it should be. To remove this shadow, we use
the property that a shadow only changes the intensity
of the pixels while the texture of the covered region
does not change [13]. As a result, the texture of the
shadow is correlated with the corresponding texture of
the background image. Jacques and Jung [17] describe
the use of cross correlation to determine how the de-
tected foreground pixels match the background pix-
els. With this approach, when the cross correlation is
greater than a certain threshold, and the pixel is darker
in the current image, then a pixel is classified as being
part of the shadow. Also, other changes in illumination
can be eliminated using this technique when remov-
ing the constraint that the pixel has to be darker in the
current image.

Fig. 4. Extraction of salient subject features used for fall detection.
Purple rectangle: bounding box of subject; white fine segmented
line: best-fitting ellipse within subject bounding box; double green
diamond: center of mass; blue octagon: head position. (Small, filled
black rectangle is not part of feature extraction set; it is inserted in
the figure presentation here to maintain subject anonymity).

4.1.3. Post-processing

The resulting foreground after shadow removal is
sometimes still noisy. To reduce this noise, first an ero-
sion/dilation step is used on all foreground pixels to re-
move small noisy patches. Next, a connected compo-
nents analysis [48] is applied to determine all the fore-
ground objects.

4.1.4. ROI Detection

The next step in our fall-detection algorithm is de-
termining a ROI. In our case, the largest foreground
region is selected and determined to correspond to the
monitored person. To minimize noise and interference,
the ROI must be greater than a certain threshold. A
minimum threshold of 17,500 pixels resulted in the
best performance. From this ROI, the features used to
detect a fall are extracted from the image, as explained
in the next subsection.

4.2. Fall Detection Features

For our algorithm, five features are extracted from
an image in order to detect a fall: (1) aspect ratio
(AR) [1,6,32,60]; (2) change in AR (CAR); (3) fall an-
gle (FA) [45,60]; (4) center speed (CS) [45]; and (5)
head speed (HS) [11,29] (see Figure 4). These features
were chosen based on domain knowledge, i.e. in such a
way that they captured relevant information to discrim-
inate falls from other actions, while at the same time
were sufficiently robust to avoid inaccuracies in per-
son detection. These features are also the most widely
used in other algorithms reported in the literature for
fall detection in video images.

Aspect ratio The AR is calculated as the ratio of
the width to the height of the bounding box (BB)
around the foreground object (i.e., the subject). A per-
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Fig. 3. Overview of the person-detection algorithm (ROI : region of interest).

son standing upright has a small AR, while a person
lying down would have a large AR. Also, the change
in AR (CAR) is used. This is calculated as the differ-
ence between the current AR and the AR calculated
one second before the current AR.

Fall angle The angle of the person is measured as the
angle between the long axis of the best-fitting ellipse
and the horizontal direction in the image. A standing
person has an angle of approximately ±90 degrees,
while a person lying down has an angle of approxi-
mately ±0 degrees (from a side-view perspective). The
fall angle is the difference of the current angle and the
angle one second before the current angle.

Center speed and head speed A person, and cer-
tainly most older, frail persons, typically have low-
paced movements. With most falls, however, a portion
of the movement has relatively higher speeds. Based
on this observation, the speed of the center of mass of
the foreground object and the speed of the head defined
as the highest point of the bounding ellipse as in [11]
are key parameters for fall detection in our algorithm.
The head is a more stable feature in the video images,
since it is less prone to being occluded and less influ-
enced by occlusions.

Feature vector Given that the selected features are
based on domain knowledge, each of them can be used
on their own as a basic fall detector by choosing an
appropriate threshold (e.g., in [60]). However, better
results can be obtained if they are combined in a single
classifier. Most systems detect a fall in a single video

frame. In some cases (e.g., [4]), a fall is only detected
if a couple of adjacent frames are classified as "fall,"
reducing the number of false detections.

According to Noury et al. [40], a fall consists of four
phases: the pre-fall, critical, post-fall, and recovery.
Using this scheme, and considering even more data
in the period just before the fall and certainly more
in the period after the fall, could improve the detec-
tion. With this additional knowledge, a feature vector
is constructed that contains information in the period
in which a fall could be present with information in the
period before and after this. Figure 5 shows the struc-
ture of this feature vector.

