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Abstract

We present a method for markerless tracking of complex human motions from multiple camera views. In the absence of markers, the
task of recovering the pose of a person during such motions is challenging and requires strong image features and robust tracking. We
propose a solution which integrates multiple image cues such as edges, color information and volumetric reconstruction. We show that a
combination of multiple image cues helps the tracker to overcome ambiguous situations such as limbs touching or strong occlusions of
body parts. Following a model-based approach, we match an articulated body model built from superellipsoids against these image cues.
Stochastic Meta Descent (SMD) optimization is used to find the pose which best matches the images. Stochastic sampling makes SMD
robust against local minima and lowers the computational costs as a small set of predicted image features is sufficient for optimization.
The power of SMD is demonstrated by comparing it to the commonly used Levenberg–Marquardt method. Results are shown for several
challenging sequences showing complex motions and full articulation, with tracking of 24 degrees of freedom in �1 frame per second.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the last years, the tracking of articulated structures
such as human bodies has gained in popularity. Applica-
tions include surveillance, human–computer interaction
and computer based animations in games and the movie
industry.

These applications require the solution of a common
task: the one of estimating the body pose from observed
images. This task of digitally recording the motions of a
human is known as Motion Capture. Motion capture
records the pose of a person on each time instant, thus
recording his/hers motions over time. Since the human
body consists of several rigidly moving body parts the pose
of a person can be seen as a set of parameters which
describe the actual placement of these parts.
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Commercial vision-based motion capture systems
require the actor to wear a black costume with white, clear-
ly outstanding dots as markers on it. However, markers
and the corresponding special clothing are not always
desirable or even applicable.

This work presents a model-based method for marker-
less tracking of the full body pose from multiple camera
views. When omitting the markers, inferring the body pose
from video sequences becomes difficult as the correlation
between the observations and the pose is less immediate.
Moreover, the high dimensionality of the state space and
the many ambiguities caused by occlusion and fast motions
require rather sophisticated tracking and expensive match-
ing between the predicted pose and the acquired images.
However, important progress has been made over the last
years as discussed in Section 2.

A description of our multi-camera setup can be found in
Section 3. In Section 4 we describe the set of image cues we
use for tracking. We present a fast voxel-based procedure
to compute a volumetric reconstruction of the person for trac-
king the model’s surface. As the volumetric reconstruction
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is inaccurate at times, the tracking is further strengthened
by matching model contours against image edges. We
propose to use RGB color edges instead of grayscale ones
to avoid clutter edges caused by shadows or wrinkles on
the clothing. Color is also considered for tracking in terms
of a 3D color segmentation for the surface matching.

In Section 5 we introduce our articulated body model.
We use superellipsoids to define its surface which approxi-
mates the human shape reasonably well while still being
compact in its description.

Our optimization framework is presented in Section 6.
First, a robust objective function is built from the multiple
cues. Then, this objective function is optimized using Sto-

chastic Meta Descent (SMD), a gradient descent with local
step size adaptation. Stochastic sampling is a strong feature
of SMD and particularly interesting for tracking: shuffling
the set of points used for evaluating the objective function
on each iteration lets SMD overcome local minima and
lowers the computational costs as a smaller sample set
can be used.

Finally, in Section 7, we present tracking results for sev-
eral sequences where a person performs complex motions
and wears different, casual clothes.

2. Related work

The problem of markerless tracking of the human pose
has attracted the attention of many researchers in the past
years. Approaches can be classified by the number of cam-
eras they use, i.e. monocular or multi-view, or the image
cues they exploit for the pose estimation task. Most of
them have in common that they apply an articulated body
model and match it against the image cues.

Monocular approaches have the advantage that they
work with a simple hardware setup, i.e. one, uncalibrated
camera. This makes them particularly interesting for sur-
veillance applications where a multi-camera calibration is
not applicable in most cases. At least for the moment,
the advantages of multi-view systems can easily outweigh
this feature, however, as problems with occlusions and
appearance ambiguities can be strongly reduced. This leads
to faster and more robust algorithms. Thus, fast, marker-
less pose tracking as proposed in this paper but from mon-
ocular sequences seems quite remote still, even if promising
work has been published [30,29,3,36].

Several multi-view approaches for markerless body
tracking have also been published lately. Gavrila and Davis
[13] use 4 calibrated cameras. The cost function is calculat-
ed from extracted edges in the neighborhood of the target
contour predictions. Then a robust variant of the Chamfer
distance (the directed Chamfer distance) is computed. As
their model, fleshed out by tapered quadrics, has 22 DOFs,
the estimation is processed by recursive search space
decomposition: using a best-first search, the best torso/
head configuration is found, then the arms . . . etc. Further-
more, the use of tight-fitting clothes, with sleeves of
contrasting colors, makes the segmentation easier. In our
case, the user can wear casual clothes, possibly with homo-
geneous colors.

