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Abstract

Recently, (Zhang et al., 2011) proposed a classifier based on collaborative representations (CR) with regularized least
squares (CRC-RLS) for image face recognition. CRC-RLS can replace sparse representation (SR) based classification
(SRC) as a simple and fast alternative. With SR resulting from an /, -regularized least squares decomposition, CR starts
from an /,-regularized least squares formulation. Moreover, it has an algebraic solution.

We extend CRC-RLS to the case where the samples or features are weighted. Particularly, we consider weights
based on the classification confidence for samples and the variance of feature channels. The weighted collaborative
representation classifier (WCRC) improves the classification performance over that of the original formulation, while
keeping the simplicity and the speed of the original CRC-RLS formulation. Moreover we investigate into query-
adaptive WCRC formulations and kernelized extensions that show further performance improvements but come at the

expense of increased computation time.
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1. Introduction

For face recognition, (Wright et al., 2009) pointed out
the effectiveness of representing newly observed faces
as linear combinations of previously observed ones.
Usually, the problem is formulated as one of finding
the coefficients that minimize the residual between a
new sample and its linear reconstruction. The residual
is commonly measured as the least squares difference,
which allows for an algebraic solution. When all pre-
vious faces or samples contribute to the optimal linear
combination, one has a so-called Collaborative Repre-
sentation (CR) (Zhang et al., 2011). Aside from the ba-
sic least squares criterion for the creation of such op-
tima, other constraints have been considered as well.
For stabilizing the coefficients of the least squares rep-
resentation, one could add a term that tries to mini-
mize the l,-norm of the coefficients, while still admit-

*Corresponding author. tel:  +3216321718 (work) or
+32494358850 (mobile)

Email addresses: radu.timofte@esat.kuleuven.be
(Radu Timofte), vangool@vision.ee.ethz.ch (Luc Van
Gool)

URL:
http://homes.esat.kuleuven.be/ rtimofte/ (Radu
Timofte)

Preprint submitted to Pattern Recognition Letters

ting an algebraic solution. Enforcing sparsity on the so-
lution leads to an [y-regularization, i.e. an /;-regularized
least squares problem in practice, known as lasso (Tib-
shirani, 1996). Such adaptations yields a Sparse Rep-
resentation (SR) (Wright et al., 2009), a key element
in compressed sensing. Indeed, most signals admit a
decomposition over a reduced set of signals from the
same class (Bruckstein et al., 2009). Unfortunately,
there no longer exists a known algebraic solution in that
case. A combined /,/I, regularization renders the coeffi-
cients more robust and enforces group sparsity (Zou and
Hastie, 2005).

The resulting coefficients carry a meaning in that they
reflect the importance of each sample. The coefficients
and resulting residuals are used in the classification. The
newly incoming sample or ‘query’ is assigned to the
class that has the minimum residual error or the largest
sum of coefficient magnitudes.

Here, we investigate the influence of weighting the
samples and features in the aforementioned represen-
tations, in particular in the l,-regularized least squares
formulations with algebraic solutions. In real classifica-
tion tasks the training samples are not equally discrimi-
native. Moreover, the coefficients of some samples cor-
relate more closely with the correct prediction by the
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classifier. The same holds for the feature channels, as
some are more informative than others for the classifi-
cation process. One may also let depend the weights on
the particular query that is to be classified. We extend
our previous work (Timofte and Van Gool, 2012b) by
addressing such adaptive weightings and by investigat-
ing the corresponding kernel extensions, as a means for
further gains in classification performance.

The remainder is organized as follows. Section 2
briefly reviews the least squares based formulations.
Section 3 presents weighted variants, Section 4 adapts
to query-specific weighting, and Section 5 discusses the
kernel trick. In Section 6 we describe the classifiers
based on these representations. Section 7 shows experi-
mental results, while Section 8 concludes the paper.

Notations and assumptions. The training data
is stacked column-wise forming a matrix
X = [x1,%2, ", ] € R with m € N n-dimensional
training samples. 8 € R™ denotes the vector of coeffi-
cients from the linear representation of a query sample
y € R" over the (training) samples (X). We assume
each sample to be zero mean and to have unit length
(the [,-norm is 1). By [|x]|, we denote the /,-norm of a
vector x, ||x|| is the Euclidean norm (or l-norm), X7 is
the transpose of matrix X, and X' the inverse. diag(x)
is the diagonal matrix with the vector x on the diagonal.
1 is the identity matrix.

2. Least Squares formulations
We shortly review three of the best-known regular-
ized least squares formulations.

The Ordinary Least Squares (OLS) solves:

Bors = argmin |y — X8I (1)
B

If (XTX)~! exists we have as algebraic solution:
Bos = (X" X)7'x"y )

The Collaborative Representation with Regularized
Least Squares (CR) (Zhang et al., 2011), solves:

Bcr = argmin [ly — XBII* + AcxlBI1 3)
B

where Acg € R is a regulatory parameter. The algebraic
solution becomes:

Ber = (X"X + AcrD ™' X"y 4

By adding the /, regularization we cope with the
case where X7 X is singular and, moreover, we stabi-
lize/robustify the solution and make it less noise depen-
dent.

