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Demosaicing Based on Directional Difference
Regression and Efficient Regression Priors

Jiging Wu, Radu Timofte, Member, IEEE, and Luc Van Gool, Fellow, IEEE

Abstract— Color demosaicing is a key image processing step
aiming to reconstruct the missing pixels from a recorded raw
image. On the one hand, numerous interpolation methods
focusing on spatial-spectral correlations have been proved very
efficient, whereas they yield a poor image quality and strong
visible artifacts. On the other hand, optimization strategies, such
as learned simultaneous sparse coding and sparsity and adaptive
principal component analysis-based algorithms, were shown to
greatly improve image quality compared with that delivered
by interpolation methods, but unfortunately are computationally
heavy. In this paper, we propose efficient regression priors as a
novel, fast post-processing algorithm that learns the regression
priors offline from training data. We also propose an independent
efficient demosaicing algorithm based on directional difference
regression, and introduce its enhanced version based on fused
regression. We achieve an image quality comparable to that of
the state-of-the-art methods for three benchmarks, while being
order(s) of magnitude faster.

Index Terms—Demosaicing, color filter
resolution, image enhancement, linear regression.

array, super-

I. INTRODUCTION

OR reasons of cost, most digital cameras are based

on a single image sensor equipped with a color filter
array (CFA). The Bayer pattern filter [1], as shown in Fig. 1,
is the most frequently used CFA. Other patterns are discussed
in [2]. The study of demosaicing algorithms for the Bayer
pattern, aiming at recovering the missing color bands at each
pixel, has a long history (see [3], [4]). We can broadly fit
them into two categories: interpolation- and optimization-
based methods.

Initially, interpolation-based methods were developed.
Among those, nearest neighbor, bilinear or bicubic methods
are the simplest as they interpolate within the R, G, and B
channels independently. Later on, researchers started to exploit
the spatial-spectral correlations that exist between the RGB
channels.
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Bayer filter -
Fig. 1. Scheme of demosaicing.

HQL: Malvar et al. [5] introduce high-quality linear
interpolation (HQL). HQL is a gradient-corrected bilinear
interpolation method, with a gain parameter to weight the
gradient correction term. In other words, Malvar et al. first
apply bilinear interpolation to compute lost G values at R/B
locations, then correct them by using the spatial gradients
of R/B. A similar strategy is applied for the interpolation of
the missing R/B values.

DLMMSE: Zhang and Wu [6] develop the directional linear
minimum mean-square error estimation (DLMMSE) tech-
nique. DLMMSE builds on the assumption that differencing
G and R/B channels amounts to low-pass filtering, given their
strong correlation. The results are typically referred to as
‘primary difference signals’ or ‘PDS’. In particular, DLMMSE
adaptively estimates the missing G values in both horizontal
and vertical directions, and then optimally fuses them. Finally,
the R/B channels are computed, guided by the reconstructed
G channel and the PDS.

LPAICI: Paliy et al. [7] propose spatially adaptive color fil-
ter array interpolation. They employ local polynomial approx-
imation (LPA) (Katkovnik er al. [8]) and the paradigm of
intersection of confidence intervals (ICI) (Katkovnik et al. [9]).
ICI serves to determine the scales of LPA. LPAICI aims to
filter the directional differences obtained by the Hamilton and
Adam algorithm [10].

PCSD: Wu and Zhang [11] present a primary-consistent
soft-decision method (PCSD). PCSD computes several estima-
tions of the RGB channels via primary-consistent interpolation
under different assumptions on edge and texture directions.
Here, the primary-consistent interpolation indicates that all
three primary components of a color are interpolated in the
same direction. The final step is to test the assumptions
and select the best, through an optimal statistical decision or
inference process.

GBTF & MSG: Pekkucuksen and Altunbasak propose the
gradient-based threshold-free (GBTF) method [12] and an
improved version, the multiscale gradients-based (MSG) [13]
color filter array interpolation. GBTF addresses certain
limitations of DLMMSE by introducing gradients of color dif-
ferences to compute weights for the west, east, north and south
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directions. MSG further applies multiscale color gradients to
adaptively combine color estimates from different directions.

MLRI: Incorporating the idea from GBTF, Kiku et al. [14]
propose minimized-Laplacian residue interpolation (MLRI).
They estimate the tentative pixel values by minimizing the
Laplacian energies of the residuals.

AVSC: Zhang et al. [15] propose a robust color demo-
saicing method with adaptation to varying spectral correla-
tions (AVSC). AVSC is a hybrid approach which combines an
existing color demosaicing algorithm such as DLMMSE [6]
with an adaptive intraband interpolation.

LDINAT: Zhang et al. [16] derive a color demosaicing
method by local directional interpolation and nonlocal adap-
tive thresholding (LDINAT) and exploit the non-local image
redundancy to enhance the local color results.

Besides interpolation based methods, the demosaicing prob-
lem is also tackled with optimization-based methods.

AP: For optimization, Gunturk er al. [17] iteratively
exploit inter-channel correlation in an alternating-projections
scheme (AP). After initial estimation, intermediate results are
projected onto two constraint sets, which are determined by
the observed data and prior information on spectral correlation.

AHD: Hirakawa and Parks [18] propose an adap-
tive homogeneity-directed demosaicing algorithm (AHD).
AHD employs metric neighborhood modeling and filter bank
interpolation in order to determine the interpolation direction
and cancel aliasing, followed by artifact reduction iterations.

LSSC: Mairal et al. [19] derive a learned simultaneous
sparse coding method (LSSC) for both denoising and demo-
saicing. Essentially, they unify two steps — dictionary learning
adapted to sparse signal description and exploiting the self-
similarities of images into LSSC.

SAPCA: Last but not least, Gao et al. [20] propose the
sparsity and adaptive principal component analysis (PCA)
based algorithm (SAPCA) by solving a minimization problem,
i.e. by minimizing an /; function that contains sparsity and
PCA terms.

We observe that most methods do not perform consistently
on the IMAX and Kodak datasets (see Fig. 7), which are
the two most commonly used datasets for testing demosaicing
algorithms. When they perform well on Kodak, they tend to be
less convincing on IMAX. Of course, part of the reason is that
the study of Kodak has a longer history than that of IMAX,
and the images in IMAX seem to be more challenging to
reconstruct. LSSC and SAPCA report the best performances
on the Kodak dataset and SAPCA substantially outperforms
all other methods on the IMAX dataset. Yet, both methods
come with a high computational cost.

In this paper, we propose an efficient post-processing step
that can be combined with all aforementioned demosaicing
methods, and boost their performance. Of particular interest
is its combination with the fastest ones, as this leads to state-
of-the-art performance at high speed. On top of that, we also
propose modifications that go beyond sheer post-processing
and that further improve the results.