Kakadiaris and Metaxas [17] have developed a method
to acquire the shape of a human body surrounded by 3
orthogonal cameras. The body was modeled by a set of
deformable shapes. Later [18], they use this representation
to perform 3D body tracking. Information from image
contours yield physical forces that drive the search for
the state parameters. An extended Kalman filtering is
employed for the model prediction. Furthermore, at each
frame, an active selection among the 3 cameras allows to
choose views presenting the best information in order to
deal with occlusions. Tracking of a human arm against a
dark background is demonstrated.

Delamarre and Faugeras [8,9] presented a method based
on physical forces between the model boundaries and the
observed silhouettes. They use Maxwell’s demons to com-
pute the physical forces which move the model towards
the final estimation of the real pose. They apply an algo-
rithm introduced by the robotics community to solve the
dynamics of their kinematic system in real-time. However,
the expensive extraction of the observed silhouettes based
on geodesic active contours is jeopardizing the overall
performance. The framework can handle fast movements,
self-occlusions and noisy images as is demonstrated by
impressive tracking results for a person running in front
of three cameras.

Deutscher et al. [10] used three cameras to track a per-
son with a modified particle filter based on a simulated
annealing algorithm. Compared to the standard Condensa-
tion algorithm, the annealed particle filter (APF) reduces
the number of samples and increases efficiency by a factor
of up to 10. Moreover, APF localizes the tracked object
even better as it increases the chances of finding the global
minimum. Their body model is represented by truncated
cones and the cost function takes into account edge and sil-
houette information. In their later work [11] they described
two major improvements to the APF and reported tracking
results of complex motions such as a handstand.

Carranza et al. [4] fit an articulated body model to 2D
data by minimizing the overlap between the observed 2D
shapes and the projections of the model. Although their
method does not require explicit 3D reconstruction, an
exact body model and noiseless segmentation of the person
in the different videos is crucial to reach a meaningful error
measurement. The tracking is done by using Powell’s
method and via hardware acceleration. They achieve accu-
rate results at about 2 s per frame on distributed hardware.
In [34], they enhance their silhouette-based method by
incorporating texture information into the tracking pro-
cess. A 3D motion field is used to refine the pose estimate.

The presented methods all exploit 2D image information
for tracking. These cues only offer rather weak support to
the tracker though, which quickly leads to sophisticated
and therefore rather slow optimization schemes. Multiple
calibrated camera allow the computation of the 3D shape
of the person, a strong cue for tracking: the 3D shape only
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contains information which is consistent over all the indi-
vidual views wrt. some hypothesis and thus discards, for
example, clutter edges or spikes in the silhouettes. The
increase of the computational power offered by cheap con-
sumer PC’s allowed real-time computation of the 3D shape
and created several interesting approaches to full body
tracking.

Cheung et al. [5] introduced the SPOT algorithm, a
rapid voxel-based method for the volumetric reconstruc-
tion of a person. Real-time tracking is achieved by assign-
ing the voxels in the new frame to the closest body part of
the previous one. Based on this registration, the position of
the body-parts is updated over consecutive frames. If regis-
tration is wrong, track of the body parts can be lost. In [6]
they use both color information and a shape-from-silhou-
ette method for full body tracking, although not in real-
time anymore. They use colored surface points (CSPs) to
segment the hull into rigidly moving body parts, based
on the results of the previous frames, and take advantage
of the constraint of equal motion of parts at their coupling
joints to estimate joint positions. A complex initialization
sequence recovers the joint positions of an actor, which
are used to track the same person in new video sequences.

Mikic et al. [21,22] proposed a similar voxel-based
method for full body tracking. After volumetric recon-
struction, the different body parts are located using sequen-
tial template growing and fitting. The fitting step uses the
placement of the torso computed by the template growing
to obtain a better starting point for the voxel labeling. Fur-
thermore, an extended Kalman filter is used to estimate the
parameters of the model given the measurements. To
achieve robust tracking the method uses prior knowledge
of average body part shapes and dimensions.

Mitchelson and Hilton [23] use shape and color informa-
tion for tracking the full human body. In their model-based
approach they use a silhouette-overlap term to overcome
the need for a volumetric reconstruction. However, for
model initialization, they do apply a volume carving
method to retrieve the actual shape of the person’s torso
from a set of initialization images. An edge-proximity term
and color-consistency between the model and the images
further strengthen the fitness function for their hierarchical
stochastic sampling scheme. They show results for simulta-
neous tracking of two persons.