The Sparse Representation (SR) (Wright et al., 2009)
is obtained by enforcing sparsity by means of ;-
regularization instead of /, as for CR:

Bsk = arg;nin Iy = XBI1* + Askl|Bll: 5

where Asg € R is the Lagrangian regulatory param-
eter. For this problem, also known as lasso (Tib-
shirani, 1996), one does not have an algebraic solu-
tion, but efficient optimization solvers are available, like
LARS (Efron et al., 2004), Feature Sign (Lee et al.,
2006) or L1LS (Kim et al., 2007).

By combining sparsity and robustness by means of
joint /; and /, regularization we pursue group sparsity:

Ben = arg/;nin lly = XBII* + 817 + 418l (6)

a problem known as (naive) Elastic Net (EN) (Zou and
Hastie, 2005), where 1, , are regulatory scalar parame-
ters. (1 + /lg)ﬁ’EN gives the compensated EN solution.

3. Weighted Representations

In this section we review weighted extensions of the
aforementioned least squares formulations.

Generalized Least Squares (GLS) generalizes the Or-
dinary Least Squares (OLS) for cases with unequal vari-
ances or correlations between the observations. If y =
XBcrs +€ with zero mean residuals, i.e. E[€|X] = 0, and
their variance is Var[e|X] = Q, GLS minimizes their
squared Mahalanobis length to estimate Sgrs:

Bers = arggnin(y X' (y - XB) )

Bors = (XTQ7'x)'XTQy ®)

This simplifies to Weighted Least Squares (WLS) in
case Q is diagonal.

Ridge Regression (RR), also known as Tikhonov reg-
ularization (Tikhonov and Arsenin, 1977), solves:

Brr = argmin|ly — XBII* + [ICzeBII*
B

Brr = (X"X + Thelrp) ' X"y ©)

where to alleviate ill-posed problems, T'rg € R™™ is
suitably chosen. I'gg € R™™ is the Tikhonov matrix
and enables to weight samples differently. RR simplifies



to OLS or CR if I'gg is null or a scaled identity matrix,
respectively.

A Generalized Weighted Collaborative Representa-
tion (WCR) can have the following formulation:

Bwer = arg;nin(y—xﬁ)TQﬁ/lcR(y—Xﬁ)‘*'l|FWCRﬁ||2 (10)

Bwer = (XTQycrX + Therlwer) ' X Qyery (1)

Similar to GLS, Qg gives the importance of each di-
mension, and similar to RR, I'ycg modulates the impor-
tance of each sample in the solution.

Adding sparsity regularization (/;-norm) to WCR
leads to a Generalized Weighted Elastic Net (WEN) for-
mulation:

Bwey =argming {(y — XB) Q) (v — XB)+
ICwenBI + IAwenBIIlL )

(12)
where Awgy € R™™ expresses the importance of each
sample for the /; term. By adding the sparsity regular-
ization we lose the advantage of having a clean alge-
braic solution.

Other recent /;-regularized methods weight the co-
efficients in relation to the covariances of the train-
ing samples, as in Weight Fused Lasso (Daye and
Jeng, 2009) or Weight Fused Elastic Net (Fu and Xu,
2012). Other pairwise constraints are used in Group
Lasso (Yuan and Lin, 2006), Pairwise Elastic Net (Lor-
bert et al., 2010), or Trace Lasso (Grave et al., 2011).

4. Adaptive Weighted Representations

In the previous section we formulated weighted rep-
resentations. We can make a distinction between the
way the weights are set in the representation formula-
tion:

i. independent of the query
ii. adaptive to (dependent on) the query

Independence of the query is the default case for
weighted representations. It means that the weights are
learned (estimated) from the training data or set without
considering the specificity of an arbitrary query. The
dependent or adaptive approach uses the specificity of
the input query in the computation of the weights, and
thus adapts the weighted representation to the nature of
the input.

When the weighting matrix (or residual variance in
WLS) Q is not directly known, it can be estimated, as
in Feasible Generalized Least Squares (FGLS) (Little

and Rubin, 2002), adapted to the query. Here we con-
sider the case of GLS. First, we can use OLS and obtain
the residuals u, and take for Q the diagonal matrix of
squared residuals, diag(itors )2, and estimate ,BFGLS .

ftors =y — XPors, Qors = diag(itors ) (13)

Brers, = X Qo X)X Q) ¢y (14)

leading to
~ Py . N 2
frcrs, =y — XBrers,» Qrers, = diag(lirgrs,)

Brors, = X" Qs X)X Qptsy - (15)

Under certain assumptions (Little and Rubin, 2002),
Qrers will converge after a number of iterations. Note
that the same iterative approach for estimating €2 can be
applied to the other weighted least squares formulations
(such as WCR or WEN).

Note that, in our experiments, we usually achieved
better performance when we work directly with the
residuals in absolute values (Qors = diag(liiors|),
Qrcrs, = diag(litrgrs,|)), instead of taking the squared
residuals as in the standard formulations used here.

Among recent adaptive weighted (sparse) representa-
tions, we review two: adaptive lasso and adaptive elastic
net.

