
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

Boosting masked dominant orientation templates for efficient object
detection q

Reyes Rios-Cabrera a,b,⇑, Tinne Tuytelaars b

a CINVESTAV, Robotics and Advanced Manufacturing, Av. Industria Metalurgica 1062, Ramos Arizpe 25900, Mexico
b KU Leuven, ESAT-PSI-VISICS, iMinds, Kasteelpark Arenberg 10, Leuven B-3001, Belgium

a r t i c l e i n f o

Article history:
Received 18 October 2012
Accepted 21 December 2013
Available online 29 December 2013

Keywords:
Binary templates
Meta-data transfer
Oriented gradients
Vehicle detection
Template-based object detection

a b s t r a c t

In this paper we present a novel template-based approach for fast object detection. In particular we
investigate the use of Dominant Orientation Templates (DOT), a binary template representation intro-
duced by Hinterstoisser et al., as a means for fast detection of objects even if textureless. During training,
we learn a binary mask for each template that allows to remove background clutter while at the same
time including relevant context information. These mask templates then serve as weak classifiers in an
Adaboost framework.

We demonstrate our method on detection of shape-oriented object classes as well as multiview vehicle
detection. We obtain a fast yet highly accurate method for category level detection that compares favor-
ably to other more complicated yet much slower approaches. We further show how to efficiently transfer
meta-data using the top most similar activated templates.

Finally, we propose an optimization scheme for detection of specific objects using our proposed masks
trained by the SVM, resulting in an increment of up to 17% in performance of the DOT method, without
sacrificing testing speed and it is able to run the training on real time.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

To date, the main application of template matching in image
processing has been the detection in an image of an a priori known
object instance from an a priori known viewpoint. To incorporate
viewpoint variations (or non-rigid deformation), usually multiple
templates are stored in memory and matched to the image one
by one. The maximum response is selected and if this is greater
than a threshold value, then it is counted as a detection. Fig. 1 illus-
trates this procedure.

Thanks to its speed, template matching has traditionally been a
popular method in manufacturing environments, where occlusions
and clutter can mostly be avoided and lighting and pose variations
can be carefully controlled, although it has also been applied in
more challenging settings such as, e.g., pedestrian detection [1].
Another advantage of template matching is that it is also possible
to transfer offline annotated/created meta data to the object, once
it is detected.

In other contexts, objects are mostly recognized based on local
features (e.g. SIFT [2]). This usually works well with changing

lighting conditions, partial occlusion and, to some extent, changes
in the viewpoint. However, this kind of approach usually fails on
texture-less objects such as mugs or bottles that are mostly deter-
mined by their projected contours or shapes. Another method, that
seems to work well in both situations, is the histogram of oriented
gradients (HOG) representation [3], combined with an SVM. How-
ever, its computation time is high. Here we investigate a simpler
and more efficient alternative.

Hinterstoisser et al. proposed a template representation, coined
Dominant Orientation Templates or DOT [4]. DOT is inspired by the
Histograms of Oriented Gradients [3] descriptor, but designed to be
fast. They show impressive results, recognizing 3D non-textured
objects over cluttered background in realtime, using several tem-
plates per object. At the core of their method is a binary represen-
tation of the image and template, based on dominant gradient
orientations. Evaluating the template for a given location in a
new image is highly accurate and requires only simple bit-wise
operations, making it very fast. By jittering the training image
when building the template, they ensure invariance to small trans-
lations. This not only increases the robustness, but also allows
skipping many locations while parsing an image. However, there
are also some shortcomings. One of them is that the method can-
not model negative data during training, which during detection,
results in a relatively high number of false positives. Another
limitation is that it cannot handle objects at the category level,

1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2013.12.008

q This paper has been recommended for acceptance by J.-O. Eklundh.
⇑ Corresponding author at: CINVESTAV, Robotics and Advanced Manufacturing.

Av. Industria Metalurgica 1062, Ramos Arizpe 25900, Mexico.
E-mail addresses: reyes.rios@cinvestav.edu.mx (R. Rios-Cabrera), tinne.

tuytelaars@esat.kuleuven.be (T. Tuytelaars).

Computer Vision and Image Understanding 120 (2014) 103–116

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu

Author's personal copy

but only a priori known instances of the same object. Another more
robust method was introduced recently by the same authors,
called LINE2D [5]. It improves over DOT, but suffers from the same
limitations.

In this paper, we investigate whether binary Dominant Orienta-
tion Templates (DOT) can also be used successfully for learning to
detect instances of an object class, without sacrificing efficiency.
This requires a method that can generalize beyond the examples
seen during training, so as to also recognize previously unseen in-
stances of the object class. Given the within-class variability, a sin-
gle template per viewpoint is no longer sufficient, and the greedy
selection of templates as in [4] is suboptimal (see Section 5.2).
Increasing the amount of jittering would allow for more variability,
but also reduces the discriminative power leading to more false
positives. Instead, starting from multiple training images possibly
covering different object poses, we need a method for template
selection, as well as a scheme for combining the outputs of the dif-
ferent templates, that effectively allows to generalize beyond the
individual examples (templates). To this end, we propose to learn
masks for the DOT templates and to use these as weak classifiers
in an Adaboost framework [6]. We also show, that these masks
can be applied to template based methods for specific object detec-
tion, showing up to 17% increment in performance.

1.1. Main contribution

Our main contribution is the construction of an efficient, cate-
gory-level object detector based on a computationally efficient,
yet discriminative template representation. We propose to learn
a binary mask for each template, based on feature selection using
a linear support vector machine. We also show how the masks
can be used for meta data transfer.

By learning the masks we refine the bounding box annotation to
a more representative template, including relevant context cues
(e.g. the shadow beneath a car) while at the same time removing
background clutter (e.g. the buildings behind the car) or areas on
the object itself that do not generalize well (e.g. the prints on
mugs). This turns out to be a crucial step for obtaining a highly
accurate system. We show that, by learning appropriate binary
masks and using the masked templates as weak classifiers in a
boosting framework, the output of several templates can be com-
bined into a powerful detector. Moreover, it is inherently fast
thanks to the use of bitwise operations only.

Additionally, we propose a method based on the masks, to opti-
mize template tables for specific object detection, incrementing

the performance without sacrificing detection speed, at the cost
of a very small training time (ms). The same scheme can be applied
to other binary based template methods such as LINE2D or LINE-
MOD [5] to improve their performance.

1.2. Efficient template based object detection

While the Adaboost framework is a standard classifier in vision
applications, it has mostly been applied in combination with local-
ized weak classifiers (e.g. [7,8]).

Here we show it can also be applied successfully in combination
with global features (templates). This results in a strong classifier
that combines multiple DOT templates at classification time. Note
how this is significantly different from applying several templates
one by one as in [4] or using a mixture model with latent SVM [9]:
We do not pick (implicitly or explicitly) one template for a given
test image, but instead always evaluate multiple templates, com-
bining their scores with the weights determined by Adaboost.
We believe that this is essential to make the scheme generalize
well to previously unseen object instances.