Our post-processing step is coined ‘efficient regression
priors method’ (ERP). For a given demosaicing method,
ERP learns offline linear regressors for the residuals between
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Fig. 2. Our proposed methods (DDR, FR and ERP) provide the best average
demosaicing quality with low time complexity, on the IMAX dataset. Details
are given in Section V.

demosaiced training images and the ground truth, and then
applies them to the output of the demosaicing method at
runtime. ERP is inspired by the adjusted anchored neigh-
borhood regression (A+) [21], [22], a state-of-the-art method
in image super-resolution. Farsiu et al. [23] were among the
first to observe the connection between super-resolution and
demosaicing. ERP as sheer post-processing step has already
been introduced in our previous paper [24]. Here we add
two further refined versions for fast demosaicing, one based
on directional difference regression (DDR) and the other on
fused regression (FR). DDR and FR integrate MLRI and
ERP beyond simply post-processing the demosaiced images.
Motivated by MLRI, we fully explore the correlation between
channels by training directional differences. As a result, our
methods reduce the color artifacts and achieve state-of-the-
art performance comparable to those of LSSC/SAPCA, but at
running times that are order(s) of magnitude lower (see Fig. 2).

Our paper is organized as follows. Section II briefly reviews
MLRI and A+, as both underly our methods. Section III
introduces our proposed post-processing method - ERP.
Section IV further introduces our novel demosaicing meth-
ods DDR and FR. In section V, we discuss the choices of
parameters and the experimental results. Finally, we conclude
the paper in section VI.

II. REVIEW OF MLRI AND A+

This section briefly reviews the two major sources of
inspiration for our proposed methods: the MLRI demosaicing
method [14] and the A+ super-resolution method [21].

A. Minimized-Laplacian Residue Interpolation (MLRI)

The MLRI method of Kiku et al. [14] is mainly motivated
by the GBTF method of Pekkucuksen and Altunbasak [12].
MLRI includes two stages (see Fig. 3). Let G,y and R, ,
denote the raw values at position (x, y) for the green and red
channels, resp.:

1) First Stage': MLRI estimates the missing G values at
locations with R information as well as the R values at

Here we only discuss the estimation of the G values at R position in the
horizontal direction, G values at B are handled similarly.
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locations with G information through linear interpolation.
Assuming the raw value G; ; or R; ; is missing then we have,

G, =(Gij1+Gij)/2, R, =(Rij_1+Rij1)/2.
D

Next, after computing the horizontal Laplacian of tentative
R and G estimations by the 1D-filter
Fip=[-1 0 2 0 -1], 2)
MLRI uses a modified version of guided image fil-
ters (GIF) [25] to obtain intermediate G values, meaning that
the FipRY is treated as the guided Laplacian for Fy pGH,
so that the dilation coefficient a; ; is obtained,

1
Tl Zmmeo, F1oR ) F1pG 5
ai,j = 5 , (3)
oijTE€

where w; ; is a local image patch centered at pixel (i, j), |o] is
the number of pixels in w; ;, afj is the variance of FipRHY
in w; j, € is a regularization parameter.

The translation coefficient b; ; is obtained as follows,

bij=GH;; —a;jR";;, “4)

where GH; ; and R¥; ; are the mean values of G and R
in w; j. The intermediate G value GlHj is further determined,

> (@Rl +br). ®)

(k,))ew;,

Under the assumption that the residues vary linearly in a
small area, the smoothed residues A g,’ are estimated by linear
interpolation
AN, )= (Gijor =Gl )/2+ (Gijn — G ))/2.
(6)

Correspondingly, the horizontally enhanced G values at the
R locations are acquired by adding the tentative values GH
and the interpolated residuals Ag,’ . To get other enhanced
R, B values at different positions MLRI applies the same
modified GIF.

G channel interpolation of MLRI.

2) Second Stage: It starts with computing the tentative

horizontal/vertical (h/v) color differences (G-R, G-B) A?’r‘//b

GZH;V — R;; G is interpolated at R,
~HV .. . GlH]V — B;j G is interpolated at B,
Ag”r/b(l»]): G"' AHYV Risi lated @)
i — G 1S 1nterpolated,
Gij— giHj’V B is interpolated,

where GIH]?V, RlHJV
izontal/vertical values. Then the color differences A g,r/b are
weighted and improved as

Agrplis j) = {osFG AL, (i — 41, )
+ o FGAY G i +4, )
+owdg, i j—4: FG
+w Al G+ DR o, )
where Fg is the Gaussian weighted averaging filter

Fg =[0.56 035 0.08 0.01 0], ©)

and BiHj’V are the above enhanced hor-

Wn.s5,e,w are computed by color difference gradients and w; is
the sum of wy s ¢,,». Eventually, G values at R locations are
obtained by

Gij = Rij + Agrplis J). (10)

A similar derivation holds for the G values at B locations.
As to the R channel, MLRI computes the Laplacian of
R and G values with the 2D-filter

0 0 -1 0 0
0 0 0 0 0

Fop=|—-1 0 4 0 -1 (11)
0 0 0 0 0
0 0 -1 0 0

Again, the modified GIF is applied. The R channel is guided
by G,-, ;j values. In the end, the output R values are enhanced
by smoothing the residues as Eq. (6) indicates. The B channel
goes through exactly the same process.

B. Adjusted Anchored Neighborhood Regression (A+)

A+ proposed by Timofte et al. [21] derives from and
greatly enhances the performance of Anchored Neighborhood
Regression (ANR) [26] for image super-resolution tasks. The
algorithm contains two important stages:
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1) Offline Stage: A+ uses Zeyde et al.’s algorithm [27] as
a starting point, which trains a sparse dictionary from millions
of low resolution (LR) patches collected from 91 training
images [28]. To begin with, the LR images in the YCbCr color
space are scaled up to the size of output high-resolution (HR)
images by bicubic interpolation. In the next step, the upscaled
LR image y; is filtered by the first- and second-order gradients,
and features {ﬁ;‘}k corresponding to LR patches of size 3 x 3
are collected accordingly. A+ projects them onto a low-
dimensional subspace by PCA, discarding 0.1% of the energy.
When it comes to the training, K-SVD [29], an iterative
method that alternates between sparse coding of the examples
and updating the dictionary atoms, is applied to solve the
following optimization problem

Dy, {q*} = argmin D |Ip} — Diq* 1> st llg*llo < L Vk.
D {g*} %
(12)

where {pf}k are the training LR feature vectors, qf are

the coefficient vectors and D; is the LR training dictionary.
The training process of A+ goes through 20 iterations of the
K-SVD algorithm, with 1024 atoms in the dictionary, and
allocating L = 3 atoms per coefficient vector.

