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Abstract. More than thirty percent of persons over 65 years fall at least once a 
year and are often not able to get up again unaided. The lack of timely aid can lead 
to severe complications such as dehydration, pressure ulcers and death. A camera 

based fall detection system can provide a solution. In this paper we compare four 
different fall features extracted from the dominant foreground object, as well as 
various combinations thereof. All tests are executed using real life data, which has 
been recorded at the home of 4 elderly, containing 24 falls. Experiments indicate 

that a fall detector based on a combination of aspect ratio, head speed and fall 
angle is preferred. The preliminary detector, which still has a substantial false 
alarm rate with a precision of 0.257(±0.073) and a promising recall of 

0.896(±0.194), gives insights for further improvement as is discussed. 
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Introduction 

Many older persons fall and are not able to get up again unaided. Th irty to forty -five 

percent of the persons aged 65 or older liv ing at home and more than half of the elders 

liv ing in a nursing home fall at  least once a year. One out of three up to one ou t of two  

older persons fall more than once every year [1]. Ten to fifteen percent of those who 
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fall, suffer severe injuries. The lack of t imely aid can even lead to more severe 

complications (e.g. dehydration, pressure ulcers and even death). Although not all falls 

lead to physical injuries, psychological consequences are equally important, leading to 

fear of falling, losing self-confidence and fear of losing independence [1]. Taking the 

ongoing aging of the population into account, it is obvious that a man ner to detect fall 

incidents is getting more and more important. 

The existing technological detectors are mostly based on wearable sensors. 

However a market study of SeniorWatch [2] d iscovered that the sensors are not worn at 

all times (e.g. at n ight). Also, in  case the device is button operated, like a Personal 

Alarm System, the person often is not able to activate the alarm system due to 

complexity o f issues around the use of call alarms [3]. A camera based system can 

overcome these disadvantages. 

In the last decade, several research groups have focused on a camera based fall 

detection algorithm. A simple approach is to inspect the aspect ratio of the bounding 

box of the moving object as used in [4]. Notice however that the aspect ratio can also 

be altered due to occlusions. This could induce false positives. Willems et al. [5] use a 

combination o f this feature and the fall angle. Lee and Mihailid is [6] detect a fall by 

analyzing the shape and 2D velocity  of the person. Rougier et al. [7] use wall-mounted 

cameras to cover large areas and falls are detected using motion history images and 

human shape variation. Other systems use the 3D trajectory and the speed of the head 

to infer events [8]. Here, we compare and combine several of these features. 

A major drawback of all these studies, is the fact  that they use simulated data. The 

falls have been recorded in artificial environments and the simulators are mostly 

younger persons. The goal of our work is the development and evaluation of a 

prototype of a camera based fall detection system using real life data. For this, we have 

installed cameras to monitor the falls of four older persons at their home for 6 months. 

This paper gives an overview of our fall detection algorithm and the preliminary  

results of the validation of the algorithm using exclusively our real life v ideo. Section 1 

describes the proposed fall detector, while Sect ion 2 shows the results and discusses the 

main challenges. In Section 3 we discuss these results. Section 4 concludes the paper. 

1. Methods 

Our fall detection algorithm consists of four main parts: video acquisition, person 

tracking, fall detection and alarm generation (see Figure 1). The video is first converted 

to grey level images. This way there is no need to alter the processing if we switch to 

near-infra red at  night. The alarm generation is not implemented at this stage. The next  

sections explain the subjects and the data set, person tracking, features for fall detection 

and fall detector in further detail. 



 
Figure 1: Overview of the system (ROI: region of interest detection; aspect ratio (AR), Fall angle (FA), 
center speed (CS) and head speed (HS): different features, see text) 

1.1.  Subjects and dataset 

During the acquisition phase, we have installed four camera systems consisting of 4 

wall-mounted IP camera's for 6 months. Three in  one nursing home and one at the 

home of an elderly woman. The age of the part icipants is in the range of 83 to 95 years 

old. During these 6 months, we have captured 24 falls and recorded 14000 hours of 

video. To our knowledge, this is a unique dataset. To capture these events, we received 

the approval of the Medical Ethics Committee of the Leuven University Hospitals and 

all participants gave their written informed  consent. The resolution of the images is 640 

by 480 pixels. To validate the algorithm, we use fo r each of the 24 falls, the camera on 

which the person is best visible. From this video, we select a fragment of 20 minutes 

long with the fall occurring in the last 2 minutes of the video. Our current system does 

not use the post-fall informat ion (i.e., the person lying on the floor). Each video is 

divided in non-overlapping timeslots of 2 minutes long. For each timeslot, the fall 

features are ext racted and the maximum values during that timeslot are used for further 

analysis. In total this results in 240 epochs, of which 24 are labeled as a fall. 