A common problem of 3D based algorithms is the low
accuracy of the reconstruction which mostly depends on
the quality of the input images and the foreground segmen-
tation. Also, localization of the body parts is often wanting
because voxel-based procedures tend to result in bulky
reconstructions. Adding 2D cues can increase the tracking
accuracy as they offer better localization. Moreover, the
robustness against erroneous 3D reconstructions can be
increased in the same time. Therefore, it stands to reason
then to combine 2D and 3D cues, as to get the best of both
worlds.

Plänkers an Fua [25] achieved robust frontal, upper body
tracking in the presence of self-occlusions by combining
silhouettes and the depth information provided by three
cameras. Each body part of the articulated body model is
built from soft objects or metaballs which offer realistic
physical deformations. Based on this model, a mathemati-
cal framework is introduced in order to compute first and
second order derivatives of the cost function which is min-
imized by the Levenberg–Marquardt algorithm. Tracking
results are reported with self-occlusions of the arms against
a dark background.

Our approach combines image edges, color and a volu-
metric reconstruction to benefit from the advantages of
both 2D and 3D cues. The volumetric reconstruction is
the strongest cue and is sufficient to match the body model
well against the images. However, the image edges advance
the localization significantly and make the tracker more
robust against erroneous 3D. Also, as the 3D is inaccurate
at times, ambiguities can be solved by considering image
edges and color. The optimization is performed with
SMD, a stochastic method which offers the advantage that
a smaller set of randomly chosen points is sufficient for
tracking and therefore allows to be faster than other meth-
ods. The proposed method allows tracking of complex
motions of a person from five cameras in around 1 s per
frame.

3. System setup

Our camera environment allows us to activate up to 16
statically mounted IEEE1394 cameras placed all around a
single working volume. The cameras are synchronized
through external trigger hardware and are calibrated by
the automatic self-calibration procedure proposed by Svo-
boda et al. [32]. For all experiments, the cameras were con-
figured to acquire 640 times 480 images at 15 Hz. We used
five cameras from well-separated directions: four look
more or less horizontally and one camera provides an over-
head view.

As a first step after acquisition, all images undergo a
foreground/background segmentation. We use the GPU
based method proposed by Griesser et al. [14] which is an
efficient and enhanced version of the segmentation algo-
rithm proposed by Mester et al. [24]. Input images and
computed foreground masks for our five camera views
can be seen in Fig. 1.

4. Feature extraction

Good image features give a compact and preferably
complete representation of all task-relevant information
in the image(s). As we are looking for a human pose, image
features which give a clue about the person’s pose or shape
are of particular interest. The system setup yields the
acquired color images and a binary shape mask of the per-
son. Our features will be derived from these two sources.

In Section 4.1, we propose a fast method to reconstruct
the 3D surface of the person. The algorithm first computes
the visual hull using a voxel-based procedure and then



Fig. 1. The first row shows the five camera views we use for tracking and the second row the foreground-masks generated by our segmentation method.

Fig. 2. A lookup-table (LUT) is stored at each pixel in the image with
pointers to all voxels that project onto that particular pixel. This way,
expensive projections of voxels can be avoided and the algorithm can take
advantage of small changes in the images by only addressing voxels whose
pixel has changed.
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extracts the colored surface using an efficient single-pass
algorithm. Section 4.2 introduces a method to extract edges
from the RGB input images. We show that a color edge
detector (instead of a grayscale one) produces fewer clutter
edges which are mainly caused by cast shadows or wrinkles
on the clothes.

4.1. Visual hull

Methods to compute the visual hull of an object use its
silhouettes in a number of available images together with
the center of projections of the corresponding cameras.
The intersection of the resulting projection cones define a
volume which bounds the object.

Voxel based visual hull descriptions are popular but
tend to be expensive as a high number of voxels have to
be projected into the camera images. Most implementa-
tions speed up this process by using an octree representa-
tion to compute the result from coarser to finer
resolutions [33], while others exploit hardware acceleration
[16]. Our method addresses the problem the other way
around. Instead of projecting the voxels into the camera
views at each frame, we keep a fixed look-up table (LUT)
for each camera view and store a list at each pixel with
pointers to all voxels that project onto that particular pixel
as illustrated in Fig. 2. This way, the image coordinates of
the voxels have neither to be computed during runtime nor
to be stored in memory. Instead, the LUT’s are computed
once at startup.

The proposed reversal of the projection allows a com-
pact representation of the voxels: each voxel is represented
by a bit mask where each bit bi is 1 if its projection lies in
the foreground of camera i and 0 otherwise. Thus, a voxel
belongs to the object (i.e. is labeled as active) if its bitmask
only contains 1’s. This can be evaluated rapidly by byte
comparisons.