First for each video frame, the five fall detection fea-
tures discussed in Section 4.2 are calculated. Note that
the features are normalized to have a zero mean and
unit standard deviation. Then, the complete video frag-
ment is divided into time slots of 1 second. For each
time slot, one feature vector is created. The maximum
and mean value of each fall detection feature is calcu-
lated for each time slot. The features of the current time
slot are stored along with those of the previous and the
next slot. Additionally, other combinations, such as the
combination of the previous time slot with the current
and the next two slots, are used. These feature vectors
are then used to detect a fall.

4.3. Fall Detection with SVM

To classify a time slot as containing a fall or non-
fall, a Support Vector Machine (SVM) [58] is used. A
SVM is a universal classifier that maximizes the mar-
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Fig. 5. Overview of the contents of the feature vector (FV) used by the Support Vector Machine (SVM; Section4.3). The complete video is
split into discrete, one-second time slots. One FV is created for each time slot. A FV contains information about the current time slot and
(combinations of) other time slots. Each FV part consists of 10 features as shown. (AR = Aspect ratio, CAR = Change of AR, FA = Fall angle,
CS = Center speed, HS = Head speed).

gin between positive and negative data. Given the lim-
ited amount of fall-related training data, a linear kernel
is chosen. To prevent classifying all vectors as non-fall,
different weights are used for positive (w) and negative
data (1 − w). The detector is evaluated using ten-fold
cross-validation. The available videos are partitioned
into 10 different non-overlapping parts. This way there
are 10 different test sets. With each test set, one train-
ing set corresponds, consisting of all videos that are
not part of the specified test set. The best overall SVM
model parameters are needed to train the ten SVMs of
each training set. The parameters are (a) weight w and
(b) regularization parameter of the SVM. A wide range
of combinations of these parameters were tested. As a
cost-function, the Fβ-measure was used, which allows
one to set appropriate weights to the sensitivity and
positive predictive value (PPV). The sensitivity is the
ratio of detected falls to all falls, while the PPV is the
ratio of true alarms to all alarms. (TP: True positive;
FN: False Negative; FP: False Positive)

Sensitivity =
TP

TP + FN

PPV =
TP

TP + FP

Fβ = (1 + β2).
PPV.sensitivity

β2.PPV + sensitivity

A β greater than one puts more weight on sensitivity
than on PPV. The best combination of parameters is
the one that gives the best mean performance over all
ten training sets. Using this best combination, a model
can be trained for each of the 10 training sets. This
trained model can then be used to classify falls in its
corresponding test set. This way, all time slots in all
videos are classified as fall or non-fall just once. Also,
different settings for β are tested to determine which
setting gives the best result.

To reduce the false alarm rate, two post-processing
steps are executed over the sequence of each video:
median filtering and non-maximum suppression [39].
First, if a time slot is classified as a fall, but none of
its neighbors are, then it is more probable that this is
a false alarm and not a true fall. To reduce the num-
ber of these single detections, a median filter of length
three is applied over the sequence. After this, non-
maximum suppression with a window of three is used
to combine the detections in single detections. Non-
maximum suppression searches for a local maximum
in the defined neighborhood. The detections adjacent
to this maximum are set to zero, or in this case, to a
non-fall. A time frame starting three seconds before the
fall and ending three seconds after the fall is used to
determine if a fall incident is truly detected. If at least
one time slot inside of this time frame is classified as
a fall, the fall incident is detected. This is counted as
one TP. If no time slot is classified as a fall inside this
time frame, this is one FN. Each detection outside of
this time frame counts as one FP.
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5. Results

Our fall detection algorithm was tested on a simu-
lation data set that is publicly available and on a real-
life data set we collected. First, the performance of our
algorithm using the simulation data set is presented,
along with the performance of other fall detection al-
gorithms reported in the literature. Also, the results
from using the separate features in our algorithm and
the results from using a combination of all features are
presented. Finally, we present the results of our fall de-
tection algorithm using real-life data, along with the
performance of the different parts of the algorithm.