Instead of optimizing the reconstruction of high resolu-
tion (HR) patches at runtime, A+ uses offline trained anchored
regressors to directly obtain them. More specifically, A+ uses
the atoms of the trained dictionary D; as anchors for the
surrounding neighbourhood and the corresponding LR to HR
patch regressor. A+ collects 5 million pairs of correspond-
ing LR features and HR patches from a scaled pyramid of
the 91 training images. For each anchor point (LR atom),
A+ retrieves the nearest n = 2048 training samples. Due to the
l>-norm used in Eq. (12) the distance between the atom and its
neighbor is also Euclidean, and all of the 5 million candidates
are normalized by the /p-norm. Then for an arbitrary input
LR feature y, A+ solves

min{ly - Siy8l + 2118117}, (13)

where S,y is the matrix of 2048 nearest neighbors anchored
to the atom dy and / is set to be 0.1. ‘Nearest’ is measured

by correlation. The algebraic solution of Eq. (13) is

8§ =Py, Pry=(S/,Siy+iD7'S], (14)

where I is the unit matrix. As to the HR training images, the
first thing is to remove the low frequencies by subtracting
the upscaled corresponding LR image. Then, A+ collects
5 million 3 x 3 such HR patches corresponding each to
LR patches. The HR patch values are further normalized by
the corresponding />-norm of LR patch features. The anchored
regressor Py corresponding to the atom dy is precomputed
offline

Py =S, Py = sh,y(s[ys,,y + u)*ls[y, (15)

where S;y contains 2048 HR patches corresponding to
LR features in S;y.

2) Online Stage: During this stage, the testing LR image
is (as done in the offline stage) firstly scaled up to the target
size by bicubic interpolation and the first- and second-order
horizontal and vertical finite differences are calculated. After
extracting the LR patch features (PCA projected), A+ searches
the atom d; in D; with the highest correlation to each input
LR feature y;, and the residual HR patch x; without low
frequencies is obtained by multiplication of the regressor P;
anchored to d; with y;

X :Pjyj. (16)

Subsequently the low frequencies are added. The HR patches
are combined by averaging in the overlapping area to complete
the output HR image.

III. EFFICIENT REGRESSION PRIORS (ERP)

Our ERP method is inspired by the A4 method introduced
for image super-resolution. As a post-processing step, ERP
has two major strengths. Firstly, it is capable of improving the
results of many demosaicing methods. Especially MLRI4+-ERP
combines low time complexity and good performance.
Secondly, ERP trains offline a dictionary and regressors and,
thus, allows for low computational times during testing. In the
following we describe how ERP (see Fig. 4) is derived and
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used for the post-processing of demosaiced images. ERP goes
through two stages just as A+ does.

A. Offline Stage

ERP is trained using 100 high quality images collected from
Internet for post-processing the results of a selected demo-
saicing method. The demosaicing method reconstructs the
LR image. In the CPCA (Collection + PCA) step (see Fig. 4),
the first and second-order finite differences of the G chan-
nel are extracted for the LR training images, in both the
h/v direction,

Fij = [1
Fy = [1

1] =F],

lo>

-2 1]/2=F], (17)

so that we can keep information on edges and mosaic artifacts,
and train a dictionary adapted to a specific demosaicing
method. Small 3 x 3 regions at the same position of the
filtered G channel are collected and concatenated to form
one vector (feature), along with PCA dimensionality reduction
with 99.9% preserved energy. After repeating the process for
the R and B channels, the input vector Vf‘ is eventually formed
by three features at the same position of the RGB channels.
This process is called CPCA step in Fig. 4.

Later, ERP applies the K-SVD [29] method as in [21], [26],
and [27] to train an LR dictionary W; with 4096 atoms:

W, = argmin > |[vj = Wie'|* st |icflo < N Wk, (18)
Wi (et T

where {cX}; is the set of coefficient vectors. The training
process goes through 20 iterations of the K-SVD algorithm,
allocating N = 3 atoms per coefficient vector. Here, the choice
of 3 atoms and 20 iterations is based on A+, which shows
good performances on the super-resolution task.

Assuming that the atoms are sparsely embedded in a man-
ifold, it is natural to use input vectors {vg‘}k for densely sam-
pling the manifold. Moreover, not only the input vectors {vé‘ I
but also the LR vectors collected from the scaled pyramids
of the LR training images can serve to better approximate the
manifold. Here, the overall size scaling factors of the pyramids
layers are of the form 0.987 with levels p =0, ..., 11. Thus,
ERP selects 2048 nearest neighbors anchored to an atom from
5 million region/vector candidates, all of which are normalized
by the lp-norm. ‘Nearest’ is measured by correlation. In the
following step, ERP computes {Qy,;}i=1,....4096

Qi = (N[ ,Ni; + D)~ 'N/, (19)

where N; ; is the matrix of 2048 nearest neighbors anchored
to the atom w; and 1 is set to be 0.1. As to the ground truth
images, the first thing needed is to remove the low frequencies
by subtracting the demosaiced LR image. Then, ERP collects
5 million high resolution (HR) patches without low frequen-
cies corresponding to the previously collected LR candidate
vectors. The HR candidates are further normalized by the cor-
responding />-norm of the LR candidates. Finally, the anchored
regressor Q; corresponding to the atom w; is precomputed
offline

Qi =Np,iQui =N (NN +AD7'NJ,,  (20)
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where N ; contains 2048 HR patches corresponding to
2048 nearest neighbors in Ny ;.

B. Online Stage

The same demosaicing method is applied first at test time.
Among the studied demosaicing methods, we consider MLRI
to be the best match for ERP because of its low time complex-
ity and good performance. MLRI can be used to independently
interpolate RGB channels before applying ERP (see Fig. 4),
or interpolate the G channel first, then guide the RB channels
with the ERP updated G channel. No matter what the case
may be, ERP searches the nearest neighbor atom w; in W;
for a vector v; of the input image with highest correlation;
the output patch y; is computed by multiplying regressor Q;
anchored to w; and v, which is indicated by the brown arrow
confluencing with the black arrow in Fig. 4,

yj =Q;vj =Ny ;Qu;v;, 2n
where Q;,;v; is the algebraic solution of
min{lv; — NpjxII> + Z]1x]%}. (22)

After adding y; to the low frequencies (the input demoisaced
image) as well as averaging the overlapping area, the small
patches are integrated into a complete output image.

IV. DIRECTIONAL DIFFERENCE REGRESSION (DDR)
AND FUSED REGRESSION (FR)

In this section, we make a couple of observations on
the MLRI and ERP methods and introduce our proposed
independent demosacing methods, DDR and FR.

A. Observations

MLRI computes the enhanced h/v differences (G-R, G-B)
with the modified guided image filter and residual inter-
polation, which leads to a rather inaccurate estimation.
To improve the h/v differences we follow the idea of regressor
training. As described previously, ERP maps LR features
into HR patches without low frequencies. We implement a
similar idea and map inaccurate color differences into accurate
color differences without low frequencies by offline trained
regressors. MLRI also uses the Laplacian filtered G channel to
guide the reconstruction of the R/B channels. The set of first
and second-order finite differences highlight edge and blob-
like profiles in the intensity patterns. Therefore we use them
both in our methods.