Adaptive lasso (Zou, 2006) or adaptive SR (aSR)
solves:

Bask = argminly — XBI* + lAaszlBIlli  (16)
B

where AaSR = /lQSRdiag(LéCRrv), with v € {05,1,2}
an extra parameter. With the change X* = X/(|Bcr|™)
(dividing element-wise, x] = X,‘/(IﬁCRJ|_V),i =

1,2,--- ,m), the solution is given by B,sg = /?*/(I/?CRI‘V)
(element-wise) where ,@* is the lasso (SR) solution:

B* = argmin|ly — X*BII* + AusrliBIh (17)
B

aSR imposes the coefficients from the RR decompo-
sition of the query to obtain a grouping effect on the
sparse solution of the original SR.

Adaptive Elastic Net (aEN) (Zou and Zhang, 2009)
adds the I, regularization to the adaptive lasso, aSR:

Baen = arg[;nin Iy = XBII* + lAaenlBlll + LB (18)

where A gy € R™™ is taken similar to A,gg.



5. Kernel extensions

5.1. Kernel trick and Hilbert space

For dealing with classification problems that are
not linearly separable the kernel trick (Scholkopf and
Smola, 2001) was introduced. The nonlinear problem
can become linear in the high (even infinite) dimen-
sional kernel feature space. The nonlinearity is handled
by the kernel choice.

In the following we explore kernel extensions that are
possible for most of the representations used in this pa-
per. By using the kernel trick we expect to better adhere
to the linearity assumption of the least squares models.
For example, Kernel Sparse Representations have been
proposed in (Zhang et al., 2012) and the Kernel Ridge
Regression (Scholkopf and Smola, 2001) is a standard
tool.

We assume a nonlinear mapping function, ¢, from
the original Euclidean space R” to the Hilbert space H,
¢ : R" — H. H is often known as “reproducing kernel
Hilbert space” (RKHS) corresponding to a Mercer ker-
nel k(-, -) (Scholkopf and Smola, 2001). Given x,y € R”,
we have k(x,y) = (¢(x), d(¥))#1, where (-, -)¢( is the in-
ner product in the kernel feature space . Among the
best-known nonlinear kernel functions is the Gaussian
kernel k(x,y) = exp(—7llx — y|[*), where 7 is a scalar
parameter.

Let ®(X) = [¢(x),(x2), - ,d(x,)] € R*™ be,
in the /-dimensional kernel space H, the mapped data
points X = [x;,xp, - ,X,] € R™™.  Since [ can
be very high, we can employ a projection matrix to
a lower dimensional embedding space. Another ap-
proach is to use the samples z as decompositions over
the training samples by means of the kernel function:
k(,y) = [kCxr,y),k(x2,y), -+ k(o IT € R™LA
projection matrix R € R™d > d, can be used to fur-
ther lower the dimensionality of the representation. R
can be set by a random scheme or using other (learned)
dimensionality reduction techniques as in (Zhang et al.,
2012).

In the sequel, K represents the Gram matrix, K;; =
k(x;, x;), and R is not used in our experiments (is set as
the identity matrix, I of size m X m).

5.2. Kernel Representations

In this section we give straightforward kernelized for-
mulations for RR, SR, and EN, thereby avoiding more
lengthy derivations as sometimes found in the litera-
ture (Saunders et al., 1998; Suykens and Vandewalle,
1999; Zhang et al., 2012). The formulations do not use
the label information, we are in an unsupervised mode.

Kernel Ridge Regression (KRR) is formulated and
solved as follows:

Brr = argﬁmin llp(y) — @X)BI* + AxrrllBIF (19)

Brrr = (K + AgreD)""k(-,y) (20)

Note that this is an unsupervised KRR, and it has a
slightly different formulation and interpretation than the
ones commonly found in the machine learning litera-
ture (Saunders et al., 1998; Suykens and Vandewalle,
1999). y in our case is the new sample to linearly de-
compose and not a label target. The advantages of us-
ing a supervised regression are shown in (Suykens and
Vandewalle, 1999). The most important ones concern
the optimality conditions.

While in our experiments we use the KRR in the for-
mulation introduced, in practice one could use a formu-
lation on reduced representation dimensionality:

Bxrr = arg;nin IR"k(-,y) — RTKBI* + AxrzllBI* (21)

Kernel Sparse Representation (KSR) (as in (Zhang
et al., 2012)) solves:

Brsr = argmin [[Rk(-,y) — RTKBII* + AxsrlBll (22)
B

A Kernel Elastic Net (combining KRR and KSR) can
be formulated as follows:

Bren = argmin|[Rk(,y) — RTKBII* + 1|8l + 41181
B

(23)
Of course, we do not need to work directly with the
high-dimensional kernel space mappings but use the
kernel function k(:, -) instead, i.e. the explicit decompo-
sition over training samples k(-, y). Moreover, when the
number of training samples is large, we could also learn
and apply a projection matrix (R) to reduce the dimen-
sionality and the running time of the kernel extended
regularized least squares formulations.
The Gram matrix (K) should be column-wise /-
normalized to match the assumptions of least squares
models and the solvers employed for KSR and KEN.