Initially, the mask learning scheme we propose seemed to be
limited to the case of well aligned training data (e.g. a single view-
point). By unsupervised clustering of the training data, we show it
can also deal with multiview settings. Here it is important to stress
that this clustering is only used for learning the masks. Unlike e.g.
[10] we do not learn separate viewpoint specific classifiers, but in-
stead run a single detector that has learnt to deal with the view-
point changes.

The remainder of the paper is structured as follows: We first
discuss related work in Section 2. Then we briefly explain the dom-
inant orientation templates [4] in Section 3. In Section 4, we show
how to adapt DOT to work as features (weak classifiers) and pres-
ent our method for object class learning, including the Adaboost
template selection and weighting, as well as the learning of the
masks. Section 5 describes our experimental results, Section 6 pre-
sents discussion and future work and Section 7 concludes the
paper.

2. Related work

Here we focus on the most relevant work on shape oriented
methods, efficient multiview, template-based as well as boost-
ing-based methods. Examples of template-based category-level ob-
ject detection methods are rare. Probably the best known example
is the method proposed by Gavrilla and Philomin [1], which was

Fig. 1. Template matching. A sliding window is run over the image obtaining a template representation for each position of the window. Then it is evaluated against each of
the templates stored in memory.

104 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

Author's personal copy

applied to pedestrian detection. Their method uses a template
hierarchy to capture the variability of object shapes using Chamfer
matching. It is a fast method (using Distance Transform on a binary
edge image), but a disadvantage of the Chamfer transform is its
sensitivity to outliers which often result from occlusions.

In [11], Feng and Hai presented a multiscale template matching
system. The templates are based on groups of Haar-like binary fea-
tures to speed up the matching process and to handle re-scaling.
However, Haar-like features are less discriminative than gradients.
Recently, Danhan et al. [12] combined dominant orientation tem-
plates with a patch based Random Forest to detect pedestrians,
showing an accurate 5 fps detector.

To deal with multiple viewpoints, a common approach is to use
multiple detectors in parallel, each focusing on a particular object
pose (e.g. side views of cars, frontal cars, etc.). Various more inte-
grated multiview detectors have been proposed as well (e.g.
[13]). These are often combined with simultaneous pose estima-
tion. However, they rarely focus on efficiency. Variations of the
standard boosting cascade to better deal with viewpoint changes
include the work of Perrotton et al. [14]. They propose a multiview
object detection method consisting of a single cascade with impli-
cit hierarchy. They argue that in an implicit multiview system, se-
lected features should focus only on a subset of the training data,
while rejecting all negatives. This means that a feature should
not be penalized if it does not generalize for all views. We explore
this idea, and train the features to only focus on a subset of positive
training samples (a cluster).

In [15], Kuo and Nevatia proposed a method for multiview car
detection. They start from unsupervised categorization, and then
train a boosting-based tree-structured detector, with separate
branches for the different clusters of positive and negative images.
In our work, we successfully integrate all the viewpoints in a single
strong classifier, that is further speeded up by training a cascade
structure.

AdaBoost has mostly been used to select and combine a set of
local features such as Haar features [7] from a large pool. In [16],
Zhang and Viola introduced Multiple Instance Pruning (MIP). This
cascade is easily trained turning a single bootstrapped strong clas-
sifier into an efficient cascade structure. They argue that the
trained cascade reaches the same accuracy as the single strong
classifier. We used this cascade structure in our experiments.

Quite recently, Bangpeng et al. [17] used local DOT template
matching for fine-grained image categorization. The objective
was to classify objects that belong to the same basic-level class,
and share similar shape or visual appearance. However, they did
not focus on efficiency.

Examples where AdaBoost is used to select and combine global
features, as in our case, are rare. In [18], Zhu et al. used AdaBoost in
combination with HOG features. However, the features are again
mostly local (just a single block from the original HOG descriptor),
although the size of the cell/region is relaxed and therefore some-
times also larger blocks are selected. Similar features have been
used in [15]. Also [19] uses somewhat larger features, albeit again
not global. Using local features has the advantage that it is robust
to image clutter and changing background, thus avoiding the need
for a mask learning preprocessing step. However, for object classes
with limited texture, local features may not be as discriminative as
global ones.

When using Adaboost with local features, robustness to small
misalignments is often a built-in property of the local features
(e.g. by integrating information over a small neighborhood), while
the combination of weak classifiers is mostly responsible for cap-
turing the overall spatial configuration. This scheme is known to
be sensitive to misalignments and therefore usually requires
well-aligned input (e.g. only frontal faces). When using Adaboost
with global features, on the other hand, the spatial configuration

is encoded directly in the features themselves, while the combina-
tion of weak classifiers and re-weighting of training samples is
responsible for adding robustness to misalignments. This is an
important shift in paradigm. Surprisingly, we show that Adaboost
in combination with global features can cope with different view-
points within a single strong classifier.

Some methods focusing especially on shape-dominated object
classes have been proposed as well. In [20,21] Ferrari et al. train
models that are able to detect more accurately the object borders.
In [22] Ommer et al. propose a multiscale method to detect shape
based objects. In [23], Maji and Malik present a discriminative
Hough transform based object detector, where each local part casts
a weighted vote for the possible locations of the object center, and
in [24] Fritz and Schiele propose a method for the discovery and
detection of object classes based on decompositions using topic
models. Our template-based approach also seems most suited for
shape-dominated object classes, and since it is based on DOT, it
can handle textureless objects. Contrary to the other shape based
methods described above, our implementation is designed to work
in real time.

In [25], Malisiewicz et al. propose an exemplar-SVM based ob-
ject detector. Each exemplar is defined by a single positive sample
and millions of negatives. The proposal shows surprisingly good re-
sults on PASCAL VOC. However, it is very slow. They also show how
to achieve meta-data transfer, using the close relation of the
trained exemplar and the detected object. In our method, we apply
a similar idea to retrieve annotated data from training samples.

In the context of efficient detectors, Dollar et al. propose a fast
pedestrian detector [8]. They introduce the use of integral channels
and efficiently approximate scales of features, such that the image
needs to be resized only a few times. More recently, Benenson et al.
[26] presented a new pedestrian detector that further improves in
speed and quality over the state-of-the-art, by efficiently handling
different scales and transferring computation from test time to
training time. In monocular images the system can work at
50 fps. They reach that speed, exploiting geometric context ex-
tracted from the images, image constraints and the processing
power of a GPU. However, both these methods require textured ob-
jects in order to work properly, which e.g. in the context of robots
trying to grab something, may fail, due to the texture-less nature of
some objects. Moreover, their ideas are complementary to our
work, since we focus on the basic image representation as in the
case of Danhang et al. [12]. We expect that ideas from [26] can
be integrated into ours to further improve speed.