ERP as an enhancement step can be applied to different
demosaicing methods. This said, its performance depends on
that choice. If we use bilinear interpolation as the starting
point, the final performance is less impressive than that of
ERP starting from a state-of-the-art method. This brings the
question whether we can improve beyond the combination of
ERP with any of the demosaicing methods that we described
in the introduction. In what follows, we present two novel
methods, both making use of ERP, but also improving on the
initial demosaicing.
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B. Directional Difference Regression (DDR)

Our proposed DDR method has three steps (see Fig. 5).
Due to space constraints, we discuss the horizontal case of
three channels. Let Ry y, Gy y, By, y to be the raw input image
values at position (x, y):

(i) Without relying on sophisticated methods as the starting
point, assume raw values R; j, G;j, B; j are missing, based
on Eq. (1) we use the simplest linear interpolation to obtain

the tentative values RlHj, GlH], B” horizontally. Then the
tentative horizontal color dlfferences (G-R, G-B) A gr/b Are
computed as
C_}lHj — R;; G is interpolated at R,
- GH. — B; ; G is interpolated at B,
RE G, jy={ i = b P (23)
& G;j — B!". B is interpolated,
Gij — R, Ris interpolated.

In the CPCA step (see Fig. 5), instead of applying gradient
filters of h/v directions as ERP, we filter A ?, r/b by horizontal
Fi,,Fo (Eq (17)), collect 3 x 3 regions at the same position of
filtered A r/b and concatenate them to one vector (horizontal
feature) respectlvely, along with PCA reduction.

The training images go through the same process, and we
use the K-SVD method to iteratively compute the LR color
(region) difference dictionary with 4096 atoms. Furthermore,
we collect 5 million LR (region) differences from the scaled
pyramids of LR training images, selecting 2048 LR differ-
ences most correlated to an atom as anchored neighbors.
Correspondingly, we collect 5 million HR differences without
low frequencies. Then, we compute the directional difference
regressor Pg anchored to an atom d

Pa = Sh.a(S/¢Sta + D 7'S] 4, (24)

where Sy, q is the matrix of 2048 HR differences corresponding
to LR differences in S; 4 and 2 is 0.1. Finally, a tentative color
difference in the input image is improved by offline computed
regressors as follows

Yu,j = 4Py j, (25)

Scheme of DDR.

where P; is the regressor anchored to the atom with highest
correlation to the LR difference y; ; and 1; is the regres-
sor correction parameter. By adding HR differences to the
channel-shared low frequencies we have the enhanced color
differences A

(i) Now we come to the stage of color difference updating.
Based on MLRI, we compute the weights w;, s,¢,,, and the sum
of the weights w; = w, + ws + w, + w,,, where

i+l j+2 i+1 J
we =1/( 2, X Do) ww =1/ 2, > D),
a=i—1b=j a=i—1b=j-2
i j+1 i+2 j+l1
s =1/( 2 D0 Dy’ wa =1/ > D)’
a=i—2b=j—1 a=i b=j—1
(26)
here Dl.H. and Div. are given by
”Ag r/b(l .] + 1) gr/b(l 1)”9
D!, =AY, G +1,)) =AY G =1, )l @]

We observe that MLRI uses the neighbor color differences
weighted by a Gaussian filter (Eq. (9)) to alleviate the error
of color differences in the center, and the neighbor size is
fixed to be 4. Instead of a Gaussian filter, we prefer a simpler

averaging filter to weigh the neighbor color differences
Fo=[1/k 1/k 1/k].

k

(28)

Finally, the color difference is updated as follows

Agripis j) = {(wsFxx AL 0 —k +1:1i, j)
+waFex Ay G i+ k—1,))
+wwﬁf’r/b(i,] —k+1:)) *F,{
tweA, G j:j+k—1)«F}w, (29
where A is the vertical enhanced color difference.

By addlng the ground truth R/B values and Ag ,/, we obtain
the updated G values.
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(iii) When it comes to the R channel, we apply the Laplacian
filter (Eq. (11)) to obtain the tentative R values R!, as well as
the horizontal and vertical first-order difference filters Fy,, F,

Fp=[-1 0 0 0 1]=F, (30)

and get the h/v R values R? and R>. The above processes yield
residues for the raw values of the R channel. For k = 1,2, 3
consider

k .
i ) = Rij—R;; Rijis the raw value, 31)
0 others.
After using the bilinear filter
025 05 025
F,=1| 05 1 0.5 1, 32)
0.25 0.5 0.25
we have the enhanced estimations of R values
RF = 1,F, x e, + R¥, forkel,2,3, (33)

where 1, is the residue correction parameter. Thus, we have
the Laplacian updated R value R'. With the help of the
previous weights wj s, We obtain the gradient updated
color difference for R? and R?

Ar(i, ) = {wa A3 — 1, j) + ws AJG + 1, j)

+weA2(i, j— 1)+ wy A2, j + DY/w,  (34)

where

A, j)=Gij —F; fork=2,3. (35)

Then, calculating the ground truth G minus A, we have the
updated R values R>3. The final R value is obtained simply
by averaging R', R? and R3. For the B values we follow the
same process.

C. Fused Regression (FR)

As reported in [24], the PSNR performance significantly
improves after the ERP post-processing step. Since 50% of the
ground truth pixels are available in the G channel compared
to only 25% for the R/B channels, the G channel is easier to
enhance than the R/B channels. This means ERP works espe-
cially well on the G channel. The above observation motivates
us to feed the ERP enhanced G channel into our DDR method,
and so deriving our Fused Regression (FR) method. We train
the regressors for the directional differences and for the MLRI
demosaiced G value in the same training stage. In other words,
besides the directional difference dictionaries and regressors
which are trained in step (i) of DDR, we also train the
LR dictionary and regressors for MLRI demosaiced G values,
according to the Offline stage of ERP. After applying the ERP
step to the G values of an input image demosaiced by MLRI,
we obtain another updated G value at the online stage.

By simply averaging the two versions of updated G values
we obtain the enhanced G values of FR. Our experiments will
show us that the R/B guided image quality is highly related
to the one of the G channel. The better the recovery of the
G channel, the better is the R/B channel restoration. This is
another crucial reason underlying the idea of fused regression.
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The running time of FR is merely marginally increased with
respect to that of the DDR method, as also shown in the
following experimental section.

V. EXPERIMENTS

In this section we describe and discuss the datasets and the
setup used to validate the parameters of our methods and to
experimentally compare with the state-of-the-art demosaicing
methods. The results are analyzed together with the limitations
of our methods and future directions of improvement.