Another advantage of our method is that the voxel space
can be updated instead of being computed from scratch for
each frame. A voxel only changes its label if one of the pix-
els it is projected to changes from foreground to back-
ground or vice versa. Therefore, as we can directly map
from image pixels to voxels, we only have to look up the
voxels linked to pixels which have changed their
foreground-background status. This leads to far fewer vox-
el look-ups compared to standard methods where for each
frame all voxels have to be visited in order to determine
their labels.

The reconstruction itself is done by going pixel by pixel
through all segmented (binary) images. If a pixel of the cur-
rent view i has changed its value compared to the previous
frame, the corresponding bit bi for all voxels contained in
the reference list of this pixel is set to the new value and
their labels are determined again.

Voxels inside the object are not interesting as we want to
match the model surface against the object surface. A simple
but effective way to test for surface voxels is to check if at
least one of their six nearest neighbors does not belong to
the object. A noteworthy benefit of the surface extraction
is the reduction of voxels which have to be taken into account
for the model-observation matching. In case of a 643 resolu-
tion, the number of voxels on the surface is between 1100 and
1300, in case of a 1283 resolution between 4500 and 5500.

Texturing the surface is the next logical step. In [19] a
method is described which assigns a meaningful color to
each surface voxel at the same time as they are identified.



Table 1
Processing times for volumetric reconstruction

No. views Reconstruction
(ms)

Texturing
(ms)

Total
(ms)

643 1283 643 1283 643 1283

4 6.63 38.80 6.07 29.28 12.70 68.07
5 7.56 40.72 6.40 29.06 13.96 69.78
9 12.67 64.78 8.18 32.61 20.85 97.39

The table shows that processing time scales better than linearly with the
number of contributing views. Our method is capable to compute a tex-
tured volumetric reconstruction at sufficient framerate for tracking even at
a resolution of 1283.
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Texturing is not used for visualization purposes but rather
to overcome difficult situations caused by inaccurate 3D
reconstruction or by body parts making contact. Assigning
a representative color to each surface voxel can improve
the tracking as described in Section 6.1.3.

Table 1 shows average processing times on a PIV 3 GHz
for 643 and 1283 resolution. Results of our reconstruction
algorithm for 643 and 1283 resolution can be seen in Fig. 3.

4.2. Image edges

Image edges are broadly used for tracking as they offer
good localization for model matching. Gavrila and Davis
Fig. 3. The first two images show a reconstruction computed from five camer
1283 resolution.

a b

Fig. 4. Image (a) was used to test the edge detectors. The foreground mask (lig
example the right arm can be hardly seen in the silhouette. Image (c) shows the
image. Especially on the right leg shadow edges appear. Image (d) shows the ed
important edges while suppressing those caused by shadows on the legs. Furthe
the color version. (For interpretation of the references to color in this figure l
[13] use a similarity-measure based on the directed Cham-
fer distance between predicted model edges and observed
image edges. Then, this similarity-measure is optimized
with an exhaustive best-fit search within the 22-dimensional
search space. Wachter and Nagel [36] directly match pro-
jected gradients of the model’s contours against scene edge
gradients. They also include region information for better
stability.

Obviously, tracking is more robust if only correct image
edges are considered. The ideal case would be that the
extracted edge map would contain the contours of all body
parts, similar to the one we compute from the model. The
silhouette extracted from the segmented foreground as
shown in Fig. 4b) is therefore not sufficient. In this example
the right arm can be hardly seen in the silhouette. Edge
detectors can be used to extract this additional, structurally
important edges quite well. However, they also produce
unwanted clutter edges caused by shadows or wrinkles/
texture of the clothing. In order to reduce clutter edges
we perform edge detection in the RGB color space.

The use of color in edge detection increases the amount
of information needed for processing which complicates
the definition of the problem. For grayscale images, edges
are typically modeled as brightness discontinuities. For col-
or, the computation of a meaningful gradient is difficult.
as at resolution 643. The last two images show the same reconstruction at

c d

ht grey) and the extracted silhouette of the person are shown in (b). In this
edge map generated with the grayscale Canny edge detector for the input

ges extracted using the RGB edge detection which preserved all structurally
rmore, the boundaries of the right lower arm are detected more precise by

egend, the reader is referred to the web version of this paper.)
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Wesolkowski and Jernigan [37] evaluated different color
vector difference metrics and applied them to different edge
detectors. They pointed out that Euclidean distance-based
edge maps were much more cluttered than either the vector
angle-based or combined distance measure-based results.

Therefore, following this comparison, we perform edge
detection in the RGB color space by using a mixture of a
Euclidean Distance (ED) between color vectors and the
Vector Angle (VA) they subtend, where the weights
between these criteria depends on the intensity. The use
of intensity as a trade-off between these two metrics is the
logical choice given that the VA metric breaks down for
low values of intensity.