5.1. Simulations

Table 5 shows the results of our fall detection al-
gorithm together with those of other studies using the
same simulation data set. A value of 2 for β in our
algorithm produced the best overall performance for
the Fβ-measure. This compromise resulted in a sen-
sitivity of 88% and a specificity of 95.6% for fall de-
tection. Three (12%) falls in the simulation data were
undetected with our algorithm, and five (4.4%) events
were incorrectly identified as falls (i.e., false alarms).
All false alarms occurred in just one video (video 23)
of the simulated data set of 24 videos. The first missed
fall went undetected, because the person fell onto a
chair and stood up immediately after falling. Our sys-
tem likely failed on this example, because it uses in-
formation from after the fall. This simulated fall dif-
fers from all other falls of the data set. In all other falls,
the actor remains on the floor for several seconds after
falling. For the second missed "fall," the actor was sit-
ting on a chair and then dropped a bit lower onto the
mattress. In the final missed fall, the actor fell and then
slid over the floor for several meters. The false alarms
produced by our algorithm were caused by errors in the
foreground segmentation (3 alarms) or by misclassifi-
cations (2 alarms). In two cases, the actor was "split"
into two parts in the foreground segmentation, causing
erroneous features to be extracted. In one case, a chair
was shifted close to the camera, which resulted in the
chair being the largest foreground object rather than
the actor walking on the other side of the room (see
upper panel of Figure 6). The erroneous shift of the
bounding box from the actor to this chair produced a
false alarm. The two misclassifications were both from
similar scenarios, in which the actor was simply laying
down onto the sofa by letting himself "fall" into it (see
lower panel of Figure 6).

Table 5

Performance of our proposed algorithm against others reported in

the literature using the same simulation data set.

Method Sensitivity Specificity

Our method 88 % 95.6 %

Hung et al. [18] 95.8 % 100 %

Auvinet et al.a [3] 80.6 % 100 %

Rougier et al.b [46] 95.4 % 95.8 %

Our method with same annotations 82.6% 93.9%

as used in [3]a

Our method on same subset 90.9 % 100 %

as used in [46]b

aAuvinet et al. use a different annotation.
bRougier et al. use a subset of the simulation data set.

Figure 7 presents receiver operating characteris-
tic (ROC) curves, showing performance of the com-
plete algorithm versus several the single feature classi-
fiers, tested as baselines. The increase of performance
of combining the different features and using time-
informataion in our algorithm is evident in the ROC
curves. First, the separate features with and without
time information were used to classify the different
time slots as a fall. Only the best performing features
are shown in the figure. Then all the features were
combined in one feature vector, again with and without
time information. The performance of single features
are shown when a threshold is applied and no time in-
formation is included; the SVM is not used, and test or
training data were not used. In this case, the most opti-
mal results for the different thresholds are shown. The
combination of the features without time uses a test
and training data set, in combination with the SVM.
This explains why it seems to perform worse than with
just the separate features.

The mean value of the aspect ratio performs the best
of all of the separate features. This is followed closely
by the mean value of the change of the AR. This was
expected, as the AR is reported to be the best feature
of other algorithms in the literature. The addition of
time information increases the performance of all clas-
sifiers. Also, combining the different features increases
performance of the algorithm. The complete classifier
has the best overall performance, resulting in an area
under the curve (AUC) of 0.821. The mean AR com-
bined with time information is a close second, having
an AUC of 0.798.
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Fig. 6. Example of erroneous fall detections of the proposed algorithm using the simulation video data. Upper left: Actor falls on chair and gets
up immediately. Upper right: Moved chair is largest foreground object. Lower panel: Swift "drop" onto sofa, annotated in the simulation data set
as being normal activity.
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Fig. 7. ROC curves of tests on the simulation data using separate and combined features in the proposed algorithm. Performance with and without
time information is considered. Only the best performing methods are shown.
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5.2. Real-life data

Table 6 presents the results of our fall detection al-
gorithm using the real-life data set we described ear-
lier. The results of Auvinet et al., which used the simu-
lation data set, are also included for comparison. Table
3 shows which falls exactly are detected for β = 20
and β = 40. The specificity is not presented in Table 6
for the real-life data set, because specificity is the ratio
of true negatives divided by all non-fall activities. It is
nearly impossible to determine the number of non-fall
activities in the real-life data set of 504 hours, since the
notion of "non-fall event" is ill defined. Additionally,
even if it could be calculated, specificity is not the best
measure to show the robustness of the system. A better
measure for this is the PPV.