3. Background: dominant orientation templates

DOT [4] is related to the Histogram of Oriented Gradients or
HOG representation of [3]. As in HOG, the area-of-interest is di-
vided into a fixed number of regions or blocks. However, instead
of creating an orientation histogram for each cell/region, DOT only
keeps the strongest dominant orientations. We use color images,
and compute the gradients for each channel independently. Then
we select the channel whose gradient magnitude is largest and
compute its orientation as in [5]:

IGðxÞ ¼ ori
@C�

@x

� �
with C� ¼ arg max

C2fR;G;Bg

@C
@x

����
���� ð1Þ

These orientations are coded in a binary fashion, with one bit
for each of the n0 different orientations considered (n0 ¼ 7) and
using steps of 180/n0 degrees (the sign is not taken into account).
The presence or lack of a specific orientation (after thresholding
its magnitude) then results in a 1 or 0 for one of the first n0 bits
in the byte corresponding to this region. The last bit corresponds
to the lack of any gradients, i.e. a homogeneous patch. While

R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116 105

Author's personal copy

learning a template, jittering is applied around each region over a
range � T

2 ;þ T
2

� �
� � T

2 ;þ T
2

� �
where T is the size of the region in pix-

els. By jittering the templates, robustness to misalignments and
small deformations is achieved. However, at test time, no jittering
is applied, and only the single strongest gradient for each region is
stored. Using only the strongest gradients further speeds up the
detection process.

Fig. 2 shows a learnt templateLðO;RÞ(top right) being compared
to a feature vector doðI ; c þRÞ (bottom right) extracted from an im-
age at test time (left). LðO;RÞ represents a list of dominant orienta-
tions of region R in the reference image O and doðI ; c þRÞ is the
template hypothesis of image I located at c. The learnt template
saves up to n0 orientations, but the test vector only keeps the single
most dominant orientation for each region, as seen in the figure.
Comparison is then performed by simply AND-ing the two binary
vectors, and counting the number of ones in the final vector (or,
actually, looking up the sum in a lookup table). A similar idea was
used in [27]. Using binary operations only, and further speeding
up with SSE operations, a very efficient detection system is
achieved. LINE2D or LINE-MOD [5], work also on bitwise operations,
and our proposal can be applied to them as well.

4. Our method

Here, we want to apply template matching based on DOT to the
problem of (multiview) category-level object detection. Given a set
of training images (both positive as well as negative examples), we
need to construct a classifier that can be applied to a new test im-
age. While a single template extracted from a random training im-
age works fine in the case of specific object detection, as shown in
[4,5], it does not have sufficient generalization capabilities to cope
with the intra-class variability (especially variations in shape).
Moreover, we would like to train, in a discriminative setting, what
modes of variability are allowed for the given class and what
modes are not. We claim that this can be achieved by combining
the output of multiple templates obtained from multiple training
images. Here, we show that Adaboost is well suited to solve these
issues.

4.1. Converting templates to weak classifiers

First, we need to convert the binary templates into weak classi-
fiers. We refer to these as DOT Classifiers. For this we use the sim-
ilarity measure of [4] (following their notation):

eðI;O; cÞ ¼
X
R in O

dðdoðI ; c þRÞ 2 LðO;RÞÞ ð2Þ

where dðdoðI ; c þRÞ 2 LðO;RÞÞ ¼ 1 iff L� D – 0 with � the bitwise
AND operator and L; D representing the bytes corresponding to re-
gion R in the template and hypothesis region respectively, and
doðI ; c þRÞ; LðO;RÞ as defined in Section 3. In words, eðI;O; cÞ
counts for how many regions the image dominant gradient is in
agreement with one of the gradients in the corresponding region
of the template. To adapt it to the Adaboost framework we define:

>ðIÞ ¼
�1 if eðI;O; cÞ 6 s
þ1 otherwise

�
ð3Þ

where > is a binary response (weak classifier) used to build a strong
classifier HðIÞ:

HðIÞ ¼ sign
XT0

t¼1

at>tðIÞ
 !

ð4Þ

HðIÞ builds on T0 templates selected by Adaboost. We set the
weights a and thresholds s (in the definition of >tðIÞ) automatically
for each template using the standard Adaboost procedure. Note that
this is different from the DOT baseline [4], where these thresholds
are defined manually, which may result in a suboptimal
performance.

4.2. Boosting templates

For each positive training sample, we create a template by fix-
ing a grid on the image sample as shown in Fig. 2, and computing
the n0 ¼ 7 dominant orientations for each region. The orientations
with magnitude smaller than a threshold are ignored, as in the
baseline [4]. Likewise, we use only the orientation without the
magnitude. Later, we learn a discriminative binary mask for each
template: In the case of single view, we use the Nearest Neighbors
(with similarity of about 90%) to train an SVM as described in fol-
lowing sections. In case of multiview, we use clusters.

Then we generate negative templates from negative data. Thus
we have as weak classifiers a set of ‘positive’ templates created
based on the positive data and a set of ‘negative’ templates created
based on the negative data. We use the positive training samples,
and a bigger amount of negative samples for training the strong
classifier with discrete Adaboost. Note the subtle but important
difference between ‘templates’ and ‘training samples’: the tem-
plates have up to n0 orientations in each byte, whereas training
samples have only 1 (the strongest). Moreover, jittering is also ap-
plied only for constructing the templates as described in Section 3.
This asymmetry is used in the DOT framework to incorporate
robustness and to speed up the detection process. After training
an initial detector, we apply bootstrapping to reduce the number
of false positives further. This has an enormous positive effect on
the accuracy of the final classifier.

In order to keep high efficiency using binary operations, we use
also SSE operations. We based our implementation on the publicly
available code from [4].

4.3. Learning discriminative masks

The method as described above directly uses the DOT represen-
tation extracted from the training images. This may not be optimal,
since the provided bounding boxes always include some back-
ground. For the DOT classifiers, working with binary templates,
each non-zero entry in a template has the same weight. And since
we work with global features, the weights determined by Adaboost
can only reweight different templates with respect to each other,

Fig. 2. Computing a template similarity. We use a lookup table of pre-computed responses to determine similarity using bitwise operations.

106 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

Author's personal copy

keeping the relative weights of different elements within a single
DOT template the same.1 Therefore, our framework so far cannot
learn to ignore regions that correspond to irrelevant gradients.

Using a mask instead of a bounding box can reduce the negative
effect of gradients that are not on the object, but manually
generating such masks for each positive training image is
labor-intensive. Moreover, not all gradients outside the object are
irrelevant. As shown in [3,28], context information can signifi-
cantly improve detection accuracy. Likewise, not all gradients
within the object are equally relevant (e.g. some may be less stable
than others). Therefore, we propose to learn a mask for each posi-
tive template prior to applying Adaboost. Any feature selection
algorithm that can cope with binary input can be used for this step.
Here, we use the weights of a linear SVM for this purpose. We
emphasize the fact that once we have learnt a mask, we can di-
rectly AND the mask with the template, as a precomputing step be-
fore learning the strong classifier. Hence applying the mask does
not take extra time during testing. In [29] it was shown experimen-
tally that feature selection using weights from linear SVMs yields
better classification performance than other feature weighting
methods. A Support Vector Machine trains a linear classifier of
the form sgnðwT xþ bÞ. Learning is addressed as an optimization
problem with the goal of maximizing the margin, i.e., the distance
between the separating hyperplane wT xþ b ¼ 0 and the nearest
training vectors. Inspired by the findings in [29], we explore the
use of the weights of a linear classifier, to discriminate which re-
gions of the templates are most important to compare with a test
sample, and which are actually damaging the performance.2 The
weights vector w is computed from the support vectors as follows:

w ¼
Xn

i¼1

aiyixi ð5Þ

with y the labels (þ1 for positive samples, �1 for negative samples),
n the number of support vectors, and xi; i ¼ 1 : n the support
vectors.