6. Classification

6.1. Sparse Representation - based Classifier

The information used for classification starting from
the least squares formulations usually is the set of resid-
uals for each class ¢ (Wright et al., 2009):

re = lly = XcBell 24)



where ﬁc are the coefficients and X, the samples for
class c in the full representation of y as defined by the
coefficients 3 and the training samples X. The classifi-
cation decision is then taken as:

class(y) = argmin r.(y). 25)

The decision for the Sparse Representation-based
Classifier (SRC) (Wright et al., 2009) is given by
eq. (24) where 8 = Bsg. Another, faster, approach is to
base the decision on the absolute values of the weights
as in (Timofte and Van Gool, 2011):

we(@) = lBclli, class(y) = argmaxw.  (26)

6.2. Collaborative Representation - based Classifier

The Collaborative Representation-based Classifier
with Regularized Least Squares (CRC), as introduced
in (Zhang et al., 2011), uses eq. (4):

Ber =Py, P=(X"X +AcxD”'X"T  (27)
and the regularized residuals are calculated as:
re) = lly = XeBell 1Bl (28)

The decision of CRC is made as in eq. (25). The pro-
jection matrix, P, is independent of the query y and can
be precomputed. This gives CRC a large computational
advantage over SRC, which runs a query-dependent op-
timization.

The computation of P can be troublesome if the num-
ber of data samples (X) is much larger than the dimen-
sionality of the data. It involves the computation of an
inverse matrix of size equal to the number of training
samples. One can then operate on the transposed data
and compute the pseudoinverse (Penrose, 1955):

P=(XX" + AcgD'X)T (29)

By adapting the computation of P using eq. (27) or
eq. (29) we permit CRC to scale well with either a very
high dimensionality of the data or very large datasets.

6.3. Weighted Collaborative Representation Classifier

For our WCR-based Classifier (WCRC) we inherit
the regularized residuals approach of CRC where:

P= (XTQ;VICRX+ Awer(ki I + KQFYV;/CRFWCR))ileQ;VICR

(30)
One can use the procedure of FGLS to estimate Qycg,
by fixing I'wcg. If we have sufficient data, a good esti-
mate for Qg is provided by the variance in the train-
ing data. However, in our experiments, using the stan-
dard deviation instead of the variance provides better

performance. We use the standard deviation for estimat-
ing the diagonal matrix Qg for all the experiments.

We estimate I'ycg using the training data and cumu-
lating the evidence per each sample for correct and in-
correct classification participation. The weights corre-
late with the WCRC classifier decision.

Let #; be the label class of the i-th training sam-
ple/column x; of X. For each training sample x; we
cumulate the corresponding i-th squared coefficients
[Sl.z(x ;) of the representations for all training samples x;.
The representations are calculated using eq. (30) where
I'wer = I and k, = 0. For samples sharing the class t;
of x; we cumulate these squared coefficients in 91*, oth-
erwise in 6;:

m m
6 = 3 11 = 6By, 6 = Y [ # 1By ()

J=1 =)
Then, the weights are set using:
+
o O

+6:7 6+ 0,

m

Twer = diag(l - I €2)
1
The working parameters are reduced to a single one,
Awcr, by empirically setting «; to the mean value of
X TQ;VICRX , and «; to 10 times this value, respectively.
Note that using the regularized residuals, eq. (28),
instead of normal residuals, eq. (24), does not gener-
ally improve the W/CRC performance. When we work
with discriminative data embeddings, usually the per-
formance degrades. However, we use the regularized
residuals for all our reported results.

6.4. Adaptive Weighted Collaborative Classifier

The weights can also be set adaptively, by using the
locality assumption. That is, we assume, as (Waqas
et al., 2013) does, that the farther the query is from
a training sample the higher the penalty for using that
sample in the representation ought to be. We call this
classifier Adaptive WCRC (AWCRC) and we use the
formulation of WCRC, with Quwcr estimated as for
WCR and I'ywcg adapted to the query sample y:

Lawer(y) = diag(llxy =yl lIx2 = yll, -+ 5 llxm =yl (33)
For AWCR the projection matrix depends on y:

P(y) = (X"Q7X + Lawer(a] + TG TE)) ™' X Q™

(34)
where Q = QAWCR and I' = FAWCR. ThllS, AWCR
loses the speed advantage of WCR where the projec-
tion matrix is independent of the query and can be pre-
computed. For AWCRC, «; is set to the mean value of
X" ycrX and & to 0.0001 this value, leaving us with
a single regulatory parameter A4wcr, still to set.



6.5. Kernelized Collaborative Classifiers

The kernelized extensions for both WCR and AWCR
are quite straightforward. For simplicity, we consider
the importance of the feature channels to be uniform,
i.e. Qis set to the identity /. The solution is given in the
kernelized space by:

Bk = (K + Ag(ki I + ioTRT)) k(y) — (35)

for a query y. The kernel we work with is the Gaussian
kernel. The kernelized variants for CRC, WCRC, and
AWCRC are called KCRC, KWCRC, and KAWCRC,
respectively.

7. Experimental results

7.1. Benchmark setup

Datasets. We use the AR and PIE face datasets, the
MNIST handwritten digit dataset and the GTSRB traf-
fic sign dataset. For the AR dataset (Martinez and Be-
navente, 1998) we keep the same settings as in (Zhang
et al., 2011; Wright et al., 2009). There are 100 indi-
viduals for a total of 700 training and 700 testing face
images of 60 X 43 grayscale pixels. For the CMU PIE
face dataset ! we use the subset’ from (Cai et al., 2007)
with near frontal poses under different illuminations and
expressions, up to 170 images per each of the 68 sub-
jects. Furthermore, we randomly pick a partition with
700 training samples and 700 testing samples for our ex-
periments. The MNIST handwritten digit dataset® con-
tains 70,000 handwritten digit images with a split for
training and testing (LeCun et al., 1998). As in (Waqas
et al., 2013), we randomly select 50 training images for
each of the 10 digits from the training set and 70 from
the testing set. Complementary experiments are con-
ducted on the GTSRB traffic signs dataset (Stallkamp
et al., 2011). We have 43 classes and use all the 39209
training and 12630 testing images. With the exception
of AR images, all the other images were cropped and
resized to 28 X 28 grayscale pixels.