For two pixels, a smooth weighting function is defined
that gives more weight to the VA metric for high intensities
or to ED for low intensities. We approximate the intensity
of a color triplet in RGB space by the average of the RGB
components. Since every time two pixels are considered,
the VA metric should be used only if both points have high
intensities, otherwise the ED metric should be used. More
details can be found in Wesolkowski and Jernigan [37].

A Difference Vector Edge Detector [35,38] is used to
compute the final color gradients. This detector is a 3 · 3
operator that calculates the maximum gradient across the
central pixel. Therefore, 4 pairs of pixels, each symmetrical-
ly arranged around the pixel where the analysis takes place,
yield 4 possible ‘gradients’. The one with the maximum
value is considered to be the RGB gradient.

Fig. 4 shows a comparison between our RGB edge
detector and the grayscale Canny edge detector. The
thresholds and other parameters were individually tuned
by hand for each camera.

5. Modeling a human body

In common with the majority of markerless full body
tracking approaches, we use an articulated body model
and fit it to data extracted from the camera images. Such
a model should support the tracking of a broad variety
of motions/poses while being adaptable to different human
Fig. 5. The skeletal structure (a) drives the body model for tracking. The mod
that individual body parts are built from truncated superellipsoids rounded o
shapes. At the same time, the parameter set for describing
the pose should be kept small as each additional parameter
increases the dimensionality of the problem. We present a
relatively accurate body model for tracking built from
superellipsoids and driven by a simplified version of a
human skeleton.

5.1. Superellipsoid body model

A concise mathematical description of the human pose
is essential for fast tracking. A simplified skeleton, often
called a ‘‘stick figure’’, is used to articulate the body model
from a small set of parameters. These parameters describe
the joint angles and shape parameters. Our simplified skel-
eton discards fine structures such as the hands or the feet.
Their recognition from camera images is hard due to the
limited resolution and the complexity of their anatomy.

Our simplified version of the human skeleton consists of
10 joints with a total of 24 degrees of freedom (DOFs) as
shown in Fig. 5a). The shoulders and hips are modeled as
ball & socket-joints with three angles for pitch, roll and
yaw, the knees and elbows as hinge-joints with one angle
for their flexion. The neck has been given only pitch and
yaw angles as the twist of the head is hard to track. The torso
is parameterized with all 6 DOFs of rigid motion (three
translational components and three rotation angles).
Together these parameters build a 24-dimensional configu-
ration vector p which determines the pose of the body model.

The skeleton must have a surface to match it to our fea-
tures, i.e. the volumetric reconstruction and the image
edges. Different ways for approximating the surface of a
human body were proposed in the literature. Models built
from ellipsoids, cylinders or cones are widely used for the
tracking of human bodies [3,36,23,7]. Such models tend
to be rather coarse, e.g. for complex body parts such
as the torso. Therefore, it is often required to combine
multiple such shapes for a single body part.

Superellispoids are a special case of superquadrics [1]
and offer a better approximation for complex body parts.
Superellipsoids allow for a compact representation of a
el’s surface (b) is built from superellipsoids. The explosion view (c) shows
ff by a spherical cap on one side.
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wide variety of convex shapes, such as spheres, cylinders
and cubes with rounded edges, ellipsoids of course, etc.
Not surprisingly, the use of superellipsoids (or superquad-
rics in general) for human body modeling is not novel
[20,13,30,26]. Some of them also allow for deformations
such as tapering or bending to further increase the variabil-
ity of the generated shapes.

Point and triangle meshes are mainly used in computer
graphics where a realistic rendering is desirable. They are
suited for realistic modeling of highly complex shapes at
the expense of a large description, e.g. each vertex of the
mesh is explicitly defined. Sand et al. [27] propose to use
deformable primitives based on generalized cylinders. Each
vertex is seen as a needle pointing outwards of the bone.
The endpoints of the needles are then specified by an arbi-
trary function which defines the (deformable) shape of the
body part.

In contrast to computer graphics and animation, where
a body model needs to be as realistic as possible, a model
for tracking can be a coarser approximation. As the fea-
tures are noisy anyway, the accuracy of the model can be
reduced for the benefit of a smaller set of parameters.
Our human body model is built from superellipsoids. Their
flexibility was used to build a model that approximates
body shapes reasonably well, while still being very compact
in terms of the parameters needed for its specification.
Thereby, separate limbs are constructed as a seamless com-
bination of a truncated superellipsoid and a spherical cap
to round it off. Fig. 5b and c illustrate the model used for
tracking.
5.2. Computations on superellipsoids