The elements of the weights vector w that are negative are con-
sidered to be damaging the training of templates, since those were
generated mainly by support vectors from the background. We use
a threshold on the elements of w so as to select only those ele-
ments that actually contribute to the object itself (or at least con-
tain relevant, i.e. positively correlated, context information).

Fig. 3 shows an example of a training image and the generated
masks. Clearly, the learnt masks successfully remove some of the
gradients found on the background, that do not contribute to the
quality of the classification. We can also see the difference between

a region based mask and a bit level one. The latter is better distrib-
uted. Fig. 3 may give the impression that we learn a mask at the
level of regions, but we have the option of applying the mask at
the bit level too (i.e., for each orientation within a region indepen-
dently). We found out experimentally that a bit level mask outper-
forms consistently a region level mask when the risk of overfitting
is small, i.e. when the number of positive training samples is large
enough (more than 200). In Fig. 3 we only show the dominant re-
gions. These are calculated using the w weights learned by the
SVM. For a region j we define it as dominant if Cj > 0, where:

Cj ¼
Xn0þ1

i¼1

wji ð6Þ

where n0 is the number of orientations per region.
One might think that the masks are useful as a segmentation

tool during testing. However, this only works when the training
samples are not noisy. In other experiments (e.g. dealing with cars)
we observe that the learnt masks look rather noisy. However, in
both cases (noisy or not), an accurate segmentation can be ob-
tained by transferring meta data from the annotations of training
data at the detection stage (see Section 5.5).

Discussion. At this point, we would like to discuss an alternative
scheme that, at first sight, may seem more promising and more
straightforward than the scheme we propose here. This alternative
scheme consists of simply training a linear SVM on top of the DOT
descriptors. By doing so we effectively learn the weights for the
different elements of the DOT descriptor. This avoids the need for
learning a mask as a preprocessing step and may approximate
the good performance obtained with HOG + SVM. However, this
cannot be implemented without sacrificing speed, which was the
main motivation for choosing DOT instead of HOG in the first place.
Indeed, incorporating the weights of the SVM means we can no
longer stick to simple bit-wise operations at test time.3 Without
the speed advantage, there is no longer a reason to use DOT instead
of HOG. An indirect time/accuracy comparison of HOG + SVM vs our
method is provided in Section 5.4.

Also, it is important to realize that DOT is an inherently asym-
metric scheme. When creating a template, DOT applies jittering
to create robustness and keeps n0 gradients. At test time, it uses
only the strongest gradients and no jittering. This asymmetry is
essential, and cannot easily be incorporated in a kernel-based

Fig. 3. (a) An example of a positive training image. (b) A template using 256 active regions with T ¼ 5 pixels. (c) The mask we learnt using a linear SVM.‘‘8’’ = Dominant
Region, Cj > 0, see Eq. (6). (d) It is the bit level mask, here the number indicates the amount of different strong orientations found in the region. It shows the top 128, based on
the weights learnt by the SVM.

1 Note how this is significantly different from the scheme used, e.g., by HOG + SVM,
where the SVM learns a weight for each HOG cell/region. We’ll come back to this later.

2 Note that, while we want to avoid using an SVM at test time (as it jeopardizes the
speed advantage of using DOT instead of HOG), this is less of an issue during training.

3 Let us assume we have 256 regions coded into 1 byte each. Training a linear SVM
would assign a double type weight for each bit, resulting in 2048 double values to be
computed for each sub-window in the test image we want to evaluate. When we
learn a binarized mask separately, on the other hand, we can incorporate the binary
weights directly in the template (by ANDing the mask and template), so at test time
only binary operations are needed. Moreover, using the same similarity function as in
[4], we need only 5 n

16

� 	
operations. This results in just 80 AND binary operations per

template.

R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116 107

Author's personal copy

framework like SVM. Leaving out the jittering for the templates, it
would no longer be possible to skip locations while parsing a test
image, slowing down the method even further. Moreover, it would
make the templates more specific and reduce their generalization
capabilities. Adding jittering to the DOTs extracted from the test
images, on the other hand, would also introduce a strong compu-
tational overhead.

4.4. Multiview extension

Learning the masks works best if all the positive examples pro-
vided to the SVM are somewhat similar. However, in a multiview
context, the within-class variability is very high, and we cannot ex-
pect a single template to be selective for all viewpoints. Therefore,
as advocated in [15], it is better to first cluster the data in an unsu-
pervised manner. We then use only the positive examples within
one cluster for learning the mask. This results in specialized weak
classifiers that focus on rejecting background and only classifying
properly a subset of the positive training samples.

Clustering based on the binary DOT representations proved dif-
ficult and unstable. Therefore, we start from HOG representations
for this step. Since this step is performed offline (during training),
the higher computational cost of HOG over DOT is not really an is-
sue. An intuitive way of clustering objects is to apply k-means di-
rectly on top of the HOG descriptors. However, this approach
performs poorly. Here we follow the clustering approach proposed
in [15], using Locally Linear Embedding [30] and then running k-
means on the resulting 2D features. Clustering the multiple views
in our training set is essential to obtain high quality masks and
thus better templates. Fig. 4 shows the 12 clusters we obtain for
the dataset proposed in [15].

To create the mask ma for training image a, we first compute a
template ta (allowing n0 ¼ 7 non-zero orientations), and then AND
each of the positive samples of the cluster it belongs to with the
current ta, using only the single strongest orientation for the posi-
tive sample. This gives us binary feature vectors of size R � ðn0 þ 1Þ
that are used as positively labeled input for the SVM, where R is the
number of regions/bytes. Fig. 5 shows this process. We randomly
sample sets of negatives, and AND them with the ta template in
a similar fashion, so as to obtain the negative feature vectors. Then
we train the SVM and keep those elements of the template for
which the corresponding w values are above a threshold. In the
experiments we use different thresholds not only ZERO, but also
ZERO�Smallvalue to increase the pool of features, and let Adaboost
select the best ones. We repeat this process for all positive tem-
plates ta.

4.5. Mask learning for binary templates on specific object detection

The proposed masks can also be applied to template based
detectors for specific object detection, without using a strong clas-
sifier, but only a look up table as in the original baseline. For each
template ta of an image a trained with homogeneous background

as in [4], we can learn efficiently an optimization mask. Since neg-
ative images are very easy to obtain, we pre-compute a set of
10,000 negative samples taken randomly from 100 images not con-
taining the objects we want to train.