Features. We work directly on grayscale pixel values,
on eigenfaces (as in (Zhang et al., 2011)), and on
low-dimensional projections. The projections are ob-
tained using regularized Linear Discriminant Analysis

"http://www.ri.cmu.edu/projects/project_418.
html

2http://www.zjucadcg.cn/dengcai/Data/
FaceData.html

3http://yann.lecun.com/exdb/mnist/
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@
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Figure 1: Dimensionality versus performance and weights on AR.
The regulatory parameters are 4 = 0.001 for WCRC and 4 = 0.01
for CRC. The features are 9 up to 2580 grayscale pixel values from
downscaled images.

(LDA) (Fisher, 1938), regularized Sparse Representa-
tion based Linear Projections (SRLP) (Timofte and Van
Gool, 2011), and regularized Iterative Nearest Neigh-
bors (INN) Linear Projections (INNLP) (Timofte and
Van Gool, 2012a). LDA maximizes the interclass vari-
ance while minimizing the intraclass variance. SRLP
uses SR to let the projections capture important struc-
tural information in the data. INNLP uses the faster INN
representation instead. The regularization parameter is
set to 0.001 for all projection methods. For computing
SR, in SRLP, we use the Feature Sign (Lee et al., 2006)
solver with tolerance 0.04 and regularization parameter
0.01, if not mentioned otherwise. For INN, in INNLP,
we set the regularization parameter to 0.05. All the fea-
tures are /-normalized before and after projection.

Classifiers. Apart from the CR-based classifiers in-
vestigated here — CRC, WCRC, AWCRC, KCRC,
KWCRC, and KAWCRC - we report results for
the Nearest Neighbor (NN) classifier using the Eu-
clidean distance, the Iterative Nearest Neighbors Clas-
sifier (INNC) (Timofte and Van Gool, 2012a) with
A = 0.05, the Sparse Representation-based Classi-
fier (SRC) (Wright et al., 2009) with the Feature Sign
(FeSg) solver (Lee et al., 2006) or the L1LS solver (Kim
et al., 2007), and the standard Linear Support Vector
Machines (LSVM) classifier. Most of the parameters
were 4-fold cross-validated using 300 randomly picked
training samples. For each parameter we considered up
to 10 choices well spread over the range of values. For
example, for the CRC and the SRC variants we con-
sidered A € {107%,107*---,107',0.2,0.5, 1,5, 10}, and
picked the one with the highest average classification
rate for 10, 54, 99, and 300-dimensional features. In the
experiments we fix the parameter for each classifier and
dataset to the same value regardless the dimensionality



of the features. We use the Gaussian kernel and empir-
ically set 7 = 0.2 for the KCRC experiments and 7 = 1
for KSRC, respectively.

7.2. 1, I and data dimensionality

At the beginning, we investigate the role of /; and
I, regularization in relation to the dimensionality of
the data and the regulatory parameter. In Figure 2
we chose to depict the results in two important work-
ing regimes: low and high (relative to the features and
projections) dimensional embeddings. Here we pick a
low, 20-dimensional LDA embedding and a higher, 70-
dimensional one. The classification rates are expressed
as a function of the regulatory parameter for all the con-
sidered classifiers, i.e. Aycg is the parameter of WCRC.
The Nearest Neighbor (NN) classifier does not have a
corresponding regulatory parameter.

For high-dimensional data the /, regularization works
very well, while the /; regularization is much more ef-
fective in the case of low-dimensional data. By weight-
ing samples and/or channels/dimensions usually we im-
prove the results over those of the initial formulations
corresponding to uniform weights.

For assessing the importance of weighting channels
or weighting samples individually or combined we use
AR with grayscale value features and different dimen-
sionality of the feature data. The results are depicted by
Figure 1. The combined weighting is effective for low
dimensions where sample weighting (when Qycg = 1)
dominates. For higher dimensions the channel weight-
ing (when k, = 0) helps more, but the improvement is
small. WCRC achieves 95.6%, ~ 2% better than the
best CRC results.

Our WCRC result on AR compares to the one re-
cently reported by (Yang et al., 2012) for the Relaxed
Collaborative Representation (RCR) Classifier (RCRC),
95.6%-WCRC vs. 95.9%-RCRC. RCRC approach
groups the features (corresponding to blocks in the orig-
inal images) and per each such group considers a differ-
ent weighting scheme and its corresponding coding for
an input query. The weighted solution for RCR is ob-
tained through numeric iterations, while, in our case,
WCR still has a direct algebraic solution. Under the
same conditions, using Matlab scripts and tested on the
AR dataset, with samples of 60 x 43 grayscale pixel
values, our WCRC is more than 2.5 times faster than
RCRC. We used the scripts provided by the authors.

7.3. Classification

The classification performance of the least squares
based classifiers was tested on AR, MNIST, PIE, and
GTSRB for different types of projections.