1.2. Person Tracking 

1.2.1. Foreground Detection 

We first need to segment out the foreground. For this we use a background subtraction 

technique based on an approximate median filter [9]. The technique uses one 

background estimate. This estimate is compared pixel by pixel with the current frame 

and is updated as follows. In case the pixel in the current frame is brighter (resp. 

darker) than the one in the background, the background intensity level is incremented 

(resp. decremented) with one. The foreground can then be determined by calculating 

the difference between the current frame and the background. In  case it  is larger than a 

given threshold (in  our case 10 out of 256 intensity levels), the pixel is considered as 

foreground. Otherwise, it is a background pixel. The advantages of the approximate 



median filter are its low memory consumption, fast computation and robustness. The 

drawbacks are its rather slow update to large changes in illumination and the fact that 

the foreground is influencing the background from the moment that it appears. This 

influence leads to the appearance of a ghost figure. When a person is sitting on the 

couch for a longer period, the background is updated to incorporate the person into the 

background. If he stands up, the region of the couch that was occluded previously will 

also differ from the background and it is detected as foreground. This can influence the 

extraction of the features to detect a fall. 

1.2.2. Shadow Removal 

A shadow cast by a moving object is also detected as foreground since it makes the 

covered pixels appear darker. Th is makes the foreground erroneous. To remove this 

shadow, we use the property that a shadow only changes the intensity of the pixel while 

the texture o f the covered region does not change [10]. As a result, the texture of the 

shadow is correlated with the corresponding texture of the background image. Jacques 

and Jung describe in [11] the usage of the cross correlation (CC) to see how good the 

detected foreground pixels match the background pixels. In case the CC is higher than 

a certain threshold and the pixel is darker in the current image, then the pixel is 

classified as shadow. Also other changes in illumination can  be eliminated using this 

technique when removing the constraint that the pixel has to be darker in the current 

image. Jacques and Jung state that a threshold for the CC of 0.98 together with a 5 × 5 

neighborhood gives a good result. These values are also used in our experiments. 

1.2.3. ROI Detection 

The next step in our algorithm is the determination of a region of interest (ROI). We 

first use an erosion/dilation step on all foreground pixels. Followed by a connected 

components analysis to determine the foreground objects. The largest object in the 

foreground is selected and considered to correspond to the person. 

 

1.3. Fall Detection Features 

Using the person, we extract four features to detect a fall, including: aspect ratio (AR), 

Fall angle (FA), center speed (CS) and head speed (HS) (see Figure 2). 

 



 
Figure 2: Extraction of fall features: full line: bounding box, fine dash line: bounding ellipse, diamond: center 
of gravity, octagon: head position (The black box is for privacy reasons) 

 

The AR is calculated as the ratio of the width of the bounding box (BB) around the 

foreground object and its height. A low AR represents an upright person, while a h igh 

AR might point to a person lying down. The angle of the person in the image can be 

defined as the angle between the long axis of the bounding ellipse (BE) and the 

horizontal direct ion. A person that is standing, has an angle of close to 90 degrees. A 

small angle represents a person lying down (if seen from a side-v iew). The FA is the 

change in angle over a fixed t imespan (2 seconds in our experiments). A FA close to 90 

degrees can indicate a fall. 

A person, and certainly  an o lder person, typically  moves with a low s peed. In  

contrast, most of the falls have a portion with high speed movement. Based on this 

observation, we use two fall features related to speed, CS and HS. CS is the speed of 

movement of the center of gravity (CG). Th is CG has the advantage that it is rather 

stable. Small changes in appearance of the person give only small  changes in the CG. 

But an occlusion of the lower body, which happens  frequently, causes the CG to move 

upwards. The head, on the other hand, is visible in most cases. In [12] Foroughi et al. 

define the head as the highest point of the object. Here we use the highest end  of the 

main axis of the BE as head position. The speed itself is then defined as the amount of 

pixels that the point has shifted between two adjacent frames in the video div ided by 

the time between these two frames. 

1.3.1. Fall Detection with SVM 

In this section we propose a Support Vector Machine (SVM) [13] based fall detector 

which classifies a timeslot (by its features) either as a “normal” o r as an  “abnormal” 

event, i.e. a fall. 

When observing the data it can be noticed that classes are imbalanced (in most 

cases “normal” behavior is seen, falls are rare) and class distributions are overlapping 

(the limited set of features being used might not clearly discriminate all “normal”  

events from falls). W ithout any precautions SVM predict ion might result in a simple 

majority vote ignoring the existence of falls. To address this problem the SVM learn ing 

objective was modified such that different weights are applied to misclassification s 

depending on the class [14]. In  the SVM learning objective errors for the minority class 



are multip lied by w while majority errors are multip lied by 1 − w. In which manner w 

is determined is explained later.  

In order to validate the fall detector the available data set is randomly part itioned 

into a training set, containing 66% of the data, and an independent test set with the 

remain ing data. The training set is then used to estimate the SVM model parameters 

and a set of hyper-parameters. The test set is  only used for validation.  

The hyper-parameters used in this paper are (a) the weight w, (b ) a regularizat ion 

parameter and (c) the Radial Basis Function (RBF) kernel bandwidth. These are 

selected using cross-validation and a grid search maximizing the Area Under the Curve 

(AUC) of a Receiver Operating Characteristic (ROC) curve. The ROC curve is 

computed by varying the threshold on the distances of considered data examples to the 

separating hyperplane which is defined by the SVM model. In order to reduce random 

effects induced by partitioning the data averaged AUC scores are computed on 

different data partitionings. 

