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ABSTRACT
Active speakers have traditionally been identified in video
by detecting their moving lips. This paper demonstrates
the same using spatio-temporal features that aim to capture
other cues: movement of the head, upper body and hands of
active speakers. Speaker directional information, obtained
using sound source localization from a microphone array is
used to supervise the training of these video features.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Audio in-
put/output; I.2.10 [Vision and Scene Understanding]:
Video analysis; I.4.8 [Scene Analysis]: Sensor fusion

General Terms
Algorithms, Human Factors

Keywords
Ambient Intelligence & Smart Environments; Human-Robot
Interaction; Multimodal Fusion and Integration

1. INTRODUCTION
Existing research for active speaker detection [2, 3, 6] has

focussed on tracking the face and correlating lip movement
with speech. While this method will work for high quality,
high resolution frontal shots of people, it will not always be
ideal when the speaker presents a profile view to the camera
or her hands occlude her lips while speaking or when she is
too far from the camera for her lips to be detected by facial
feature detectors.
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This research tries to use spatio-temporal action recog-
nition features, also called dense trajectory features [10] to
pick up subtle clues accompanying a person’s speech, like
the movement of the head and hands. We use audio to su-
pervise the training of the video features. Microphone pairs
are standard on a lot of modern laptops, and we use a pair
of laptop-embedded microphones for localizing the bearing
direction of the active speaker, which is associated with an
upper body detection in video. Audio is used to label dense
trajectory features extracted from within upper body tracks
of people as speaking vs non-speaking, and these labelled
examples are used to train an active speaker classifier using
video alone.

The problem of determining who is speaking in video is
useful for a number of applications. It could be a starting
point for video diarization, the process of annotating speak-
ers in video. Human-Computer Interaction (HCI) systems
would benefit from determining who is speaking, so that the
robot or computer can respond to the specific interlocuter
when more than one person is present in the system’s inter-
action environment. Video conferencing systems could use
active speaker detection to highlight one amongst a group
of meeting attendees at a table and only transmit the video
of the person who is doing the talking.

There has been some research on combining features de-
tected from audio with features detected from video to both
identify a specific speaker, and for speech recognition. An
early example of this is by Cutler et al. [2], who use a
single microphone and camera system to detect the correla-
tion between audio and video data corresponding to speech.
Correlation between Mel-cepstrum coefficients in the audio
signal and frame differencing around the lips on successive
frames are used to identify specific utterances in the speech.

Audio and video features have also been fused to distin-
guish between speakers. Li et al. [6] used Canonical Cor-
relation Analysis (CCA) to find the commonality between
synced audio and visual features. CCA calculates basis vec-
tors that are used to project audio and video feature vectors
onto a common subspace, following which the concatenated
feature vector is used to train a classifier to distinguish be-
tween speakers.

Video annotation using speaker detection was demonstrated
by Everingham et al. [3]. They annotate a TV series, Buffy



the Vampire Slayer, by matching the script to the subtitles.
Characters are tracked using similarities in face and cloth-
ing and the detection of active speakers is used as an addi-
tional cue to link speakers in the script to faces in the video.
Frame-differencing in a rectangular window around the lip
features in a tracked face is used to determine movement
of the lips, and faces with lips that move above a threshold
value are determined to be speaking.

The detection of active speakers has been used for auto-
matic editing of classroom video. Hariharan et al. [5] use a
microphone array to localize a questioner with a Time Dif-
ference of Arrival (TDOA) algorithm, and combine this with
video detection of the raised hand of the questioner.

Zhang et al. [11] describe a meeting room video confer-
encing system that automatically detects the speaker and
concentrates the transmitted video on the speaker. A circu-
lar mic array and a panoramic camera system are used to
localize active speakers around a table. Instead of having
separate audio and video classifiers, they feed information
from both sources into an Adaboost classifier. Weak classi-
fiers - functions of the audio sound source localization and
image-based frame differencing are used in a boosting frame-
work to determine the region of interest of an active speaker
in panoramic video.

More recently, Cech et al. [1] have used audio-visual cues
to focus the attention of Nao, a child-sized humanoid robot
equipped with a microphone array and a stereo camera pair,
on specific speakers in its environment. They also use TDOA
to get the azimuth and elevation of the active speaker, which
is then coupled with face detections in the stereo camera
pair.

In contrast, our work uses audio to supervise the training
of spatio-temporal features from the face and upper body
that accompany a person’s speech. Section 2 describes the
setup of the system used for capturing the audio-visual data,
the audio sound source localization and the video feature
training, followed by experimental results and analysis.

2. SYSTEM DESCRIPTION

Experimental Setup.