A superellipsoid is obtained by crossing two orthogo-
nal superellipses, thus its shape is controlled by the two
shape parameters 0.0 < �1, �2 < 2.0 of the two superellip-
ses. Three scaling parameters a1, a2, a3 for each axis
define the size. The surface of a superellipsoid is param-
etrized by the longitude � p

2
6 g 6 p

2
and the latitude

�p 6 x 6 p. A point ~rðg;xÞ on the surface is given by
the explicit equation
Fig. 6. The occluding contour of our model shown from three different views.
box of the primitive. One meridian and one circle of latitude are plotted in bo
rðg;xÞ ¼
a1 cos�1ðgÞ cos�2ðxÞ
a2 cos�1ðgÞ sin�2ðxÞ

a3 sin�1ðgÞ

2
64

3
75 ð1Þ

The surface normal directions can be obtained by

ndðg;xÞ ¼

1
a1

cos2��1ðgÞ cos2��2ðxÞ
1
a2

cos2��1ðgÞ sin2��2ðxÞ
1
a3

sin2��1ðgÞ

2
664

3
775 ð2Þ

During tracking we want to align the model with the image
edges and the 3D reconstruction. Therefore, three opera-
tions on the superellipsoids surface are needed for the
tracking step:

(1) Selection of random surface points for the surface
matching.

(2) Identification of points lying on the superellipsoids
occluding contours in the camera views, used for
matching the model contours to the image edges.

(3) Identification of pairs of contour points being sym-
metric to the limb axis (for the symmetry corrected
error measure presented in Section 6.1.2).

Selecting a set of points on the surface for tracking
seems trivial as any random point on the surface may be
chosen. However, uniform sampling of g and x results in
a trigonometric sampling of the surface, thus more points
will be chosen on more curved regions.

In our approach, a regularly sampled grid of surface
points approximates the surface where the sampling has
to be done only once as a preprocessing step. We regularly
sample the points along circles of latitude and meridians, as
illustrated in Fig. 6 on the right plot. During tracking, ran-
dom points are chosen among the sampled surface points.
Furthermore, points which are hard to track, such as the
ones in the armpits, are discarded.

For operations (2) and (3) we need to be able to com-
pute the model’s occluding contour efficiently. The rim of
any superellipsoid—which will partly contribute to the
model contours—can be obtained by solving the equation
The right image shows then sampling of our body parts and the bounding
ld.
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ndðg;xÞ � vðg;xÞ ¼ 0 ð3Þ
for the dot product between the direction of the viewing
ray v(g,x) (in the superellipsoid local coordinate system)
through a point r(g,x) with surface normal direction
nd(g,x). The viewing ray in local coordinates can be
computed by moving the camera instead of the superel-
lipsoid: if P is a camera’s projection matrix and M

represents the superellipsoid’s motion, we substitute
~P ¼ PM ¼ K ~R½I j � ~C�, where K denotes the unchanged
calibration matrix, ~R the orientation and ~C the center
of the moved camera matrix. Therefore, if r(g,x) is a
point on the superellipsoid surface in local coordinates,
the direction of the viewing ray through this point in
local coordinates becomes [15]:

vðg;xÞ ¼ ~R�1K�1 ~P rðg;xÞ ¼ Drðg;xÞ ð4Þ

A closed-form solution for Eq. (3) can be obtained by
assuming orthographic projection, but there is too much
perspective distortion in the images of cameras close to
the object, like in the overhead camera most of the time.
An approximation can be achieved by considering the sign
change on contour locations: the rim divides the surface
into a visible (Eq. (3) is <0) and invisible (Eq. (3) is >0)
part. Therefore, contour points are identified by stepping
through strips of surface points and checking Eq. (3) for
a sign change of the dot product. We arrange the sampled
surface points as strips corresponding to meridians and cir-
cles of latitude to assure that a sign change will happen on
each strip. This strips are illustrated in the wireframe model
in Fig. 6.

The final coordinates of the contour points can the
be computed by considering the angular coordinates
u1 = [g1,x1]T and u2 = [g2,x2]T and the dot products t1

and t2 of the two points where the sign has changed in
between:

uc ¼
gc

xc

� �
¼

u1

t1
þ u2

t2
1
t1
þ 1

t2

¼ u1t2 þ u2t1

t1 þ t2
ð5Þ

Examples of our occluding contour are shown in Fig. 6.
Occlusion was handled using the procedure proposed in
Section 5.3.