A. Datasets

1) Kodak: The Kodak dataset contains 24 images of
size 512x768 pixels and photographic quality involving a
variety of subjects in many locations under different lighting
conditions. The images are either created by Kodak’s pro-
fessional photographers; or selected from the winners of the
Kodak International Newspaper Snapshot Awards (KINSA).
Such choice of images ensures the high-fidelity of the Kodak
benchmark. Besides, it has valuable artistic merit. Another
important factor about Kodak is that the images contain a
large amount of constant intensity regions. Moreover, Kodak’s
use for testing by researchers has a long history. Therefore,
the PSNR performances on Kodak are generally good and
above 40dB on average.

2) IMAX: Besides the Kodak dataset, we also test our
methods on another standard dataset, IMAX, which is also
widely used for validation of demosaicing methods. IMAX
contains 18 images of size 500x500 pixels and exhibits more
color gradations than the Kodak images. IMAX is a newer
dataset, and generally, considered to be more challenging.
In fact, the reported PSNR performances on IMAX are a
lot worse than those on Kodak, usually lower than 37dB on
average. More importantly, the hue and saturation conditions
of IMAX images are closer to the images acquired by current
digital cameras.

3) RW: Despite the high-fidelity and artistic merit of
Kodak and IMAX, they are not representative enough for
the images taken by normal people. Because the color and
composition of those images are biased to the artistic taste.
Therefore, as a dataset complementary to the standard bench-
marks, we also selected 500 real world (RW) color images
with RGB channels as HR images, using the Google search
engine. Dozens of keywords — such as nature, landscape,
people, city — yielded images from daily life. We made sure
that all the categories contain a similar amount of images. Then
we added a Bayer pattern mask on them to obtain LR images.

As a result, we not only consider images of high visual
quality as those in Kodak and IMAX, but also the products of
everyday photography. Whereas regions with slowly varying
color intensities tend to show good performance with inter-
polation methods, reconstructing high-quality outputs from
‘busy’ images is more difficult. Therefore, we also focus on
images which are highly textured and have a rich color gamut.

B. Experimental Setup

1) DDR and FR: The Kodak images have relatively mild
intensity shifts, while IMAX images are richer in detail and



WU et al.: DEMOSAICING BASED ON DDR AND ERPs

T T T T T T T T T T
37.5 8 37.5 8
oo /
g 373 . 37.3| |
% 37.1 7./.74.—.\.7 o /.
Ay
36.9 [ s 36.9 |- N
| | | | | | | | | |

1 2 3 4 5
# LR/HR differences (x10%)

98 99 910 9ll 912
# atoms/regressors

Fig. 6.

high frequencies, which have a smaller number of neighboring
pixels with similar color intensities, on average. Thus, for
our methods we set the neighbor size (Eq. (28)) to 1 for
IMAX and 4 for Kodak. Due to rich high frequencies of
the IMAX images, it is difficult for IMAX to benefit from
linear regression. Therefore, we set the regressor correction
parameter A1 (Eq. (25)) to 1 for IMAX and 1.5 for Kodak.
IMAX and RW share the same parameters, since RW images
also show obvious intensity shifts. As to the residual correction
parameter, we optimized it on several arbitrarily selected
training images, and we fix 1, = 1.2 (Eq. (33)) for all datasets.

2) ERP: The Kodak dataset has been used for decades and
most of the state-of-the-art methods have already achieved
good performances (~ 40dB PSNR). So there is not so much
space left for any ERP enhancement. In order to make the
final results comparable, we multiply y; of Eq. (21) by the
regressor correction parameter y; = 0.5 for all compared
methods. Due to the same reason, we use a small residual
correction parameter y> = 0.5 for all methods. On IMAX the
average PSNR results achieved by the compared methods are
less impressive than on Kodak, and are lower than 37dB. This
is the reason we set y; and y, to the larger value of 1.5 in
case of the IMAX dataset. We refer to our previous work [24]
for more ERP experiments.

3) Compared Methods: We compare our DDR and FR
methods to BILINEAR, HQL [5], AHD [18], AP [17],
PCSD [11], DLMMSE [6], LPAICI [7], GBTF [12],
MSG [13], LDINAT [16], MLRI [14], and LSSC [19].
Unfortunately neither the code nor output images of
SAPCA [20] and AVSC [15] are available to us, so we cannot
reproduce their results. We refer to the introduction Section I
for the brief description of the methods.

4) Default Settings: In all our experiments, if not stated
otherwise, we use the following default parameters for
the DDR, FR, and ERP methods: 4096 atoms/regressors,
2048 nearest neighbors for learning each anchored regressor,
3 x 3 region size, 100 training images, 5 million training
candidates/regions. We keep the same 100 high-quality train-
ing images for all above demosaicing methods during the
experiments on the three datasets. With this training set we
ensure the relevance of our training dictionary and its anchored
regressors.

5) Performance Measures: In order to evaluate the perfor-
mance of the demosaicing methods we employ the standard
Peak-Signal-to-Noise-Ratio (PSNR), the Structural Similarity
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PSNR versus number of training LR/HR differences, atoms/regressors, training images, and region size for the IMAX dataset.

Index (SSIM) [30], the Zipper Effect Ratio (ZER) [31], and the
runtime at test. All the compared methods along with our pro-
posed methods share the same testing environment — Intel(R)
Core”™ i7-930 @2.80GHz with 8 GB RAM. PSNR measures
quantitatively the fidelity of the restoration in comparison with
the ground truth, while SSIM measures the structural similarity
with the ground truth and ZER the ratio of pixels affected by
the zipper effect or edge blurring.

C. Parameters

The main parameters that influence the PSNR performance
of our proposed DDR and FR demosaicing methods are
evaluated in Fig. 6 on the IMAX dataset.”> Besides the
100 shared training images, we collect 4 other sets. The results
achieved with the 5 training sets are between 37.01dB and
37.17dB for DDR and between 37.41dB and 37.49dB for
FR on IMAX. On the Kodak dataset, the performances are
41.06dB - 41.10dB for DDR and 41.01dB - 41.08dB for FR.
The variance is very small; a training set of 100 images offers
a stable performance. We report the mean performance for
these 5 training sets for all curves in Fig. 6.

1) Number of Differences: The performance changes
slightly when increasing the collected (region) differences
from 1 to 5 million. For example, the mean PSNR of DDR
varies from 37.07dB to 37.13dB, less than 0.06dB. We believe
that after collecting 1 million differences, the results are
sufficiently relevant.

2) Number of Atoms/Regressors: As shown in Fig. 6 the
PSNR performance of our methods improves with the number
of atoms/regressors. The more atoms we train, the more
chances we have to better approximate the input LR differ-
ences with anchored regressors. However, we should point out
that the improvements gained by increasing the atoms tend to
be trivial, that is, we can observe more obvious improvements
when raising the atom number from 16 to 4096 than from
4096 to 8192. There is a speed/quality trade-off.