Figure 1: Hardware: wide angle camera & microphone
pair in laptop. GCC-PHAT metric plotted against
bearing of targets. Largest peak above a threshold is
associated with face/upper body detections, and this
face/upper body is identified as speaking.

The audio-visual (one camera, one microphone pair) record-

ings were conducted in a natural setting - a student presen-
tation session at university. 7 recordings were made, for 7
different presentations, to a jury of examiners. Each record-
ing comprised of roughly 25 minutes of presentation, fol-
lowed by 5 minutes of questions. A laptop with its in-built
microphone pair was used for recording the audio, along
with an external camera with a wide-angle lens, to capture
the video. The setup was pointed towards the jury, with
the 3 members in the first row dominating the view. The
audio-based speaker bearing estimation software was run in
real-time and the video was stored frame-by-frame, along
with a bearing angle of the speaker for each frame. The
detection and tracking of the upper bodies, the extraction
of the dense trajectory features from within the upper body
bounding boxes for each track, and the training of the clas-
sifier was done off-line. The following paragraphs explain
these algorithms in more detail.

Audio Sound Source Localization.
The audio signal at the microphones is a mixture of sev-

eral different sound sources, due to speakers speaking at the
same time, background noise or reverberation effects. The
separation of these sound sources is called Blind Source Sep-
aration (BSS), which is traditionally done by clustering of
the Fourier Transform coefficients in each Time Frequency
(TF) cell of the Short Term Fourier Transform (STFT) of
the signals. However, this requires two assumptions - the
number of sources be known in advance, and signal spar-
sity, i.e., the source represenations do not overlap in the TF
domain. The number of sources is not always known, and
the sparsity assumption is violated in the presence of noise
or when sources overlap. We use the approach proposed by
Mirzaei et al. [7], where an angular spectrum is derived for
estimating the number of sources as well as the direction
of arrival of the sources. A non-linear function of the Gen-
eralized Cross Correlation - Phase transform (GCC-PHAT)
between the two signals is calculated in each TF bin, against
all angles of arrival of the source signal with respect to the
microphone baseline direction. The dominant peak in this
function above a threshold gives the direction of the sound
source (Figure 1). This method is particularly useful when
the microphone baseline is small compared to the distance
to the sound sources, as is the case in our setup.

Video Person Tracking.
An upper body detector from Ferrari et al. [4] is run on

each frame of the video and a multi-target tracker is used
to cluster these detections in space and time. A track is
initialized at persistent detections, and is updated with a
new detection at each frame. Detections are associated with
tracks based on proximity and bounding box size. A simple
alpha filter update rule suffices in this case - the track’s up-
dated position is based on a weighted linear combination of
the previous state and the new observation (detection) as-
sociated with it. A track not associated with any detections
for a pre-defined number of frames is deleted.

Dense Trajectories for Active Speaker Classification.
Dense Trajectories pooled by a Fisher vector (FV) [9] rep-

resentation, and subsequently trained with Support Vector
Machine (SVM) classifiers, is a standard, state-of-the-art
pipeline used for action recognition [10], and we use the same
for active speaker detection. Dense trajectory features in-



side the upper body bounding boxes of each person track are
categorized as speak and non-speak trajectories, as classified
by audio sound source separation. To this end, the sound
source separation gives, for each frame, the bearing value
of the highest intensity sound at that frame. These bearing
values are associated with the upper body detections, and a
detection is marked as speaking/non-speaking depending on
this association. A simple linear transformation (requiring
no special calibration) is used between the bearing range of
the audio and the image width - this transforms a bearing
value to a column index.

Figure 2: Dense Trajectories within upper bodies

Each dense trajectory track is calculated from 15 succes-
sive frames and has associated with it the mean pixel loca-
tion of the trajectory, and Histogram of Gradients (HoG),
Histogram of Flow (HoF) and Motion Boundary Histogram
(MBH) features [10]. The feature vectors are each reduced
to half their original dimensionality using Principal Compo-
nents Analysis (PCA). For the FV encoding, we use a Gaus-
sian Mixture Model (GMM) with 256 components. Trajec-
tories that start at the same frame and are inside the bound-
ing box of the upper body of a track are pooled using the
FV representation. FVs for the HoG, HoF and MBH fea-
tures are separately calculated and concatenated to give a
101,376 dimensional FV representing all the features along
all trajectories within a sequence of 15 contiguous upper
body detections, and the label of the starting frame of these
trajectories - speaking/non-speaking is used as the label for
the FV. FVs from speaking frames are used as positive train-
ing samples and those from non-speaking frames are used
as negative training samples, and a linear SVM classifier is
trained using these samples. Intra-class L2-normalization of
the FV and a final power and L2 normalization of the whole
vector are performed before the classification step. These
are techniques that have been shown to significantly boost
the performance of action recognition classifiers and are con-
sidered best practice [8]. Figure 3 illustrates the steps in the
training pipeline.