In Section 6.1.2 we will derive an error measurement
which considers pairs of contour points which are symmet-
rical to the limb axis. Such a symmetry corrected error
measurement increases the chance of assigning correct
edges. Therefore, for operation (3), pairs of contour points
symmetric to the limb axis must be identified. Such pairs
can be found by only considering the strips corresponding
to the circles of latitude: two contour points found on the
same circle of latitude are symmetric to the main axis of
the superellipsoid. Consequently, as the main axes of our
superellipsoids are aligned with the limb axes, the two con-
tour points are also symmetric to the corresponding limb
axis.
5.3. Occlusion handling

A mechanism for detecting occlusions is needed to
compute the visible parts of the model contours. The
algorithm of Section 5.2 returns for a superellipsoid
E1 a set of contour points rE1

ðg;xÞ. To detect if a con-
tour point is occluded by a superellipsoid E2 one must
compute the intersection points between the viewing
ray

lE1
ðg;x; kÞ ¼ rE1

ðg;xÞ þ kvE1
ðg;xÞ ð6Þ

and the surface of E2. This can be done considering the
inside–outside function F(x,y,z): it returns <1 for points
inside, >1 for points outside and 1 for all points on the
surface of the superellipsoid. Therefore, intersection points
can be found by solving F E2

ðx; y; zÞ ¼ 1; fx; y; zg 2 lE1

ðg;x; kÞ. It is convenient to transform the viewing ray to
the local coordinate system of E2. If M1 is the transforma-
tion matrix of E1 and M2 the one of E2, the expression of
the viewing ray becomes

lE2
ðg;x; kÞ ¼ M�1

2 M1rE1
ðg;xÞ þ krotðM�1

2 M1ÞvE1
ðg;xÞ ð7Þ

where rot( ) denotes the rotation matrix of the
transformation.

Since no closed-form solution for the intersection of a
line with a superellipsoid is known, testing the inside–out-
side function along the line cannot be avoided. At least,
first computing the intersection points of lE2

ðg;x; kÞ with
the bounding box of E2 shortens the search significantly.
Furthermore, the case if lE2

ðg;x; kÞ does not intersect E2

and thus no occlusion occurs can be detected in the same
operation. Another trivial case, if rE2

ðg;xÞ itself lies inside
E2, can be detected by a single evaluation of the inside-out-
side function.

For all other cases, the viewing ray has to be sampled
between the intersection points and tested for points with
F(x,y,z) 6 0. Doing this in a recursive way starting from
the middle of the intersection points, where chances of hit-
ting the superellipsoid are highest, this tasks becomes com-
putationally reasonable.

6. Optimization framework

In Section 4 we discussed how we compute a volumetric
reconstruction of the person and extract structurally
important edges from the camera images. These corre-
spond to our observations. On the other hand, there is
the human body model which we can control via the con-
figuration vector p. For each such configuration, we can
compute the occluding contours of the model in all image
planes and select a set of points on the model’s surface.
These contours and points correspond to the image cues
we expect to observe if p is the correct pose. They corre-
spond to our predictions.

Optimizing the configuration vector p should bring the
predictions into agreement with the observations. The ob-
jective function is described in Section 6.1. The Stochastic
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Meta Descent optimization described in Section 6.2 search-
es for the optimal configuration.

6.1. Objective function

We need an objective function which determines how
well the model contours agree with the edges found in
the images and how close the model’s surface (represented
by a set of points) is to the reconstructed one.

Hence, our objective function f(p) consists of two terms,
one for the surface match fs(p) and one for the edge match
fe(p). The two terms are computed as the sum of the errors
between each predicted feature x and the assigned observed
feature �x.

f ðpÞ ¼ wsfsðpÞ þ wefeðpÞ

¼ ws

X
Ns

dsðx; �xÞ þ we

X
Ne

deðx; �xÞ ð8Þ

The scaling factors ws and we balance the influence of Ns

surface points against that of Ne contour points.
Each error term dðx; �xÞ is based on the squared distance

between a predicted feature and the assigned observed fea-
ture. However, wrong assignments produce outliers whose
influence has to be limited. Therefore, we use the Leclerc
error potential qðzÞ ¼ 1� e

�z
t , where eðx; �xÞ is the squared

distance computed for individual features:

dðx; �xÞ ¼ qðeðx; �xÞÞ ð9Þ

The parameter t controls the interval that is considered
normal for the squared distance eðx; �xÞ. Using an error po-
tential is also beneficial regarding missing correspondences
due to occlusion: if a contour point is occluded, it contrib-
utes with d(x,;) = 1 to the objective function, the upper
limit for the error terms.

6.1.1. Surface alignment

We want to measure the distance between the model’s
surface and the reconstructed one where each surface is
represented by a set of points. The procedure described
in Section 5.2 is used to choose a set of points T on the
model’s surface. The observed surface is described by the
set of voxels V computed according to the algorithm in
Section 4.1. The set T is assumed to be smaller than the
set V.