Since there was a huge amount of non-fall-related
data and only a small number of falls in the real-life
data set, the F2-measure, as used in the simulations, put
too much weight on the PPV. The result was a very low
sensitivity. The tests using β = 40 produced a more
or less acceptable sensitivity of 61.9% and a PPV of
0.35%. With this setting, 8 out of 21 (38%) falls were
not detected. Five falls were missed because of the for-
mation of a ghost figure in the video processing, which
interfered with the correct extraction of the features.
The presence of a walking aid in the images caused
two falls to remain undetected: In one case, the per-
son was occluded behind a rollator walker; in the other
case, the person was partially occluded by a wheelchair
that also generated a ghost figure. In five falls, the per-
son was partially or completely occluded during or af-
ter the fall. In three falls, the person got up or was aided
in getting up soon after falling. These circumstances,
or a combination of them, prevented these falls from
being correctly identified by the algorithm as a fall.

Also, 3753 false detections occurred, or 178.7(±84.9)
false alarms per day. These mainly happened dur-
ing the daytime, when the person moved more fre-
quently. Visual inspection of a random sample of 10%
of these false detections showed that these had nine
main causes. The most important causes are shown in
Figure 8. In 18% of the errors, another foreground ob-
ject with a similar size as the person was present, while
in 16% of the cases another person was present in the
room (see Figure 8 a). In 15% of the false alarms, the
person’s image consisted of two foreground objects of
almost the same size. Because of these three causes,
the system often erroneously switched to the other per-
son or object, resulting in large motions and changes in
aspect ratio and angle. Another 17% of the errors were

caused by the continuous update of the background,
which included non-moving persons in the background
(see Figure 8 c-e). During this update, the size of the
object changed, and sometimes the objects were split
into several blobs. However, more than just people en-
tering the background produced false alarms. Ten per-
cent of the errors were caused by ghost figures that re-
sulted from a person moving after being included in
the background (see Figure 8 f-h). With a single cam-
era system, a person moving through the room could
become occluded behind furniture, again causing large
changes of the bounding box and ellipse. This scenario
accounted for 4% of the errors. A person could also
become (partially) hidden by leaving the field of view,
because the view angle of the cameras was limited.
When the person closely approached the camera, or
walked below it (as seen in Figure 8 b), a distortion of
the bounding box and ellipse could be seen. This situ-
ation accounted for 13% of the errors. Another 5% of
the errors was caused by changes in illumination (see
Figure 8 i+j); shifted furniture was the origin of 2% of
the false alarms.

Figure 9 again shows ROC curves of the different
classifiers. Also, in the case of the real-life data set, the
proposed algorithm outperforms its component parts
considered alone. As mentioned above, we can see that
performance using the real-life data set is a lot worse
than that using the simulation data set. Only 38% of
the falls can be detected before the PPV drops below
0.5%. This point corresponds with a β = 20.

6. Discussion

6.1. Simulations

As described in Section 5.1, our algorithm erro-
neously detected two activities as being falls that were
annotated in the simulated data set as being a normal
activity. These were two cases in which the person let
himself "fall" into the sofa in order to lay down (see
Figure 6 lower panels), as if he had just completed
a hard day of work. These can be described as "in-
tended" falls, but of course, could also be potentially
dangerous for an older person. The three missed falls
were mainly related to the fact that only one similar
fall was present in the simulation data set. The use of
a SVM-based fall detector, as for most other machine-
learning approaches, has the constraint that it needs a
sufficient amount of training data to learn about the
possible range of detection activities. If a particular
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Fig. 8. Examples of false alarms in the real-life video data set. a: More than one person present in room. b: Person leaves camera view. c-e:
Person, remaining in same place for a long time, starts to disappear in background. c: Background, d: Binary foreground with detected bounding
box, e: Foreground. f-h: Interference of ghost figure. f: Background, g: Binary foreground with detected bounding box, h: Foreground. i+j:
Detected bounding box before (i) and after (j) switching on the lights (note that in this case, there is camera sensor saturation visible that cannot
be solved by the cross correlation). (All heads are blurred to maintain anonymity.)
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Table 6