Results.
7 audio-visual recordings are used: each recording has

roughly 25 minutes of presentation by the student (during
which the jury mostly remains silent, but occasionally whis-
pers amongst themselves), and 5 minutes of questioning by
the jury. The active speaker classifier is trained using Leave-
One-Out-Cross-Validation (LOOCV) - trained on 6 presen-
tations and tested on the 7th, and this is repeated 7 times,

Figure 3: Active speaker classifier training pipeline

based on the recording that is used for testing.
The speaking/non-speaking labelling generated by the au-

dio sound source localization is noisy - see column 1 in the ta-
ble in Figure 4. This is corrected manually to obtain ground
truth labels for speak/non-speak frames in all the videos.
Only the 3 speakers sitting in the first row are considered in
the experiments, as speakers behind them are partly or fully
occluded. The video-based spatio-temporal dense trajecto-
ries classifier is trained using both the cleaned up (ground
truth) and noisy frame labels from audio - let’s call these
results video-clean, and video-noisy respectively. Finally, a
baseline method, based on lip movement detection (video-
lips) within tracked faces [3] is used for comparison. The
Receiver Operating Characteristic (ROC) curves (Figure 4),
plots of the true positive rate (TPR) vs the false positive rate
(FPR), show the results of the video-clean and video-noisy
classifiers. It can be seen that even using the noisy train-
ing data, the video-based classifier can distinguish speak-
ing vs non-speaking better than the baseline lip-movement
based method. Furthermore, the mean Equal Error Rate
(EER) for video-noisy is 0.66 and for video-clean is 0.69 - this
shows that the supervision from audio is sufficient to train
the video classifier, with slight improvement using training
with ground truth. Both the audio and lip-movement based
active speaker classifiers present a binary classification re-
sult, as opposed to a real-valued score for the video-based
classifiers video-clean and video-noisy. Consequently, only a
single (TPR, FPR) pair is available for audio and video-lips,
shown as dots and stars respectively in the ROC curves of
Figure 4. One anomalous result is the low EER value for
video-clean, fold 5, and at the time of writing, it is not clear
why this is so. When a speaker is silent he often sits with
his fingers obscuring his lips, resulting in false-positives and
poor performance for the video-lips baseline method.



fold audio video-
clean

video-
noisy

video-
lips

1 (64,7) (75,24) (72,28) (27,21)
2 (77,2) (75,24) (72,28) (30,19)
3 (50,3) (72,27) (65,35) (40,25)
4 (39,4) (71,29) (64,36) (37,24)
5 (60,2) (54,46) (70,29) (19,25)
6 (17,3) (67,32) (61,39) (34,21)
7 (26,2) (71,29) (61,39) (30,19)

Figure 4: Left: True and False Positive rates (TPR, FPR) in % for audio, spatio-temporal video classifiers (video-clean
and video-noisy) and lip-movement based methods (video-lips) across the 7 cross-validation folds. Middle: ROC curves
for video-clean. Right: ROC curves for video-noisy. Circles and stars show (TPR, FPR) pairs for audio and video-lips.

3. CONCLUSIONS
This work presents to our knowledge, the first attempt at

detecting active speakers in video using action recognition
features. Whereas earlier work has used the movement of
the lips for detecting speakers in video, our work trains a
classifier on spatio-temporal action recognition features to
pick up face and upper body movements and gesticulations
accompanying a person’s speech.

Our other contribution is the use of audio sound source
localization (from a microphone array) to supervise the la-
belling of speaking vs non-speaking parts of the video. We
use a microphone pair in a laptop to capture the sound data,
and the bearing of the speaker calculated from the time dif-
ference of arrival of the sound is associated with upper bod-
ies detected and tracked in video. Upper body tracks and
dense trajectory features within them are labelled as speak-
ing and non-speaking and the samples, quantized and pooled
with a Fisher vector representation are fed into a SVM clas-
sifier. We obtain a mean Equal Error Rate (EER) of 0.66
with supervision from audio over 7 experiments (3.5 hours of
audio-visual data), tested using Leave One Out Cross Val-
idation (LOOCV). Training on ground truth labels give a
slight improvement - an EER of 0.69.

Future work will focus on training the classifier in a single
audio channel setting, which is the case for the vast majority
of videos available. Voice Activity Detection will tell us
whether or not there is speech in a frame, and the particular
person that is speaking will be learnt as a latent variable in
a Latent SVM framework. Methods for fusing audio and
video for more reliable detection will also be investigated.
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