3) Number of Training Images: When we increase the num-
ber of training images from 20 to 100, as shown in Fig. 6, the
mean PSNR only slightly grows. Here, we ignore the unstable
starting point at 20 for DDR. We believe that 20 images
form a rather small training pool lack statistical significance,
therefore we fix by default to 100 images the training pool in
all our experiments. The results confirm that the training set

20n the Kodak and RW datasets the performances show a similar pattern.
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TABLE I
PSNR PERFORMANCE COMPARISON OF 14 DEMOISAICING METHODS ON 3 DATASETS. THE BEST TWO RESULTS ARE IN BOLD

Method IMAX Kodak RW
R G B All Time (s) R G B All Time (s) R G B All Time (s)
BILINEAR 31.72 3541 3127 3236 0.02 2930 3319 2924  30.22 0.04 2685 3099 27.16  27.92 0.02
HQL 34.02 3757 33.03 3446 0.02 3485 39.08 3474  35.80 0.02 30.80 3498 3093 31.84 0.01
AHD 33.06 37.00 32.17 33.53 38.96 37.02  39.67 3733  37.79 59.54 31.51 3520  31.61 3236 19.39
AP 3285 3492 3201 33.06 0.46 38.03 4156  38.64  39.11 0.74 31.72 3479 3178 3249 0.25
PCSD 34.66  38.12 3346 3494 1.21 38.07 4055 3830  38.78 1.45 3272 3612 3285 3355 0.92
DLMMSE 34.06  38.00 33.04 3449 27.13 39.19 42,63 3958  40.12 42.50 32.81 36.88  32.890 3372 12.84
LPAICI 3440  37.87 3330 3473 0.61 39.68  43.04 3995  40.56 1.00 33.01 36.80  33.02 33.86 0.33
GBTF 3405 3737 33.09 3442 10.60 39.69 4336  40.03  40.64 16.42 33.11 37.03  33.15 3399 5.28
MSG 3444  37.68 3340 34.76 9.65 40.09 4381 4035  41.02 14.89 3350 3737 3351 3436 4.73
LDINAT 36.28  39.76 3439  36.21 1523.63 37.02 3947 3715 3772 2418.24 32.84 3633 3295  33.67 717.23
MLRI 36.62 4003 3543  36.80 0.54 3933 4292 39.63 40.24 0.74 3376 37.44 3398  34.66 0.26
LSSC 3590  38.69 34.64  36.05 453.58 40.60 4442 4074 41.52 707.59 3393 3756 3391 3476 258.71
DDR (ours) 37.12 4034 35.63 37.17 6.31 40.18 4392 4039 4110 9.60 3412 3753 3426 3495 3.17
FR (ours) 3750 41.01 3582 3749 10.75 40.19 4385 4034  41.07 16.35 3429 3785 3442 3513 5.20
TABLE II

PSNR PERFORMANCE COMPARISON AFTER ERP POST-PROCESSING ON 3 DATASETS. THE BEST TWO RESULTS ARE IN BOLD

Method IMAX Kodak RW
R G B All Time (s) R G B All Time (s) R G B All Time (s)
BILINEAR 3636 40.05  35.14  36.66 3226 35.65 3200  33.01 3272 36.54  33.08 3374
HQL 36.62  40.13 3519  36.78 36.70  40.50  36.52  37.54 3337 3755 3347 3433
AHD 3453 3927 3335 34.96 37.46  40.09 37.66  38.19 3194 3639 32,01 3291
AP 36.86 4028 3519  36.89 38.82 4265 39.07 39.80 3320 3741 3325 3415
PCSD 37.19 4040 3559 3721 38.55 4121 38.61 39.24 3374 37.62 3382  34.65
DLMMSE 3723  40.53 3557  37.23 39.57 4288  39.77 4041 3398  38.02 3400 34.88
LPAICI 3729  40.66 3555  37.26 +8.35 39.94  43.18 40.01  40.73 +12.74 3397 3796 3394 3485 +4.01
GBTF 3726  40.63 3562  37.28 3996 4346  40.11  40.81 3406  38.09 34.06 3495
MSG 3728  40.63 3560  37.28 4023  43.83 4032  41.08 34.14 3820 34.14  35.03
LDINAT 37.50 4054 3542 3724 37.71 4023 37.65  38.34 33.81 3750  33.74  34.62
MLRI 37.81 4093  36.08 37.72 39.60  43.17  39.80  40.47 3424  38.07 3437 3516
LSSC 3752  40.74 3590 37.53 40.68 4441  40.68 41.54 3449 3847 3454 3540
DDR (ours)  38.00 40.76  36.20  37.82 4025 4391 4040  41.13 3446 3829 3454 3535
FR (ours) 3815 41.03  36.26 3795 40.27 4393 4038 4114 3457 3842 34.66 3547

containing 100 images is representative and large enough to
collect millions of LR/HR differences.

4) Size of the Region: As to the size of the region, we
witness a clear quality drop when going up to 7 x 7 regions,
not to mention the increase in runtime. For 5 x 5 regions the
DDR and FR methods behave differently. Clearly, 3 x 3 appears
to be the most cost-effective choice in our methods.

D. Results

In order to rule out boundary effects, we shave off 2, 4, 6,
8 boundary pixels for all the methods. The compared methods
are stable on the boundary, only for DLMMSE we need to cut
6 boundary pixels to reach good stable performance.

1) PSNR: In Tables I and II we report the best PSNR results
from the above discussed 4 candidates for 14 demosaicing
methods. The best two results are in bold. Our DDR and FR
methods are the best on both the IMAX and RW datasets.
For instance, the mean PSNR of DDR is 37.17dB on IMAX,
1.12dB higher than the state-of-the-art method LSSC, while
FR reaches an improvement of 1.34dB over LSSC. At the same
time (see Fig. 2), DDR is almost 80 times faster than LSSC
and 250 times faster than LDINAT. The ranking is preserved
on the 500 images of the RW dataset. Our proposed methods
are among the fastest demosaicing methods, while performing
significantly better.

Sy

(b)

Fig. 7. The IMAX and Kodak datasets. (a) IMAX dataset. (b) Kodak dataset.