The AR results are in Table 1. WCRC consistently
improves over CRC for low dimensional eigenfaces or
projections (< 99), while for the higher dimensional-
ities the CRC and WCRC are on par. Regardless the
features, for the lowest dimensionalities (< 30), the best
classifiers are INNC and AWCRC, both relying strongly
on the distance to the query information. In the medium
range (= 30 and < 99) AWCRC and SRC are the best
performers. For the higher dimensions (> 99) we do not
have clear winners — CRC, WCRC, AWCRC, and SRC
exhibit similar performance. Moreover, LSVM joins
the group for discriminant projections. Using the kernel
trick can further improve the performance especially for
the low dimensionalities but at the expense of increased
running times.

For GTSRB (see Table 2), we have a larger pool of
training samples and WCRC comes out ahead of CRC.
However, both methods are below the top SRC(FeSg)
and INNC classifiers with the exception of when we
use high-dimensional eigenfaces. GTSRB is 2 orders of
magnitude larger than AR in terms of number of sam-
ples and combined with the relatively low-dimensional
embeddings of the LDA, SRLP, and INNLP projections,
seems to not accommodate W/CRC well.

If we contrast the results from AR and GTSRB,
we see the importance of the sparsity (imposed by /;-
regularization in SRC or directly by weights in INNC).
Enforcing sparsity helps in obtaining meaningful least
squares decompositions at class level from large pools
of data (GTSRB), while for smaller pools, /, seems suf-
ficient.

Overall, the results on PIE match the ones obtained
on AR (see Table 4). The relative performance of the
classifiers is the same. This does not come as a surprise
since both deal with faces with a balanced and similar
number of classes/individuals (68 in PIE vs. 100 in AR).

For the MNIST handwritten digit dataset, we have a
large gap between the results obtained with SRLP pro-
jected features and the ones using eigenfaces. Our re-
sults with eigenfaces are significantly better than the
ones reported by (Waqas et al., 2013). We suspect that
the main difference is due to the fact that we use the
eigenfaces as in the Matlab code of (Zhang et al., 2011).
We do not /-normalize the grayscale values prior to
computing the eigenfaces and the mean face is not sub-
tracted prior to the application of the eigenface projec-
tive matrix.

WCRC generally outperforms or is on par with the
original CRC formulation in all our experiments. From
the top classifiers, WCRC (and CRC) admits an alge-
braic solution and is faster than the SRC variants, but
slower than NN and INNC, see Tables 1, 2 and 5.
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Figure 2: Classification rate and running time versus regulatory parameter on AR in the low and high dimensional regime using LDA projections.