Results of our proposed fall-detection algorithm using different val-
ues for β

Type of video data set β Time slot length Sensitivity PPVa TPb FNc FPd

Auvinet et al.e 2 1 sec 0.88 0.82 22 3 5

Real life 2 1 sec 0.1905 0.0296 4 17 131

Real life 10 1 sec 0.2381 0.0217 5 16 225

Real life 20 1 sec 0.3810 0.0058 8 13 1360

Real life 40 1 sec 0.6190 0.0035 13 8 3753
aPPV: Positive Predictive Value bTP: True Positive
cFN: False Negative dFP: False Positive
eResults of our algorithm on simulation dataset added as reference.
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Fig. 9. ROC curves of tests using real-life data of individual and combined features, with and without time information added. Only the best
performing methods are shown.

fall instance differs too much from the examples in the
training set, it is possible that it will not be detected
correctly.

Comparing the performance of our proposed algo-
rithm using the simulation data set of Auvinet et al.

with alternative algorithms described in the literature
using the same data set (Table 5), we see that ours per-
formed roughly similarly. Note that the other systems
combine information from several calibrated cameras,
while in our system only a single uncalibrated camera
is used (the one on which the fall is best visible). More-
over, while several methods (e.g., [3,46]) report results
on the same data set, it should be noted that they do not
all use the same evaluation protocol, making it difficult

to compare results across studies. This issue is detailed
below.

In the detection system of Auvinet et al. [3], fore-
ground detection results from multiple calibrated cam-
eras are fused into a 3D volume, and a fall is de-
tected whenever the largest part of this volume dips
below 40 cm from the ground plane for at least five
seconds. We report their results when merging infor-
mation from three cameras. Using more cameras im-
proves the performance of their system to a sensitivity
and specificity of 100%. However, in their evaluation,
they used different activity annotations than the ones
provided in the description of the data set[2]. When us-
ing these same adjusted annotations of Auvinet et al.,
our algorithm resulted in a sensitivity of 82.6% and
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a specificity of 93.9% on the simulated data set. This
lower performance could be explained by the presence
in the data of a few falls in which the person recov-
ered quickly. Our algorithm detected these activities as
falls, but they are not labeled as falls in their ground-
truth annotations.

In the detection system of Hung et al. [18], two or-
thogonally placed calibrated cameras are used, which
measure the height of the person. This parameter is
then used to classify the person as standing, sitting, or
lying down. A fall is detected if a person’s state di-
rectly transitions from standing to lying, without first
transitioning to sitting. This is why their algorithm did
not detect the fall that began from a sitting position in
the chair.

Rougier et al. [46] performed shape matching on sil-
houettes obtained by background subtraction to quan-
tify shape deformation. Abnormal shape deformations
followed by a period of one to five seconds of insignif-
icant motion are detected as falls. Input from multiple
cameras is integrated using majority voting. To vali-
date their system, only the first 22 video fragments of
the simulated data set were used. Using the same sub-
set of data, our algorithm generated no false alarms and
only two falls went undetected. In this case, the per-
formance of our algorithm resulted in a sensitivity of
90.9% and a specificity of 100%, as shown in Table 5.

With these considerations, the performance of our
proposed new algorithm could be considered to be
similar to state-of-the-art performance of other algo-
rithms.

6.2. Real life

Now, looking at the performance of our algorithm
using the same settings on the real-life data set in Ta-
ble 6, a completely different picture emerges. With this
data set, our algorithm had a low detection rate and
a high false alarm rate. One or two false alarms on a
small data set of 20 minutes of video might seem ac-
ceptable. However, in a real-world situation, this rate
translates to three or more false alarms per hour. More-
over, the more complex nature of real-life data caused
a higher false alarm rate. Tuning the system to accom-
modate the amount of non-fall-related data by increas-
ing β to 40 produced better results. Unfortunately, this
adjustment was still not sufficient to produce a usable
system. Most of the situations causing false alarms in
the real-life data set were absent in the simulation data
sets.

