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Abstract— More than thirty percent of persons over 65 years
fall at least once a year and are often not able to get up again.
The lack of timely aid after such a fall incident can lead to
severe complications. This timely aid can however be assured by
a camera-based fall detection system triggering an alarm when
a fall occurs. Most algorithms described in literature use the
biggest object detected using background subtraction to extract
the fall features. In this paper we compare the performance
of our state-of-the-art fall detection algorithm when using
only background subtraction, when using a particle filter to
track the person and a hybrid method in which the particle
filter is only used to enhance the background subtraction
and not for the feature extraction. We tested this using our
simulation data set containing reenactments of real-life falls.
This comparison shows that this hybrid method significantly
increases the sensitivity and robustness of the fall detection
algorithm resulting in a sensitivity of 76.1% and a PPV of
41.2%.

I. INTRODUCTION

As thirty to forty-five percent of people older than 65 and

living at home fall at least once a year [1], fall incidents

are considered a major cause of health related problems for

older persons. Following a fall incident the lack of timely aid

can lead to both physical complications such as dehydration,

pressure ulcers, and even death as well as to psychological

consequences such as fear of falling, loss of self-confidence,

and loss of independence [1], [2]. Accurate fall detection

systems that can help insure timely aid and can therefore

reduce the consequences of a fall incident, are therefore

needed.

An overview of the existing research concerning these

accurate fall detection systems given in [3] indicates that

both contactless and wearable sensors are used. However

as a market study from SeniorWatch showed that wearable

sensors are not worn at all times [4] many fall incidents

remain undetected when using this technology. Contactless

methods, such as the in this research used camera-based

system, can overcome this limitation as no user intervention

is needed.
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Because of this advantage, several research groups have

focused on the development of camera-based fall detection

algorithms. In this research two different approaches are

most commonly used. Firstly there are the algorithms who

detect unusual events, like changes in the person’s life pattern

[7], [8]. These algorithms rely on indirect evidence, such

as prolonged inactivity at unusual locations, to infer fall

incidents. As a certain amount of time is needed to detect

abnormal inactivities these systems typically have a longer

response time. Secondly there are those trying to detect the

action of falling directly [5], [6] having a shorter response

time. For this fall action detection the most frequently used

approach is a combination of low-level cues combined with

available domain knowledge (e.g., exploiting the high speed

or posture changes of a person during a fall). In these cases,

firstly background subtraction is often applied to find the

moving foreground objects, including the person [5], [6],

[7], [9], [10], [11]. After this, domain knowledge is used to

implement simple yet robust fall features, such as the aspect

ratio of the foreground region [5], [10], or the speed of the

head of a person [5].

Although it is often assumed that these background sub-

traction techniques result in an accurate silhouette extraction

of the person, (e.g. [5], [6], [9]) this is not always the

case. Other objects and persons, occlusions, and changing

illumination conditions often interfere with the segmentation

[12].

These problems could be overcome by using a tracker

to follow the person. Several approaches are currently re-

searched such as the use of a α−β −γ-filter combined with a

hybrid matching process based on spatio-temporal templates

and color features [6], the use of an overhead view in which a

particle filter tracks the person using background subtraction

as input [8] or the use of a Kalman filter used to track

the head of a person through a combination of background

subtraction and ellipse and skin color matching [9]. Although

these approaches show promising results they rely on the use

of color images. The color in an image is however influenced

by the source and amount of the light present in the room

which can change during the day.

For our research we chose not to rely on color information

but to use gray-level images enabling the use of near-infrared

images during the night. Hence we use a particle filter based

on three coefficients namely foreground, weighted structural

histogram, and person detection.

In order to assess the advantages of the tracker based

approach the in this paper presented research compares the

performance of our state-of-the-art fall detection algorithm

when using only background subtraction, with the usage of



a particle filter to track the person. The results of these

methods are also compared with the results of a hybrid

method in which the particle filter is only used to enhance

the background subtraction and not for the feature extraction.

II. METHODS

The performance of three different algorithms aimed to

calculate the input of the fall feature calculation algorithm

were compared to each other. As most algorithms described

in the literature only use background subtraction to extract

the features we firstly used our foreground detection method

without the usage of the particle filter, detecting the biggest

object visible in the image, as described in [12] as input

for the fall detection feature calculation. Subsequently we

tested the fall detection algorithm using the prediction of the

particle filter as input to calculate the same features. Lastly

we used the particle filter as feedback for the background

subtraction method. The fall detection features were again

calculated using the biggest object in the image.

As more detailed information about our foreground de-

tection method used in the first experiment can be found in

[12] we will not discuss this in this section. We will however

firstly discuss the implementation of our particle filter and

the used measurement coefficients. This is followed by the

construction of the feature vectors used for the fall detection.

At the end of this section, we describe the used data set.