Then, when we learn a template ta, we propose 3 different ways
of optimizing it using the negative samples as a validation set. We
use this set to define parameters independently of each template
because using the same parameters for all templates is suboptimal:
some of them tend to be less discriminative, others produce more
false positive. The three optimization methods we propose are:

(i) DOT Opt: Using a variable number of regions R� r. This opti-
mization does not use SVM. To select the strongest regions,
we use the gradients magnitudes as defined in the baseline.
We compute the Rþ r strongest dominant regions R (as
defined in Section 4.4). Then, using the template ta, we cal-
culate the similarity with Eq. (2) for each negative sample.
If similarity is bigger than a threshold value (65%), we count
it as an error. We decrease the number of regions (eliminat-
ing first the regions with smaller gradient magnitudes) until
we reach a target error, or the minimum allowed regions
R� r.

(ii) DOT SVM-Region: This is using a variable number of regions
R� r and selecting the dominant regions based on values
obtained with Eq. (6) (trained using a linear SVM). We follow
the same procedure as in (i), but here we eliminate first the
regions with smaller Cj value (the value computed with Eq.
(6)). In order to train the SVM, we use as positive elements
only the template ta, and we AND it to a random set of neg-
atives (in the order of hundreds, in experiments we use 500)
to create the negative elements. In this way, we use the w
weights to focus on the most important regions that ta has.

(iii) DOT SVM-Bit: Starting from R regions provided by the origi-
nal DOT, we train the SVM in a way similar to those above.
Using the validation set, we determine which bits will be
converted into zeros. This is done using again the negatives
validation set and in a way similar to those above, we elim-
inate the elements corresponding to the w weights with
lowest values in a bitwise manner. When calibrating a tem-
plate, we define a small target error bigger than zero. We
observed that setting zero as target, might cause some tem-
plates to eliminate several bits due to the hard negative
samples, producing less generalization.

We use the same set of negative images for all the trained ob-
jects. We found out experimentally that the DOT SVM-Bit optimi-
zation consistently outperforms all the others. See Section 5.6.

5. Experimental results

The experimental results section is structured as follow: In Sec-
tion 5.1, we show the effect of different types of masks. In Section
5.2 we evaluate DOT for category level detection. In Section 5.3, we

Fig. 4. Average images of 12 clusters (with size of the cluster indicated below each image, 4924 images in total).

108 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

Author's personal copy

apply our method to the detection of different shape based catego-
ries. Section 5.4 shows results of our system in the context of mul-
ti-view vehicle detection. In all cases, we report results that are
competitive with the state-of-the-art while being much faster. Sec-
tion 5.5 shows how to efficiently transfer metadata from annota-
tions into detections. Finally in Section 5.6, we present results on
improving baseline of [4] on specific object detection.

5.1. Effect of learning the mask

For the first set of experiments we use the vehicles dataset of
Leibe et al. [31]. It contains multiview vehicles for 7 different ori-
entations grouped in 7 folders, and it comes with a manually anno-
tated pixelwise segmentation mask for each vehicle. The dataset
contains 1262 vehicles, not including the ones labeled as incom-
plete masks. We use 50 more vehicles from there to increase the
training samples, resulting in a total of 1312 samples, of which
700 are used for training and 612 for testing. Additionally, we col-
lect 8427 negative examples plus 1300 bootstrapped hard nega-
tives for training, all sampled from Pascal VOC2007. For testing
we collect 0.5 million negative samples from 1043 Pascal
VOC2006 images not containing cars.

Implementation technical details. For this experiment, we use the
following settings. First, all training samples are normalized to
150� 65 pixels. We use a grid of 30� 13 regions (5� 5 pixels
per region, 390 regions, jittering as described in Section 3) and a
threshold on gradients of 20. The number of valid regions R used
(see [4]) is set to R ¼ 256. For this experiment, we did not cluster
the training images ourselves, but instead use the ground truth ori-
entations provided by the dataset.

The masks are then learnt using SVM. We use LIBLINEAR [32],
because of its speed and the sparsity of our vectors. We use

C ¼ 0:05, with compensation of weights for training unbalanced
data. We use n0 ¼ 7 orientations per byte plus the bit for homoge-
neous regions (no gradient). To create the mask we follow the pro-
cedure described in Section 4.4. Training all SVMs takes less than
3 min for M ¼ 700 templates when using 4 cores in an Intel i7
@2.8 GHz computer.

The advantage of using a mask. In this experiment, we compare
four different settings: (i) using the whole image as template (No-
Mask), (ii) using the manual masks as seen in Fig. 6, provided by
[31] (Manual Mask) (iii), using a learnt mask at region-level
(SVM-Region Mask) and (iv) using a learnt mask at bit-level
(SVM-Bit Mask). Fig. 7 shows the results (miss rate vs. false posi-
tives per window), obtained with a strong classifier consisting of
100 boosted templates (left) and another using 250 templates
(right). The positive effect of using masks is evident. While the
use of manual masks gives only a limited improvement over the
baseline without masks (up to 5%), the learnt masks clearly per-
form much better, with a drop in the miss rate at 10�4 FPPW up
to 15% for the region-level masks and about 20% for the bit-level
masks.

The strong improvement over the manual masks may seem sur-
prising at first, but can be explained by the fact that the learnt
masks also include context information where useful, while at
the same time ignoring unstable or irrelevant gradients within
the object. We can conclude that learning masks seems a critical
ingredient if one wants to obtain good results with our template
based Adaboost scheme.

To analyze possible overfitting, we used 2 sets, one divided into
training and validation, the second used for testing. Varying sets
changes less than 1% at 10�4 FPPW in several configurations. If a
weak classifier overfits on its subset, Adaboost will not select it
as a good feature. Adaboost is robust against overfitting.

Fig. 5. Using clusters to compute the masks. When processing a� th element, for each image of the cluster, we apply bitwise AND in order to get the positive training
samples.

Fig. 6. An image of a car, plus its corresponding binary segmentation mask in a normalized bounding box.

R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116 109

Author's personal copy

5.2. Comparison with DOT baseline: category level

In an attempt to compare our method with the DOT baseline of
[4] (developed for the detection of specific objects), we have imple-
mented a version of our method as equivalent as possible to the
baseline proposed in [4]. We use for this purpose, the vehicles data
set of Leibe et al. [31]. Since [4] assumes uniform backgrounds for
training, we use the provided manual masks in the dataset to filter
out the background. Then we run all templates independently fol-
lowed by normalized non-maximum suppression (NMS) and a glo-
bal normalized threshold. This is similar to the look up table used
in [4].

However, the baseline results using NMS were very poor com-
pared to our method. To make this simple approach cope with
the within-class variability, several low performing templates
were needed. These templates are needed to cover some type of
vehicles, but create lot of false positives. We tried improving the
baseline in various ways e.g. by adapting the thresholds for each
template individually and selecting the best templates, but still re-
sults were very poor and no match against the boosted version. At
10�3 FPPW, the baseline reaches only 7% detection accuracy. This is
no match against the boosted No-Mask (79%), and Bit-Mask (91%),
both using 100 templates. At 10�4 FPPW, the baseline drops further
to 0%. Conclusion: [4] by itself is not suited for category-level
detection. This might be because in boosting (1) we use a combina-
tion of several weighted templates to decide if a detection is cor-
rect or not, (2) we can also include negative templates in the
strong classifier, and (3) we learn the optimal weights and
thresholds.