2) SSIM and ZER: Complementary to the PSNR results, we
report ZER [31] (computed on the CIELAB color space) and
SSIM [30] results on each image of the IMAX and Kodak
datasets (see Table III and IV). The listed results correspond
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TABLE III TABLE IV
IMAX PER IMAGE RESULTS. THE BEST IS IN BOLD KODAK PER IMAGE RESULTS. THE BEST Is IN BOLD
Image Measure DDR (ours) FR (ours) LSSC MLRI LDINAT Image Measure DDR (ours) FR (ours) LSSC MLRI LDINAT
PSNR 29.5787 29.8766  28.3874 293128  29.0508 PSNR 40.0882 397031 413972 392617  34.4912
1 ZER 0.2504 02512 02885  0.2702 0.2518 1 ZER 0.0274 0.0354  0.0157  0.0479 0.2114
SSIM 0.9707 09724 09648  0.9696 0.9683 SSIM 0.9946 09938  0.9964  0.9929 0.9766
PSNR 39.3412 39.6974 382949  38.8945  38.7399 PSNR 414867 416328 42.2242 409048 39.8064
2 ZER 0.0540 00532  0.0631  0.0654 0.0544 2 ZER 0.0145 0.0143 00156  0.0187 0.0399
SSIM 0.9850 09856 0.9870  0.9844 0.9858 SSIM 0.9995 0.9995  0.9997  0.9994 0.9990
PSNR 40.1342  40.4334  39.4959 390080  39.4450 PSNR 440570  44.1495 444702 428711  41.8840
3 ZER 0.0549 0.0532  0.0660  0.0683 0.0564 3 ZER 0.0119 0.0116 00119  0.0163 0.0324
SSIM 0.9889 09894 09882  0.9891 0.9876 SSIM 0.9969 09969  0.9960  0.9963 0.9954
PSNR 39.6395 40.1709  38.0073  39.6490  38.8778 PSNR 414366 415841  42.5509 404821  39.7177
4 ZER 0.0290 0.0263  0.0429  0.0348 0.0399 4 ZER 0.0158 00156  0.0161  0.0231 0.0514
SSIM 0.9984 09986  0.9977  0.9984 0.9980 SSIM 0.9986 0.9986  0.9988  0.9979 0.9969
PSNR 41.0852  41.2874 40.1714 406218 40.7822 PSNR 39.3056 393367 39.7253  37.8291 _ 35.8183
5 ZER 0.0158 0.0152 00220  0.0208 0.0182 5 ZER 0.0479 0.0483  0.0449  0.0682 0.1485
SSIM 0.9983 09984 09979  0.9981 0.9981 SSIM 0.9953 09953  0.9957  0.9931 0.9878
PSNR 39.1238 39.4262 383310 39.0300  38.6947 PSNR 414361 413260 41.8365  40.6487  35.8244
6 ZER 0.0512 0.0514  0.0495  0.0564 0.0478 6 ZER 0.0164 00173 0.0140  0.0236 0.1281
SSIM 0.9826 09829 09825 09815 0.9827 SSIM 0.9963 09963  0.9970  0.9955 0.9840
PSNR 393334 39.6756  38.6516  39.1818  38.8972 PSNR 436870 438461 441721 424423 41.5526
7 ZER 0.0478 0.0483 00589  0.0575 0.0455 7 ZER 0.0147 00140  0.0136  0.0206 0.0360
SSIM 0.9856 09860  0.9866  0.9844 0.9855 SSIM 0.9979 09980  0.9978  0.9972 0.9967
PSNR 34.5391 353247 322477 352574 334692 PSNR 375114 373933  37.6831 367108  32.6177
8 ZER 0.1547 01411  0.1936  0.1749 0.1699 8 ZER 0.0511 0.0546  0.0517  0.0690 0.2027
SSIM 0.9886 09902 09838  0.9906 0.9856 SSIM 0.9887 09881 09874  0.9863 0.9716
PSNR 33.7582 342723 324733 332218 32.8558 PSNR 438016 43.7787 43.9857 43.1668  40.5876
9 ZER 0.2353 02292 02704  0.2640 0.2163 9 ZER 0.0073 0.0071  0.0078  0.0096 0.0347
SSIM 0.9843 09859 09804  0.9830 0.9804 SSIM 0.9792 09782 09764 09761 0.9686
PSNR 35.7958 36.2427 347990  36.0956  34.9374 PSNR 433002 43.3516 433361 425853  40.8827
10 ZER 0.1027 0.1029  0.1124  0.1149 0.1204 10 ZER 0.0085 0.0083  0.0089  0.0109 0.0292
SSIM 0.9735 09750 09719 09751 0.9716 SSIM 0.9882 09880  0.9870  0.9867 0.9813
PSNR 353552 356413 344012 352228 350137 PSNR 413479 412523 41.6387 405579 369755
11 ZER 0.1246 0.1253  0.1369  0.1355 0.1232 11 ZER 0.0207 0.0228  0.0200  0.0285 0.0909
SSIM 0.9624 09638 09614 09613 0.9621 SSIM 0.9856 09854 09801  0.9838 0.9750
PSNR 345080 345717 33.1745 33.8563  32.6291 PSNR 146544 447106 45.0720 438345  41.0318
12 ZER 0.1417 0.1440  0.1728  0.1681 0.1970 12 ZER 0.0074 0.0073  0.0066  0.0096 0.0295
SSIM 0.9622 09628 09567  0.9605 0.9567 SSIM 0.9979 09979  0.9981  0.9973 0.9936
PSNR 3389513 39.2534  37.1949 378776 36.0160 PSNR 36.1702 357880  36.6171 352809  30.7352
13 ZER 0.0426 0.0424 00751  0.0564 0.0848 13 ZER 0.0885 0.1048 00767  0.1262 0.3267
SSIM 0.9628 09616  0.9606  0.9606 0.9600 SSIM 0.9904 09894  0.9915  0.9880 0.9688
PSNR 348557 35.1883 324814 344732 34.1576 PSNR 38.2368 383700  39.0632  37.0632 362735
14 ZER 0.1102 0.1087  0.1483  0.1213 0.1151 14 ZER 0.0477 0.0485 00492  0.0606 0.1190
SSIM 0.9743 09753 09674 09725 0.9720 SSIM 0.9919 09916  0.9915  0.9898 0.9805
PSNR 38.9375 39.4944 378871 38.6092  37.8008 PSNR 40.1363  40.1631  41.6871  39.1055 _ 38.5148
15 ZER 0.0770 00715  0.0941  0.0891 0.0734 15 ZER 0.0276 00289  0.0245  0.0374 0.0635
SSIM 0.9705 09722 09692  0.9692 0.9666 SSIM 0.9905 0.9905  0.9908  0.9879 0.9869
PSNR 373275 36,8685  39.5520  36.8480  36.0186 PSNR 447720 447449 45.0422 442519 39.0930
16 ZER 0.0890 0.1081  0.0309  0.1107 0.1361 16 ZER 0.0050 0.0055  0.0045  0.0077 0.0744
SSIM 0.9446 09410  0.9616  0.9418 0.9342 SSIM 0.9931 09932 0.9934  0.9924 0.9779
PSNR 392806 39.4434 364009 37.5110  37.4848 PSNR 24419 424173 422897 418726 39.0506
17 ZER 0.0498 00519 00611  0.0636 0.0692 17 ZER 0.0097 00102 00102  0.0131 0.0480
SSIM 0.9130 09151 09199 09141 0.9089 SSIM 0.9838 09836 09815  0.9819 0.9745
PSNR 37.5248 380197 37.0001 36.7090  36.8613 PSNR 33.1835 380551 38.3631 374112 34.7181
18 ZER 0.0739 0.0712  0.0878  0.0931 0.0778 18 ZER 0.0488 0.0510  0.0458  0.0623 0.1342
SSIM 0.9914 09921 09910  0.9902 0.9906 SSIM 0.9805 09801 09797 09775 0.9675
PSNR 37.1705 374938 360534  36./984 362073 PSNR 420490 419158 42.4187 412460  37.5344
AVG ZER 0.0947 0.0942  0.1097  0.1092 0.1054 19 ZER 0.0112 00130 00113  0.0184 0.1041
SSIM 0.9743 09749 09738  0.9736 0.9719 SSIM 0.9857 09856 0.9850  0.9840 0.9778
PSNR 423627 423495 422987 414251 39.3560
20 ZER 0.0158 00165 00165  0.0219 0.0542
to the images in Fig. 7 from left to right and top to bottom for ,§§£‘g 48:(;);}; 48:23% 48:3258 38:3}1?2 323258
each dataset. Fig. 9 shows that the ZER relative ranking of the 21 SZSI'iEI ggggg 8853‘11 g-ggg 88;?)3 8;3;
top 5 methods, together with FR + ERP, stays the same for a PSNR 304463 39.5640 394511 388388  37.1633
large range of values for the ZER threshold. The ZER values 22 SZSE;I 88;23 g-ggég 88322 8832 883?2
in Tables IIT and IV are obtained by fixing the threshold to 2.5. PONR 40747 37080 44508 33718 33016
The results for different measures confirm the top performance 23 sZsFiEl g-g;gi gggzz g-gggg g-gégg 8'85421(3)
achieved by the proposed DDR/FR and ERP. PSNR 357680 35.6556 350736 349547 332336
3) ERP Post-Processing: By applying the ERP post- 24 ZER 0.0564 0.0590  0.0581  0.0672 0.1238
. R SSIM 0.9800 09790 09721 09771 0.9733
processing step we 51gn1ﬁcantly boost the performance of most PSNR 21,0980 41.0708 415249 402399 377152
methods, especially on IMAX, as shown in Table II, at the AVG  ZER 0.0260 00278~ 0.0246  0.0355 0.0968
SSIM 0.9884 09882  0.9850  0.9863 0.9803