A. Particle Filter

Particle filters [13] estimate the probability distribution

p(St |Z[1..t]) of the state vector St of the tracked object given

Zt representing all the observations. This probability can be

approximated from a set of N weighted samples or particles,

50 in our case. Each particle of our filter is an ellipse, with

centre coordinates, height, width, and angle and the rate of

change of each of these values. The weight of each particle

is based on foreground, weighted structural histogram, and

person detection coefficients. Fig. 1 shows an overview of

the used algorithm. We use a Bootstrap filter implemented

using the Bayesian Filtering Library [14]. The tracker was

initialized when a foreground object of over 4000 pixels was

detected.

1) Foreground Coefficient CF : The foreground coefficient

used the foreground that was segmented from the image us-

ing background subtraction based on an approximate median

filter. To remove shadows, we used cross correlation. After

this, an erosion/dilation step was used on all foreground

pixels to remove small noisy patches.

A high value for the foreground coefficient was given to an

ellipse that covers the detected foreground without including

too much background or excluding too much foreground. CF

was calculated with the following formula:

CF = 1.2×
FGBE

ZBE

− 0.6×
FGLO

ZLO

− 0.4×
FGLOO

ZLOO

(1)

with FGBE the amount of foreground pixels contained in the

bounding ellipse (BE), ZBE the surface of BE, LO is a first

layer surrounding BE measuring 1.5 times BE, LOO is a

second surrounding layer twice the size of BE.

Fig. 1. Overview of implementation of particle filter (PF) with the different
measurement coefficients. (BG: background; FG: foreground; BE: bounding
ellipse; LO: first outer layer; LOO: second outer layer; W: weightfactor)

2) Weighted Structural Histogram Coefficient CH : The

second measurement function for our particle filter was based

on histogram matching of the bounding ellipse around the

person. Mostly a color histogram is used for this, but since

we also used near-infrared during the night, we only could

use grayscale values. To make the histogram more distinctive,

we used a weighted structural histogram. To measure the

correspondence of a given particle, we used correlation with

a histogram model HM . At initialization HM was calculated

from the biggest object. During tracking, HM was updated

every frame with 5% of the current prediction. To calculate

the histogram of this particle, we divided the bounding

ellipse in four overlapping circles, representing the head and

shoulders, the chest, the abdomen and hips, and the lower

legs. For each circle a histogram was calculated in which the

center had a higher weight than the edges. One exception

to this rule was the circle containing the legs. Since legs

move a lot and the center could therefore contain background

information, the weights were evenly distributed over the

whole circle. We calculated this measure for each part of the

ellipse and combined them as given in

CH = 0.3×Chead+0.35×Cchest+0.25×Cabdomen+0.1×Clegs

(2)

3) Person Detection Coefficient CD: To stop erronously

tracking other objects, we used an upper-body detector [15].

To limit the processing time the detection was only executed

every five frames on the region of the detected foreground



object. When a detection was available, HM was updated

accordingly to the score of the detection. Also some low

weight particles were replaced by this detection. This is

normally not done in the particle filter paradigm, but it

increased the robustness of the tracker.

4) Final Coefficient: Finally, the total coefficient was

calculated as a combination of CF , CH and CD. The initial

formula for the final coefficient was given by

Ctotal = 0.65×CF + 0.35×CH (3)

When a detection was available, the weight was shifted to CH

according to the score of the detection, with a limit of 0.25

for CF and 0.75 for CH . When no detection was available,

the weight was gradually shifted back to CF again. If no

detection was available for 20 frames, the initial weight was

used again.

5) Predicted State Of Person: The particle filter represents

a probability density. The predicted state of the tracked per-

son was calculated as the mean of the five best predictions.

This provided a more stable prediction than only using the

particle with the highest weight or using a weighted mean

of all particles. For the latter, if there are two peaks in the

distribution, a state in between of these two peaks is given as

a prediction. This predicted ellipse was also used as feedback

for the update of the background discussed in Sec. II-A.1.

The background was updated very fast outside of this ellipse

and more slowly inside of it. This reduced the formation of

a ghost figure while other changes (e.g., changes in lighting,

other moving objects...) were integrated faster.

B. Fall Detection Features

Five features were extracted to detect a fall: aspect ratio

(AR) [5], [10], change in AR (CAR), fall angle (FA) [7],

center speed (CS) [7], and head speed (HS) [5]. These

features were also the most widely used in the literature.

More information on how to calculate these can be found in

[12].

As Noury et al. [16] states a fall consists of four phases:

the pre-fall, critical, post-fall, and recovery phase. To cover

this, we also included information from before and after the

fall. We created a feature vector that contained the mean and

maximum values of the five fall features over different time

slots from before, during, and after the fall. For each time

slot of one second such a feature vector was created.

These feature vectors were then used to train a Support

Vector Machine (SVM) to classify them as a fall or non-

fall. To prevent classifying all vectors as non-fall, different

weights were used for positive (w) and negative data (1−w).

To find the best combination of the weight w and the regu-

larization parameter of the SVM, we used the Fβ -measure as

cost-function. This allowed us to give appropriate weights to

the sensitivity (SENS) and positive predictive value (PPV).