5.3. Learning different categories

Next, we evaluate our scheme on the challenging ETHZ Shapes
dataset of [21]. This dataset contains five diverse, mostly shape-
based object categories, with 255 images in total. All categories
have significant scale changes and intra-class variation.

Implementation details. We follow the same evaluation protocol
of [21] (detection rates at 0.3 and 0.4 FPPI, with a detection consid-
ered correct when the intersection over union of bounding boxes is
P0.5). We report the average detection rate over 5 splits with half
of the images for training and half for testing. Note that, as shown
in [21], learning from bounding boxes is in this context a signifi-
cantly harder problem than learning from a manually drawn mod-
el. Our method uses 1000 random negative samples obtained from
PASCAL VOC 2007 dataset, plus about 100 hard samples obtained
via bootstrapping. We normalize the training samples of each cat-
egory to a training size with aspect ratio adapted to the class.

Results. The results are summarized in Table 1. For the apples
category, a single SVM-Bit mask classified all training samples cor-
rectly (both positives and negatives), indicating overfitting. So for
this category we switched to the SVM-Region masks, which gener-
alized better. Lowering the overlap criterion slightly (0.4 instead of
0.5) we achieve 100% detection at 0.3/0.4 FPPI, using only 40 tem-
plates for each trial. In order to select a better bounding box fit, we
retrieve the template (s) that contribute most to the detection, and
select the best. Based on that we recover the original training as-
pect ratio and obtain a more accurate bounding box. Looking at
the results for the other categories, we can conclude our method
performs very well when the category is rigid (although, admit-

Fig. 7. Analysis of different masks. Left: Using 100 DOT Classifiers for: no mask, manual mask, SVM-region mask and SVM-bit mask. Right: Using 250 DOT classifiers.

Table 1
Comparing different methods: (a, b) [22], (c) [20], (d) [23], (e) [24], (f) [21], Detection rates are measured using the PASCAL criterion (50% overlap).

Category (a) Ommer 1 (b) Ommer 2 (c) Ferrari KAS (d) M2 HT + IKSVM (e) Fritz (f) Ferrari full system (g) Our method

Evaluation FPPI = 0.3/0.4
Apples 95.0/95.0 95.8/96.6 50.0/60.0 95.0/95.0 –/89.9 77.7/83.2 98.0/98.0
Bottles 89.3/89.3 89.3/89.3 92.9/92.9 92.9/96.4 –/76.8 79.8/81.6 87.3/90.8
Giraffes 70.5/75.4 73.9/77.3 49.0/51.1 89.6/89.6 –/90.5 39.9/44.5 73.2/74.2
Mugs 87.3/90.3 91.0/91.8 67.8/77.4 93.6/96.7 –/82.7 75.1/80.0 92.6/93.6
Swans 94.1/94.1 94.8/95.7 47.1/52.4 88.2/88.2 –/84.0 63.2/70.5 87.5/87.5
Average 87.2/88.8 88.9/90.1 61.4/66.8 91.9/93.2 –/84.8 67.2/72.0 87.7/88.8

110 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

Author's personal copy

tedly, not as good as [23], which, however, is not as fast as our
scheme, and uses several iterations to perform detections). The
case of giraffes, being a very flexible category, shows the limita-
tions of our method. Fig. 8 shows some detection examples.

We show that our method can compete with other shape based
methods. Even though we get similar/slightly lower results, our
method is designed to run in realtime. As far as we know, none
of the other methods was designed to be fast, and no computation
time is reported in the other papers. Our method performs rela-
tively high on rigid categories: apples (best), bottles and mugs.

Discussion. An advantage of shape based methods such as
[20,21,23] is that they can approximate the object boundaries.
However, they usually cannot include context information into
the training, and it is more difficult to include also negative sam-
ples, as in discriminative approaches. In our proposal, in order to
approximate the object boundaries, we retrieve the template (s)
that contributed most to the detection, and select the best. Based
on that we can recover the original training aspect ratio and obtain
a more accurate bounding box. This also gives us the possibility to
transfer meta data to the specific sample, as described in Section
5.5.

5.4. A vehicle detector

Next, we evaluate our method on the USC vehicles dataset of
[15]. We use the 2462 vehicles of the data set and their mirrored
versions to generate positive templates as a pool for training Ada-
boost. For negative data, we use 8427 samples plus about 2500
hard samples obtained in a bootstrapping retraining process. The
negative images are taken from PASCAL VOC2007 train/val data
set, as in [15]. Using as first step an automatic clustering we create
12 clusters, as shown in Fig. 4. Based on these, we learn our masks,
and then learn a 500-DOT strong classifier.

The data set provided in [15] contains data for two types of
evaluation: in terms of FPPW (false positives per window) and
in terms of precision-versus-recall. First we perform a per
window evaluation (see Fig. 9, left). Our method outperforms
Clustered Boosted Tree [33] and can compete with Robust

Multiview [15]. In a second experiment, we also evaluate our
detector per image, using a sliding window and Non-Maximum
Suppression. We annotated each of the 12 clusters to an average
adjusted bounding box. This annotation was retrieved using the
top positive templates during testing time, and then averaged.
This results in the precision recall curve of Fig. 9 (Right). Again
our results outperform Clustered Boosted Tree [33] on this data
set, and Robust Multiview Car detector [15], especially in the
low recall - high precision regime. Fig. 11 shows detection exam-
ples. Recently, a new vehicle detector applied on this data set was
presented using Stochastic Gradient Descent (SGD) and a split-
ting/clustering method over HOG templates [10]. This method is
an equivalent implementation of HOG + SVM when using a single
cluster, but faster. They show impressive results of almost 100% at
10�4 FPPW when using 9 views, and substantially outperform all
other methods. In the precision recall comparison, they achieved
AuC = 95.2, slightly better than ours (AuC = 93.7). However, even
though their method is faster than HOG + SVM, they still need
to compute HOG, and they need also a separate strong classifier
for each view.

Speed analysis. In terms of training time, our detector needs
about 15 min to compute 4800 masks, and another 10 min for
learning the strong classifier in a non-optimized implementation.
This compares favorably with [15] that needs two days. At test
time, the method in [15], needs 1.5 s to parse an image in 1.0 scale.
In [10], the computational complexity scales linearly with the
number of sub-classes (views). The detection stage at scale 1.0,
takes 220 ms to calculate the HOG features and 110 ms to apply
the detector for a single class and they claim, it takes 730 ms per
image (the arithmetics do not sum up for the 9 views, they argue
this is due to cache memory), using a i7-2600 k processor at
3.4 GHz with a single-threaded non-optimized implementation.
Our method, on the other hand, takes 15 ms for calculating the
dominant orientations and 80 ms to parse a single image in an Intel
i7 @2.8 GHz computer, used single-threaded. When adding a (non-
optimized) cascade structure [16], we obtain a further speedup by
a factor 5 (without sacrificing performance). This brings our total
processing time for parsing an image at scale 1.0 down to 31 ms

Fig. 8. Examples of detections in the ETH-shapes dataset (in blue) and the corresponding ground truth annotations (red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116 111

Author's personal copy

or about 24 times faster on a slower machine. See Fig. 10 for a
graphical comparison.