6.3. General Discussion

Unfortunately, it was impossible to test the three
other published algorithms on the real-life data set.
There is no implementation available for these, and
even if there were, the system of Auvinet et al. needs at
least three calibrated cameras with overlapping views.
This is similar to the case for the Hung et al. system,
which needs at least two orthogonally calibrated cam-
eras. In our real-life data set, there are several rooms
with only one camera, and even when two cameras are
available, they are not orthogonally arranged or cali-
brated, and have only limited overlap.

The algorithm comparisons presented in section 5.1
([3,18,46]), all start with background subtraction. It
can thus be expected that all algorithms, including our
own, are equally affected by the more challenging con-
ditions found in real-life data. The use of real-life data
certainly shows the importance of correctly validating
the performance of the system and testing its robust-
ness. Evaluation data should be representative of real-
world situations, or even better, validations should use
real-life data, like the present study did. The disadvan-
tage is that the use of real-life data makes development
of new algorithms more difficult. Moreover, it is diffi-
cult and expensive to collect real-life data.

Another problem arises with making real-life data
publicly available, since it has several constraints, e.g.,
maintaining anonymity. Finding persons that want to
cooperate in continuous recordings intended for use
as a public data set is even more difficult than for
a private data set. Anonymizing the data could make
it easier to distribute the videos, but one problem is
that certain fall-detection techniques rely critically on
correctly identifying a person’s head, which obviously
will fail after applying current video anonymization
procedures. It is clear that the use of simulation data
offers several advantages and is still the best way to
make progress now, but it is imperative to create sim-
ulation data sets that include a range of activities and
situations closer to reality. For future work, we plan to
produce and publically release a fall data set in which
actors will reenact the falls from the real-life data set
we presented and analyzed here. Most current algo-
rithms using background subtraction work well if the
videos are short and if the person does not remain in
the same place for extensive periods of time. These
restrictions are often only discovered after examining
longer videos of real-world situations. An important
point to take into account is the amount of data.
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6.4. Possible improvements

Most of the false alarms produced by our algo-
rithm could possibly be avoided by using more ad-
vanced techniques. Implementing more advanced fore-
ground detection that is robust to continuous changes
in illumination, slow movement of older persons,
different types of light sources, and possible over-
illumination, could improve performance. However,
exploratory tests using two background subtraction al-
gorithms available in OpenCV, an improved and adap-
tive mixture of a Gaussian model [63] and a probabilis-
tic method that uses Bayesian inference [12], produced
only minor improvements. Thus, using these advance-
ments in this context does not justify the increase in
processing time and memory consumption.

The largest improvement could be expected from
the use of a tracking algorithm like e.g., a particle filter,
to follow the person in the image instead of selecting
the largest blob for each video frame. This avoids large
motions and changes in appearance caused by jumping
back and forth between different foreground blobs cor-
responding to different (parts of) persons or other ob-
jects. The integration of a person detector like e.g., [9]
could also provide a means to verify the tracked object
and to reinitialize the tracker.

7. Conclusion

Fall detection is becoming more and more impor-
tant in efforts to ease the fears of an older person or
someone with an increased fall risk. With reliable im-
plementation, these persons are able to live longer in-
dependent lives in a more comfortable and safe way. In
the present study, we introduced and evaluated a novel
fall-detection algorithm comparable to state-of-the-art
detection algorithms in terms of performance. Most
importantly, we compared its performance on real-life
data of older persons at their residences and publicly
available simulation data. We showed that the system
performs similarly as the current state-of-the-art sys-
tems on simulation data. However, when using real-life
data, it becomes clear that it is not yet robust enough
to employ in a real environment. Examining the de-
tailed results produced by our system and the simi-
larities in the preprocessing steps of the other algo-
rithms reported in the literature suggests that their per-
formance will also degrade similarly when used with
real-life data. The available simulation data sets are a
good start for developing fall-detection systems, but

they are not yet close enough to reality. It is better
to use real-life data, but the constraints in distributing
them makes it impossible to use them for benchmark-
ing different fall-detection algorithms. The creation of
simulation data sets that include more real-life chal-
lenges and a more realistic ratios of fall to non-fall ac-
tivities is important.
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