Additionally, feature selection is performed by executing a greedy forward search. 

Firstly, 4 univariate SVM models (each based on 1 different  feature and trained using 

the procedure explained above) are compared in terms of AUC. Next, the best feature 

(corresponding to the best SVM model) is retained and combined with each of the 

remain ing features in a b ivariate SVM model. The best feature set  is retained and the 

procedure is repeated to find the best feature set with incremented cardinality. Note that 

features were standardized to have zero mean and unit standard deviation. 

2. Results 

Given our 4 features, SVM models were estimated using the procedure described in the 

previous section. Results were averaged over 10 different partitionings of training and 

test set.
2

 Table 1 lists the averaged AUC scores and the corresponding standard 

deviations for SVM models based on different feature sets. Individual AUC scores are 

computed on the independent test set. Figure 3 and Figure 4 respectively present the 

ROC and Precision Recall curves of the 4 best performing, in terms of AUC, SVM 

models. It  can be observed that the combination of AR, HS and FA is preferred. Using 

this feature set SVM outputs an averaged operating point with a recall of 0.896(±0.194) 

and a precision of 0.257(±0.073). 

 

Table 1. Results from SVM 

Feature set AUC 
{AR} 0.882(±0.058) 
{FA} 0.528(±0.092) 

{CS} 0.843(±0.046) 
{HS} 0.872(±0.052) 

{AR,HS} 0.872(±0.052) 
{AR,HS,FA} 0.909(±0.047) 

{AR,HS,FA,CS} 0.864(±0.062) 
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Figure 3: ROC Curve 

 
Figure 4: Precision Recall graph 



 
Figure 5: Class distribution using AR and HS 

 

Considering Figure 3, we notice that the precision quickly drops when increasing 

the recall. This behavior can be explained by Figure 5 presenting the distribution of the 

data when considering features AR and HS. Here we can see that there are quite a 

number of non-falls that are close to the fall-cluster. Closer visual inspection reveals 

that 90% of these have 4 main causes. In 25% of the cases 2 persons are present in the 

room. In 20% of the cases another foreground object has almost the same size as the 

person. In both cases, the system often switches to the other person or object, resulting 

in large motions and changes in AR. In 25% of the cases, the person's image is split in 

2 blobs which are almost the same size. Situations were such  an event occurs include: 

over-illumination, person is wearing a shirt that is similar to the background or starts to 

be integrated in the background by the background update. This often results in a 

deviating AR as well as large motions as the system jumps back and forth between the 

different parts. Finally, in 20% of the cases there is interference of a ghost figure or 

moved furniture. 

In some situations segmentation of falls is difficult. Elderly often use a walking aid,  

which can roll further in case of a fall. Additionally rooms are o ften full of fu rniture, 

which causes the person to fall against or even displace the furniture. This often has a 

strong influence on the fall detection features. 

At the same t ime, many of the falls are atypical, e.g. falling while getting out of the 

sofa or falling when kneeling to pick something up. These atypical falls increase the 

within-class variability, yet are underrepresented in simulated datasets. 



3. Discussion 

Comparing our results with those reported in the literature [4][8], we have a similar to 

even higher detection rate, but a higher false alarm rate. The higher false alarm rate can  

be explained by the challenging nature or our data set, including various sources of 

errors that were previously largely  ignored. In real life, falls only occur in rare cases. It 

is thus important to significantly decrease the number of false alarms  to get a usable 

fall detection system.  

Most of the false alarms  can be solved by using more advanced techniques. The 

largest improvement can  be introduced by using a tracker. This avoids large motions 

and changes in appearance caused by jumping back and forth between different 

foreground blobs of different (parts of) persons or other objects. Also a more advanced 

foreground detection, that is robust to continuous changes in illumination, slow 

movement of older persons, different types of light sources and possible over-

illumination, can g ive a large improvement. Using Mixture of Gaussians however 

showed no improvement on first sight. A means to detect a person in the foreground, 

like for example the person detector of Felzenswalb et al. [15] can also  reduce 

erroneous foreground objects. This detector is only trained for standing persons, but 

can still help to select the interesting foreground object. 

Additional improvements are possible using other fall features  (e.g. posture or 

other appearance-based approaches), integrating informat ion of several cameras and 

certainly by integrating the post fall information. 

4. Conclusion 

Fall detection is becoming more and more important to ease the fears of an older 

person or someone with an increased fall risk. In this way these persons are able to live 

longer independently in a more comfortable way. In this paper we gave an  overview of 

our ongoing research, which is unique in  the way we use real life data. We have shown 

that under real life conditions, various sources of errors emerge such as other persons, 

moving furn iture, walking aids, etc. that significantly increase the number of false 

alarms, yet have prev iously been largely ignored. Our p reliminary fall detector shows a 

promising recall of 0.896(±0.194) and a precision of 0.257(±0.073). This calls for 

further research into more discriminative fall features, as well as better foreground 

detection algorithms, including tracking and person detection. 
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