Table 2: Traffic sign classification rates [%] on GTSRB. dims stands

Table 1: Face recognition rates [%] on AR. for dimensions in the feature representation.
Classifier Dimensionality .
1 5 10 30 54 9 120 300 eigenf. SRLP INNLP LDA
CRC 0.01 06.3 195 644 807 89.6 904 939 . H . . H
WCRC 001 093 319 725 833 8§93 90.6 936 classifier (300dims) | (99dims) | (99dims) | (42dims)
WCRC, 0001 | 092 319 727 840 891 90.1 939
WCRC, 005 | 063 193 647 8§07 8§93 903 939 NN 66.05 89.54 89.35 91.84
AWCRC 0.01 246 481 737 824 871 88.6 923
g | KCRC 00001 | 145 363 786 850 868 884 908 WCRC 86.12 87.17 86.99 89.23
£ | KWCRC 00001 | 176 457 763 841 878 888 929
5 KAWCRC 0.5 183  41.1 760 834 858 87.0 894 KCRC 8406 8439 8441 8320
S [SRC(LILS) | 0.01 062 196 647 810 900 914 934
SRC(FeSg) 0.001 225 398 737 841 893 903 936 CRC 84.34 83.43 83.56 84.08
KSRC(LILS) | 0.00001 | 114 290 680 79.1 87.7 894 908 INNC 77.70 93.64 93.61 93.64
KSRC(FeSg) 0.00001 228 381 589 716 738 738 765
INNC 001 | 242 489 90 741 713 716 796 SRC(FgSg) 85.31 93.94 93.74 9291
NN 235 434 5901 681 698 704 7TL4
LSVM 103 335 682 763 813 824 845 SRC(L] LS) 7478 7934 7941 9301
Classifier Dimensionality LSVM 81.22 87.87 87.92 87.00
1 5 10 30 5499 120 300 : : ) :
CRC T 03 268 751 904 943 IKSVM 87.45 89.51 89.06 86.30
WCRC 05 252 539 873 913 937
WCRC, 01 252 535 863 924 940 RBFSVM 81.34 92.43 92.57 92.46
WCRC, 1 106 270 758 903 937
AWCRC 10 376 624 890 929 946
KCRC 005 352 565 884 924 930
é KWCRC 0.001 342 557 888 93.0 941
~ | KAWCRC 10 383  60.1 824 877 920
SRC(LILS) | 0.05 200 405 860 928 948
SRC(FeSp) | 0.05 | 345 568 870 921 944 Table 3: Handwritten digit recognition rates [%] on MNIST.
KSRC(LILS) | 0.001 321 542 874 917 934 " A e
KSRC(FeSg) | 00001 | 348 591 848 910 946 Classifier Dimensionality
INNC 0.1 375 608 866 888 926 1 5 10 30 54 99 120 300
NN 372 588 767 818 870 CRC 5 5204 737 896 896 899 900 89.7
LSVM 472 807 %04 936 WCRC 5 571 773 89.1 900 899 897 89.0
Classifier 1D‘m=n~"°"ﬂ'"y‘ B AWCRC 5 647 840 916 916 9L6 9L6 9LO
— 4 T KCRC 0005 | 660 871 937 919 917 910 90.0
WCRC 02 248 554 863 OLI 939 939 940 KWCRC 0005 | 67.9 853 934 926 916 913 904
AWCRC 10 386 630 874 926 944 941 939 § KAWCRC 5 653 869 934 921 917 916 904
KCRC 0.1 206 581 883 923 937 947 944 & [SRCLILS) | 02 619 827 930 919 916 OI.1 0910
2 Ey\g‘égc %ﬁ 2:3 Zz gg;’ ::3 Z‘l'; ::g Zﬁf 5 | SRC(FeSg) 0.001 | 623 823 9.1 914 909 913 9LI
= 2 613 6 88 . . . e
% SRC(LILS) 0.05 195 425 868 926 946 947 947 o KSRC(LILS) | 0.001 | 654 837 916 91.7 914 916 9.1
SRC(FeSg) | 0.05 349 600 860 924 942 943 943 KSRC(FeSg) | 0.001 | 624 837 914 923 926 924 92.6
KSRC(LILS) | 0.001 310 575 864 917 937 938 936 INNC 0.01 62.6 844 929 920 919 917 916
KSRC(FeSg) | 0.0001 356 617 840 902 939 944 937 NN 60.1 80.4 867 87.0 851 850 84.6
INNC 0.01 381 614 856 891 95 931 927 LSVM 579 739 859 864 859 850 853
NN 371 599 764 826 860 863 87.0 S = —— =
LSVM 330 501 830 907 936 941 938 Classifier Dimensionality
Classifier Dimensionality A S 10 30 54 99 120 300
a 5 10 30 54 99 120 300 CRC 100 439 577 511 541 569 557 594
SV‘E?CI;C (1) 1 ;g; ggj ;gg glll; 3;3 g:g g;; WCRC 100 | 460 560 569 59.1 627 626 615
P A - i AWCRC | 00 | 553 B0 563 9 624 617 €3
KCRC 0.1 292 578 880 924 936 946 947 § 4 - g g g - -
& | KWCRC 0.1 346 602 886 929 937 946 946 ] KWCRC S 566 630 623 621 621 626 623
Z | KAWCRC 100 372 614 827 876 916 940 90.1 = | KAWCRC 1 563 624 637 643 636 629 556
= :ESESLS) 88; ;iz 253 :2: ;i-: 3:7 ;:f ;:3 “ [TSRC(LILS) 1 464 610 6LI 636 640 653 637
SRC(FeSg) ; . . . y ,
KSRC(LILS) | 0001 | 30.5 577 866 L6 934 938 936 SRC(FeSe) 03 496 610 606 621 636 654 613
KSRC(FeSg) | 0.0001 349 612 838 90.6 941 943 940 KSRC(LILS) | 0.5 557 621 634 643 651 656 643
INNC 0.01 385 615 856 891 924 929 930 KSRC(FeSg) | 0.5 557 613 634 631 644 650 657
NN 371 602 768 826 864 861 860 INNC 0.99 561 620 623 63.1 611 639 614
LSVM 339 498 824 907 941 940 938 NN 561 620 623 631 6l.1 639 614
LSVM 527 589 563 551 544 540 532




Table 4: Face recognition rates [%] on PIE.

Classifier Dimensionality

A 5 10 30 54 99 120 300

CRC 0.01 029 154 504 70.1 794 830 87.0
WCRC 0.05 057 277 680 763 83.6 843 876
AWCRC 0.0001 09.1 264 514 640 751 761 837
KCRC 0.00001 | 076 360 720 783 839 839 833
KWCRC 0.00001 | 08.6 377 713 779 820 830 864

& | KAWCRC 0.01 093 281 644 744 799 801 816
g‘é‘ SRC(LILS) 0.005 04.1 167 504 673 806 836 87.1
S, | SRC(FeSg) 0.005 073 221 500 679 80.1 827 864
‘S | KSRC(LILS) | 0.00001 | 063 27.6 62.6 714 80.7 820 869
KSRC(FeSg) | 0.00001 | 07.0 20.0 53.1 643 704 709 73.6
INNC 0.01 09.1 256 440 541 576 587 610

NN 087 20.1 333 367 394 410 416
LSVM 040 237 594 723 771 781 810

Classifier Dimensionality

A 5 10 30 54 99 120 300

CRC 100 246 547 829 81 900 90.0 893
WCRC 2 416 723 851 86.1 867 87.1 887
AWCRC 100 584 781 887 903 90.1 903 90.7
KCRC 0.005 467 729 874 894 896 89 8713

o, | KWCRC 0.5 49.0 68.1 87.1 887 894 898 90.2
= | KAWCRC 10 560 769 89.0 894 903 899 88.0
“ [TSRC(LILS) 0.2 403 704 87.1 8.1 901 903 907
SRC(FeSg) 0.001 557 741 859 879 891 89.6 904
KSRC(LILS) | 0.01 407 679 869 839 894 837 8.1
KSRC(FeSg) | 0.2 547 756 877 89.6 913 913 920
INNC 0.01 557 789 883 903 909 90.6 904