SENS = T P/(TP+FN) (4)

PPV = TP/(TP+FP) (5)

Fβ = (1+β 2)×
PPV × SENS

β 2 ×PPV + SENS
(6)

TABLE I

RESULTS FOR β = 4. (A) BIGGEST BOUNDING BOX (BB), NO TRACKER

USED; (B) BB PREDICTED BY TRACKER; (C) TRACKER USED FOR

BACKGROUND UPDATE, BIGGEST BB USED FOR FALL DETECTION.

Method SENS PPV TP FN FP AUC

(A) 58.7 % 31.4 % 27 19 59 0.526
(B) 65.2 % 43.5 % 30 16 39 0.695
(C) 76.1 % 41.2 % 35 11 50 0.764
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Biggest BB, no tracking; AUC = 0.526

BB from tracker; AUC = 0.695

BG with tracker, biggest BB; AUC = 0.764

Fig. 2. Precision-Recall curve for β = 4. The larger markings indicate
the trained model without changes of the threshold. (BB = Bounding Box,
AUC = Area Under Curve)

The detector was evaluated using ten-fold cross-validation

over the complete data set. To reduce the false alarm rate,

we first executed a median filter over all time slots of

each video to remove single detections, followed by non-

maximum suppression to group bursts of detections.

C. Data set

During previous research we monitored seven older per-

sons for several months at their place of residence. During

this period, we collected an extensive real-life dataset. How-

ever due to privacy concerns, this real-life dataset can not be

made publicly available. In order to bridge the gap between

currently existing simulation datasets and this real-life one,

we created a dataset that re-enacts these falls together with

several causes for false alarms that were identified before

[12].

For this purpose one lab room was furnished as a nursing

home room. The room was further equipped with five wall-

mounted IP camera’s. Ten different actors were used to re-

enact these fall incidents and other Activities of Daily life.

From this dataset we used 70 videos, 46 containing one fall

each and 24 containing numerous other activities. The fall

recordings are each approximately three minutes long. The

other recordings are 8.5 hours long in total. This complete

simulation dataset will be made publicly available in the near

future.

III. RESULTS

Table I shows the results of the three experiments for β = 4

for the Fβ -measure on our simulation data set. Fig. 2 shows

the corresponding Precision-Recall curves.



Using no tracker and only relying on background subtrac-

tion to follow the person gave the worst results. Only 27 out

of 46 falls were detected and 59 false alarms were generated.

When using the full prediction of the particle filter, 30 falls

were detected while generating 39 false alarms. The best

results were found when using the particle filter to enhance

the foreground segmentation and then extracting the features

from the biggest object in the image. In this case, 35 falls

were detected while 50 false alarms were generated. This

gave a sensitivity of 76.1% and a PPV of 41.2%. The area

under the curve (AUC), which gives a measure of how well

the classifier is working, was also the highest with a score

of 0.764.

Although these results show an important improvement

in fall detection performance can be achieved using tracker

data, not all fall incidents were detected due to various

reasons which were among others: low fall speed and the

formation of a ghost figure that interfered in the feature

calculation.

28% of the false alarms were caused by the person leaving

or entering the field of view of the camera from below. This

caused rapid changes in size and aspect ratio of the BB.

Switching the light on or off originated in 20% of the false

alarms. In 14% there were two persons or objects moving

in the image. Another 12% of the errors was caused by

the continuous update of the background, which included

non-moving persons in the background and caused a ghost

figure. The final 10% of the known causes was because of

a misclassification of bending over or sitting on the knees.

Correctly detecting if a person leaves or enters the view

could therefore reduce the number of false alarms. This

could be done by checking the prediction at the edge or

out of the image plane. Also detecting large light changes

by monitoring the average intensity level can reduce the false

alarm further.

IV. CONCLUSION

In this paper the fall detection results of a state-of-the-art

fall detector were compared using three different inputs. The

best results were obtained using a particle filter to enhance

the foreground segmentation and then extracting the features

from the biggest object in the image. Visual inspection of the

foreground detected using the particle filter showed a definite

improvement. The integration of a particle filter improved

the performance and robustness of a fall detection algorithm.

However using the tracker only for the background update

gave better results than using it for the calculation of the

fall detection features itself. This could be explained by the

fact that a tracker smooths out sudden abrupt movements.

Increasing the reaction speed of the tracker would cause it

to better follow the falls, but it also would cause the tracker

to loose track more often.

These results show us that camera-based fall detection is

still a very challenging topic. Certainly the broad range of

different falls and difference in fall speed has to be taken into

account. We believe that the usage of our particle filter is a

good step forward. The particle filter is able to track a person

consistent through the room, while background subtraction is

able to discriminate the fast movements well. However still

24% of the falls remain undetected, while a large amount

of false alarms were generated. A combination of detecting

unusual events, like mentioned in the introduction, using the

output of the particle filter and our hybrid solution using

background subtraction with the feedback of the particle

filter, could again bring us a step closer to solving the fall

detection challenge using a camera system.
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