cost of some extra seconds. The improvements on the IMAX
dataset vary from +0.46dB to +4.36dB (see Table II). Broadly
speaking, the worse the initial demosaicing methods, the
larger the improvements. As to our post-processing method on
MLRI, the PSNR is almost 1dB better than the original MLRI

and outperforms all the other compared methods on IMAX,
even when equipped with ERP. DDR with ERP achieves
37.82dB while 37.88dB is the best result to date, reported for
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Ground truth ERP FR (ours) DDR (ours) LSSC MLRI MSG

Fig. 8. Visual assessment of demosaicing results with and without ERP post-processing.

SAPCA. FR even slightly improves over SAPCA by achieving methods MLRI 4+ ERP and DDR/FR + ERP achieve very
37.95db. FR with the ERP step takes less than 20 seconds good results, comparable to SAPCA on IMAX, while being
while SAPCA costs 20 minutes. To sum up, all our proposed significantly faster than SAPCA (about 2 orders of magnitude).




WU et al.: DEMOSAICING BASED ON DDR AND ERPs

When it comes to the Kodak dataset, the improvement of
our post-processing methods is less impressive. It varies from
+2.79dB for BILINEAR to as low as +0.02dB for LSSC.
This is mainly due to the fact that on the Kodak dataset many
methods have achieved impressive results above 40dB, and
hence, there may not be much space left for further improve-
ment. Still, our ERP methods achieve 40.47dB/40.63dB on
24 Kodak images, 0.23dB/0.39dB higher than MLRI.

Also note that, if we apply the ERP regression training
method multiple times, we repeatedly benefit, which is further
confirmed by the results presented in [24].

4) Visual Comparison: For visual quality assessment we
show a couple of image results of the top methods in Fig. 8.
For example, in the image ‘Flower’ we clearly observe false
color artifacts near red petals for the other methods. Our
DDR method accomplishes good improvements over com-
pared methods, and FR makes further progress to show natural
transition near red petals. The comparison on the image
“T-shirt’ also confirms the experimental results. First of all, the
zippering effects on LSSC demosaiced images is quite obvious
near the edges of color stains. In contrast, both our methods
have output images very close to the ground truth, and one
can barely observe any zippering effects. Finally, the ‘Sail’
image from the RW dataset demonstrates the effectiveness
of our methods. The false black colors in the yellow balls
generated by LSSC and other methods are only weakly visible
for FR and DDR. In conclusion, DDR and FR indeed provide
natural-looking images close to the ground truth, while the
other methods exhibit stronger color artifacts. Moreover, the
visual performance is consistent with the numerical PSNR
results presented in tables I and II. Last but not least, the visual
artifacts are generally alleviated by the ERP post-processing.

E. Limitations and Future Work

1) Self-Similarities: Our DDR and FR methods rely on
trained priors and do not exploit the self-similarities and the
particular content of the input image. LSSC does exploit the
self-similarities and is capable to achieve 0.4dB better PSNR
performance than our methods on the Kodak dataset, but not
on the IMAX dataset and the RW dataset. We believe this to be
caused by the particularities of the Kodak dataset with respect
to the other datasets, such as larger flat regions and larger
images, that better suit the LSSC method. The 16th IMAX
image is the only in that dataset where LSSC achieves superior
demosaicing results than our methods. It differs from the other
IMAX images by the highly regular texture content, a perfect
fit for LSSC. The use of self-similarities is a direction for
further performance improvement of our methods.

2) Design Choices: All our methods (ERP, DDR, FR)
follow closely the settings of the A+ super-resolution
method [21]. The effect of the patch features and training
procedure on the overall performance are unclear. If we were
to train regressors specific to the different offsets with respect
to the underlying mosaic pattern, further improvements are to
be expected. As shown in [24], cascading the demosaicing
methods such that each cascade stage starts from the demo-
saicing result of the previous cascade stage is another direction
for future research.
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3) Time Complexity: The proposed methods are highly
parallelizable, but the time complexity depends linearly on the
number of regressors and anchors in the dictionary. However,
the use of a better sublinear data search structure instead of the
current linear search is rather straightforward and can lower
the computation time [32].

VI. CONCLUSIONS

We propose® a novel fast demosaicing method based on
directional difference regression (DDR) where the regressors
are offline learned on training data and its enhanced ver-
sion based on fused regression (FR), along with an efficient
regression priors (ERP) post-processing step. We keep time
complexity limited during the online stage and shift the
learning and the bulk of computations to the offline stage.
Thus, we achieve order(s) of magnitude lower running times
at testing time than the state-of-the-art LSSC, LDINAT, and
SAPCA methods. Moreover, the experimental results on var-
ious datasets prove competitive performances. Last but not
least, the performance of the proposed DDR and FR methods,
and of any other demosaicing method can be further improved
by applying our ERP post-processing method.
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