NN 551 784 873 883 89.1 887 884
LSVM 50.6 679 854 88.0 884 877 884

7.4. Complexity and Running time

Speed can be a critical factor in practice. We report
some of the recognition rates and the average running
times per query in Table 5 for AR with 300-dimensional
eigenfaces and GTSRB with 42-dimensional LDA em-
beddings. We employ Matlab scripts and we use the
same system with Intel Core i7 CPU 860 @ 2.80GHz,
8 GBytes RAM, and Fedora for our experiments. For
each setting, we run 10 times on the randomized test
dataset and take the average running time corresponding
to a single query sample. The influence on running time
of the data dimensionality and regulatory parameter is
revealed also in Figure 2. WCRC and CRC are very
fast, orders of magnitude faster than the SRC formula-
tion. The improvement obtained using the AWCRC for-
mulation and/or the kernel trick more than doubles the
running time of the classifier. Moreover, INNC (Timo-
fte and Van Gool, 2012a) is faster than both CRC and
WCRC but performs poorer for high-dimensional data.

Our empirical running time experiments match the
time complexity of the methods. We consider m sam-
ples with n-dimensional representations. The time com-
plexity for W/CRC in test is O(mn), while the time com-
plexity of AWCRC is dominated by solving eq. (34),
which involves computation of an inverse for an m X m
matrix, thus, at least O(m>373). The time complexity for
INNC is O(kmn), where k is the number of iterations.
The hidden constants and terms in the time complexity
of W/CRC are bigger than those of INNC. In practice,
for k reasonably small, INNC proves to be the faster
method (see Table 5, INNC has A = 0.05, k = 62 for AR
and 1 = 0.3,k = 12 for GTSRB). In comparison, SRC
requires optimization. The Feature Sign solver (Lee

Table 5: Average running times per query on AR and GTSRB.

AR w/ Eigenfaces(300) GTSRB w/ LDA(42)
classifier Recog.[%] Time (s) Recog.[%]  Time (s)
NN 71.43 0.0001 91.84 0.0009
INNC 79.54 0.0023 93.64 0.0081
SRC(LILS) 93.41 0.8187 93.01 2.8524
SRC(FeSg) 93.56 0.2175 92.91 0.1679
CRC 93.76 0.0044 84.08 0.0381
WCRC 93.72 0.0044 89.23 0.0392
KCRC 88.27 0.0121 88.52 0.1628
AWCRC 93.12 0.2150 - -

et al., 2000) is efficient, but its computational burden
is higher than the one of the W/CRC or INNC methods.

7.5. Adaptive, weighted, and/or kernelized?

The weighted variant (WCRC) can improve the re-
sults over those of the original CRC formulation, as
expected since it includes either discriminant or corre-
lation information extracted from the training samples.
The weighting better fits the classification task.

The adaptive weighting (AWCRC) is found to
help accuracy-wise especially for the low-dimensional
spaces where the extra adaptive information (distance
to the sample in our case) helps to obtain more discrim-
inative representations. If NN is better than CRC or
WCRGC, then it is likely that using the distance to the
query in the AWCRC formulation will boost the perfor-
mance to at least the level of NN. However, in our ex-
periments we found little or no improvement whenever
we used the adaptive scheme estimation for the channel
weights (the Q weights). The biggest drawback of the
query adaptive approaches is the computational over-
head. They do not allow for the prior computation of
a projective matrix as in the query-independent case.

As already proved for SVMs, using kernels usually
helps the classification task. The improvement is visible
especially for low-dimensional original spaces and for
non-adaptive kernelized variants (KCRC and KWCRC).
Using the kernel trick comes at a price — the computa-
tion time is more than double that of the original formu-
lations, in our settings.

While in our experiments we fixed a couple of
weighting strategies and settings for the sake of a clean
exposition, one can easily imagine other such settings
tailored to particular applications. Combining different
weighting strategies is also possible, as well as the fine-
tuning of the parameters.

In future work, we plan to devise methods to learn the
(optimal) weights for the classification task at hand.



8. Conclusions

In this paper we reviewed current least squares-based
representations and investigated the impact of adding
weights and kernelization. We focused on the Weighted
Collaborative Representation (WCR), spelling out out
strong points as well weaknesses for image classifica-
tion as part of WCR-based Classifiers (WCRC). WCR
shares the simplicity and the effectiveness of the orig-
inal CR formulation. The weights for WCR are com-
puted offline and it still has an algebraic solution.

For validation we used face, digit, and traffic sign
datasets. Out of these experimental results and keeping
in mind a good speed-performance tradeoff the follow-
ing picture emerges: for the lowest dimensions one can
best use INNC, for somewhat higher dimensions SRC
(Feature Sign) is the best performer, then to be replaced
for high dimensions by W/CRC as the method of choice.

The adaptive weighting to the query (AWCRC) gen-
erally improves over the weighting independent of the
query (WCRC), but heavily affects the running time.

Using the kernel trick significant improvements can
be achieved over the flat formulations, especially for
low dimensional embeddings and, again, at the expense
of increased computation.
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