5.5. Transfering meta data

In this section, we show how we can transfer the segmentation
mask of the training sample to a test sample. With the same

method, more metadata can be defined offline and transferred at
testing time, e.g. material types.

During detection, several templates are applied to evaluate a
window. Using the activated top 5 most similar positive training-
templates, we can retrieve a segmentation mask for the detected
vehicle from annotated meta data. To perform this experiment,
we used the dataset provided by [31], using the provided manual

Fig. 9. (a) Detection curves on USC vehicles dataset. (b) Precision/recall curve on USC vehicles dataset. Kuo et al. [15] (R. Multiview) gets AuC = 86.5, while our method
achieves AuC = 93.7.

Fig. 10. Processing testing time for an image in 1.0 scale, comparing our method vs. Fast HOG + SVM [10], R. Multiview [15]. Red: time of pre-procesing (Dominant gradients,
or HOG). Blue: time parsing the image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Detected vehicles (in blue) and the corresponding ground truth annotations (red). The last image shows a false positive and a false negative where our method fails.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

112 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

Author's personal copy

masks as in Fig. 6 for the 700 training/612 testing vehicles. We per-
form two experiments:

(i) For the first experiment, we only use the single top most
similar template. Then we perform a pixelwise comparison
(intersection/union) of the segmented pixels using the
selected training template mask and the manually anno-
tated mask. This results in an overlapping accuracy of
85.3% as average over all 612 testing vehicles.

(ii) In a second experiment, we apply first each of the top 5
recalled template masks on the testing image and then eval-
uate a bitwise similarity using Eq. (2) to all 5 top templates.
Then we select the maximum response. With this approach
we obtain 86.6%, which is 1.3% better than when using
directly the most similar before applying masks as in exper-
iment (i). Fig. 12 shows some examples for both experiments
(i) and (ii). Fig. 13, shows the top 5 templates recalled in the
testing process. When using the top 10 templates accuracy
increases only slightly to 86.7%. It is important to notice that,
while the re-called mask are the binary manual annotations,
in the detection process, the SVM-bit mask is used to com-
pute the DOT Classifiers. The obtained segmentation masks
can be refined further by integrating a bottom up segmenta-
tion algorithm.

Another scheme for transferring metadata has been proposed
by [25], based on exemplar SVMs. They use global appearance

similar to a template. Since a single template/exemplar cannot
generalize in both categories and viewpoints, they use all positive
samples to train the same amount of SVMs (thousands). Each SVM
is focused only on a specific sample/similar appearance vs all neg-
atives. When testing, they compute all SVMs, followed by a nor-
malized non-maximum suppression. This is very inefficient. Our
method is substantially different. We use SVM only to create bin-
ary masks to later be boosted, and we show how to make metadata
transfer efficient.

5.6. Improving DOT baseline: specific object detection

In this set of experiments, we compare the baseline implemen-
tation that we call DOT Original, and the three methods for optimi-
zation that we propose in Section 4.5: DOT Opt, DOT SVM-Region,
DOT SVM-Bit, applied to specific objects. In particular, we trained 4
objects: Cup, Camera, Hole-Punch and Toy-Gun.

The testing was done on 1000 heavily cluttered images (500
annotated with each object, plus 500 images without object).

The mask training is able to run at online learning speed. For the
DOT SVM-Region, DOT SVM-Bit, the optimization of a given tem-
plate takes about 100 ms in an Intel i7 @2.8 GHz computer on a
single thread. This time includes the whole optimization process:
(1) training the SVM with 1 positive sample (the template), plus
500 random negatives from a set of 10,000, and (2) the tuning
using the whole validation set.

Fig. 12. Metadata transfer using the top 1 template (middle column) and the top 5 templates masked maximum (right). Numbering on the right is the rank of the final
selected template.

R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116 113

Author's personal copy

To train the SVM, we use LIBLINEAR [32], and we modified it to
read/write the samples from shared memory instead of files. We
used C ¼ 0:05, with compensation of weights for training unbal-
anced data. Also, when copying the training elements to the
SVM, we only use the non-zero elements of the template and the
corresponding regions of the negative samples modified with the

AND operation, this speeds up training. To train/calibrate each
template for the 4 different objects, we use the same set of
10,000 negative samples.

We trained 200 templates per object. In order to use exactly the
same templates on each experiment, we first train the 4 objects
using DOT and save the training images. Then we use these images

Fig. 13. Top 5 templates for testing images of Fig. 12, using the annotated masks. First column shows the query/testing image. Columns 2–6 show the ranked retrieved
template images.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Cup

DOT SVM−Bit: AuC=91.6
DOT SVM−Region: AuC=90.4
DOT Opt: AuC=90.3
DOT Original: AuC=91.1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Camera

DOT SVM−Bit: AuC=76.6
DOT SVM−Region: AuC=72.4
DOT Opt: AuC=60.5
DOT Original: AuC=62.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Hole−Punch

DOT SVM−Bit: AuC=82.3
DOT SVM−Region: AuC=74.8
DOT Opt: AuC=67.6
DOT Original: AuC=65.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Toy−Gun

DOT SVM−Bit: AuC=77.8
DOT SVM−Region: AuC=66.7
DOT Opt: AuC=70.1
DOT Original: AuC=68.0

Fig. 14. Precision-recall results for Cup, Camera, Hole-Punch and Toy-Gun. We compare the original DOT vs. Our methods. DOT SVM-Bit outperforms all other methods.

114 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

Author's personal copy

for the other methods. Since optimizing the template takes only
about 100msec, we can use it in online training. On testing time,
the speed is exactly the same as DOT Original, since once the tem-
plate is optimized, we AND the masks only once. We use R ¼ 120
regions for all experiments, and r ¼ 20 for the DOT Opt, and DOT
SVM-Region optimization (which means: R ¼ 120� r ¼ 20), hav-
ing a maximum of 140 active regions, and a minimum of 100.
We use for DOT Original and DOT SVM-Bit, the same regions.
DOT SVM-Bit suppresses those bits damaging most the template
discriminative power, and maintains the most useful bits to reject
false positive.

We computed the precision-recall curves for each experiment.
Fig. 14, shows results on the 4 objects. For the Cup, the accuracy
reached by DOT is already high, so the improvement of optimiza-
tion is very small (0.5%). For the other objects, comparing DOT ori-
ginal with the DOT SVM-bit, we obtain an increment of: 14.2%,
16.9%, 9.8% for the Camera, Hole Punch and Toy-Gun respectively.
This is consistent with the improvement of bitmask demonstrated
in Section 5.1. DOT SVM-bit improves over the original implemen-
tation on all 4 objects, using the same regions than DOT, but opti-
mized with masks. Fig. 15 show an example detection frame for
each object.

6. Future work

Before we conclude our paper, we discuss some research lines
that we consider as interesting directions for future research:

DOT, LINE2D and LINEMOD [5] are similar methods based on
efficient bitwise operations. Our template optimization and cate-
gory-level proposals can be applied to the other methods as well
leading to an improvement of performance.

Optimizing for speed. So far, we did not optimize our detector
yet. Still, the inherent use of bit-wise operations already makes it
fast. In [5], speeds of 10 fps were reported on a VGA image, using
3000 templates for an implementation combining the binary
LINE2D representation and dense depth map. Our scheme uses al-
most an order of magnitude less templates (highest number we

tried was 500 templates, for the USC vehicles data set), and there-
fore should be able to run significantly faster. Moreover, our meth-
od can easily be parallelized.

Handling multiscale. In [5], the handling of multiscale is done by
training different sizes of templates. This solution works only if the
number of scales is small (say within one octave) because it trains
all sizes in the same table and many scales would lead to a slow
system. As seen in [8], the key to handling multiscale images effi-
ciently is to use the feature responses computed at a single scale to
approximate feature responses at nearby scales. In our approach,
we use the strongest gradients for detection, and different sizes
of templates can be handled by resizing the images in training time
and computing different masks for different scales. Doing so, we
can train N cascades and speed up tremendously the detection
process. Note that this is different from creating a cascade for each
view, which escalates linearly in time with the number of
viewpoints.

7. Conclusions

We have presented a new method for (multiview) category-le-
vel object detection. It is template-based, fast and highly accurate.
We show how to combine different DOT classifiers to successfully
generalize and learn to detect a class rather than an a priori known
object. We demonstrate how to eliminate background noise that
damages the detection and, at the same time, to integrate useful
context information. This results in a system that obtains results
competitive with the state-of-the-art, yet needs only 31msec to
analyze a VGA image at scale 1.0.

Additionally, we showed how to optimize a template based
detector for specific object detection, at online learning speed.
We demonstrated empirically how to obtain up to 17% perfor-
mance increment without sacrificing testing speed.

The efficiency of our method relies on the image representation
rather than on speed up tricks, GPUs, or geometrical constrains.
Ideas of methods such as [8,26] can be integrated with our method
since they are complementary.

Fig. 15. Detection examples for Cup, Camera, Hole-Punch and Toy-Gun.

R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116 115

Author's personal copy

Acknowledgements

Part of this work was funded through the ERC grant COGNI-
MUND and PARIS Project.

References

[1] D. Gavrila, V. Philomin, Real-time object detection for smart vehicles, in: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 1, 1999, pp. 87–
93.

[2] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Stud.
Comput. Intell. – Comput. Vis. (2004) 91–110.

[3] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2005, pp. 886–893.

[4] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, N. Navab, Dominant orientation
templates for real-time detection of texture-less objects, in: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2010, pp. 2257–2264.

[5] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, V. Lepetit,
Multimodal templates for real-time detection of texture-less objects in heavily
cluttered scenes, in: IEEE Int. Conf. on Computer Vision (ICCV), 2011.

[6] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, in: Computational Learning Theory, 1995, pp.
23–37.

[7] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
vol. 1, 2001, pp. 511–518.

[8] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection
with discriminatively trained part-based models, IEEE Trans. Pattern Anal.
Machine Intell. 32 (2010) 1627–1645.

[9] R. Wijnhoven, P.H.N. de With, Unsupervised sub-categorization for object
detection: finding cars from a driving vehicle, in: Proc. IEEE ICCV Workshops,
2011, pp. 2077–2083.

[10] F. Tang, H. Tao, Fast multi-scale template matching using binary features, in:
Workshop on Applications of Computer Vision IEEE WACV, 2007.

[11] L.T.-K.K. Danhang, Tang Yang, Fast pedestrian detection by cascaded random
forest with dominant orientation templates, in: British Machine Vision
Conference (BMVC), 2012.

[12] S. Savarese, L. Fei-Fei, Multi-view object categorization and pose estimation,
Stud. Comput. Intell. – Comput. Vis. (2010) 205–231.

[13] X. Perrotton, M. Sturzel, M. Roux, Implicit hierarchical boosting for multi-view
object detection, in: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2010, pp. 958–965.

[14] C. Kuo, R. Nevatia, Robust multi-view car detection using unsupervised sub-
categorization, in: Workshop on Applications of Computer Vision (WACV),
2009, pp. 1–8.

[15] C. Zhang, P.A. Viola, Multiple-instance pruning for learning efficient
cascade detectors, in: Conf. on Neural Information Processing Systems
(NIPS), 2007.

[16] B. Yao, G. Bradski, L. Fei-Fei, A codebook-free and annotation-free approach for
fine-grained image categorization, in: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Providence, RI, USA, 2012.

[17] Q. Zhu, M. Yeh, K. Cheng, S. Avidan, Fast human detection using a cascade of
histograms of oriented gradients, in: IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), vol. 2, 2006, pp. 1491–1498.

[18] I. Laptev, Improvements of object detection using boosted histograms, in:
British Machine Vision Conference (BMVC), 2006.

[19] F.J.V. Ferrari, L. Fevrier, C. Schmid, Groups of adjacent contour segments for
object detection, PAMI 30 (1) (2008) 36–51.

[20] F.J.V. Ferrari, L. Fevrier, C. Schmid, From images to shape models for object
detection, in: IJCV, 2009.

[21] J.M. Bjorn Ommer, Multi-scale object detection by clustering lines, in: IEEE Int.
Conf. on Computer Vision (ICCV), 2009.

[22] S. Maji, J. Malik, Object detection using a max-margin hough transform, in:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2009.

[23] B. Fritz, M. Schiele, Decomposition, discovery and detection of visual
categories using topic models, in: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2008.

[24] T. Malisiewicz, A. Gupta, A.A. Efros, Ensemble of exemplar-svms for object
detection and beyond, in: IEEE Int. Conf. on Computer Vision (ICCV), 2011.

[25] P. Dollar, S. Belongie, P. Perona, The fastest pedestrian detector in the west., in:
British Machine Vision Conference (BMVC), 2010, pp. 1–11.

[26] R. Benenson, M. Mathias, R. Timofte, L. Van Gool, Pedestrian detection at 100
frames per second, in: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2012.

[27] S. Taylor, T. Drummond, Multiple target localisation at over 100 fps., in: British
Machine Vision Conference (BMVC), 2009.

[28] J. Uijlings, A. Smeulders, R. Scha, What is the spatial extent of an object? in:
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 770–
777.

[29] D. Mladenić, J. Brank, M. Grobelnik, N. Milic-Frayling, Feature selection using
linear classifier weights: interaction with classification models, in: ACM SIGIR
Conference on Research and Development in Information Retrieval, ACM,
2004, pp. 234–241.

[30] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (2000) 2323.

[31] B. Leibe, N. Cornelis, K. Cornelis, L. Van Gool, Dynamic 3d scene analysis from a
moving vehicle, in: IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2007, pp. 1–8.

[32] R. Fan, K. Chang, C. Hsieh, X. Wang, C. Lin, Liblinear: a library for large linear
classification, J. Machine Learn. Res. 9 (2008) 1871–1874.

[33] B. Wu, R. Nevatia, Cluster boosted tree classifier for multi-view, multi-pose
object detection, in: IEEE Int. Conf. on Computer Vision (ICCV), 2007, pp. 1–8.

116 R. Rios-Cabrera, T. Tuytelaars / Computer Vision and Image Understanding 120 (2014) 103–116