An obvious measurement is the summed distance
between points on the model’s surface and the voxels of
the reconstruction closest to them. This requires a near-
est-neighbor search on all voxels of the reconstruction for
each point on the model’s surface, which is computational-
ly expensive. However, by using stochastic optimization as
proposed in Section 6.2, the set of points used for tracking
can be rather small while preserving the optimization’s
robustness.

Given that for each predicted surface point x 2T its
nearest surface voxel �x 2V is found, the squared distance
becomes
esðx; �xÞ ¼
1

2

kx� �xk
r

� �2

ð10Þ

The scaling factor r corresponds to the limb diameter at
point x of the model. Giving the distance in units of the
limb diameter makes the error distances comparable be-
tween the different cues and ensures scale-invariance
regarding limbs of different dimensions.

6.1.2. Edge alignment

Given a model configuration vector p and the projection
matrix P of a contributing view, the algorithm described in
Section 5.2 returns a set C of contour point coordinates x
with their normal directions xn in the image plane. By using
the occlusion test described in Section 5.3, the occluded
contour points can be identified and considered as not
assignable. Moreover, for each view the total number of
occluded contour points is known and can be used to dis-
card views where many occlusions occur. These views
should be discarded as they offer weak support to the
objective function. We propose to use the three views with
the smallest number of occluded contour points.

For each of these three views we want to measure the
alignment between the projected model contours and the
edges in the corresponding camera image. An obvious solu-
tion for a distance metric would be to find for each contour
point the closest edge point by following its normal direc-
tion. This entails too large a risk to fit the wrong edges,
however. By preferring edge points with high image gradi-
ent magnitude and/or a gradient direction parallel to the
contour normal wrong matches can be avoided. Thus, for
an edge pixel �x with its gradient vector �xn, a gradient score
can be computed

sðxn; �xnÞ ¼ k�xnk
�xn

k�xnk
� xn

kxnk

� �
ð11Þ

which returns a high value if the gradient magnitude is high
and/or the dot product between the gradient direction and
the contour normal xn is high.

Moreover, the objective function should take advantage
of the symmetry of the limbs since matching a symmetric
pair of points increases the chance of assigning correct edg-
es. Sminchisescu [31] showed that one can derive a symme-
try corrected objective function based on the deviation
between the model predicted symmetries and the matched
ones. In our case, we use the gradient score (11) to
strengthen the symmetry-sensitive objective function.

According to Section 5.2 pairs of contour points
xa; xb 2 C can be identified which are symmetric to the limb
axis. Then, for each pair, a Bresenham line algorithm [2] is
used to search along the line through xa and xb (plus some
additional length) for edge points E. From these edge
points, a pair �xa; �xb is chosen which minimizes the length
difference, scaled by the gradient scores.

�xa; �xb ¼ arg min
�xa;�xb2E

k�xa � �xbk � kxa � xbjj j
sðxa

n; �x
a
nÞsðxb

n; �x
b
nÞ

ð12Þ
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Once two edge points have been assigned, the final error for
one pair is computed as the squared distance between the
midpoints as

eeðxa; xb; �xa; �xbÞ ¼ 1

2

k xaþxb

2
� �xaþ�xb

2
k

r

 !2

ð13Þ

By taking the limb diameter r = ixa � xbi into account, the
objective function also becomes scale invariant between the
different views.

For all other contour points which do not contribute to
such a symmetric pair a similar distance measurement can
be obtained by simply assigning the edge point with the
highest gradient score along the search line:

�x ¼ arg max
�x2E

sðxn; �xnÞ ð14Þ

Then, the distance error can be computed as the squared
distance between the contour point x and the assigned edge
point �x, again scaled by the limb diameter r and consistent
with the handling of surface points:

eeðx; �xÞ ¼
1

2

k�x� xk
r

� �2

ð15Þ
6.1.3. Color

Color information was already used to perform fore-
ground–background segmentation on the input images
and to detect structurally important image edges. Here it
is also used to split the volumetric reconstruction into
regions of similar colors. Therefore, the color information
does not directly contribute to the objective function f(p)
but rather confines the nearest-neighbor search for fs(p).

Taking into account that a point on the model’s surface
(and thus on the subject’s surface) will not change its actual
color during tracking, all voxels which have a different
color can be discarded during the nearest-neighbor search
for this particular point. In [19], a method was introduced
which uses an adaptive probabilistic color model for each
Fig. 7. 3D color segmentation for a point on the right lower arm. The first row
selected based on their color. The last column is particularly interesting, as th
selection eliminates it. Such color-based voxel selection can also significantly s
figure legend, the reader is referred to the web version of this paper.)
surface point on the model and uses it to segment the
reconstruction in regions of similar and different colors.

The surface of the body model is divided into small
patches where each patch is represented by a single color
model. The color models are set up during the initializa-
tion phase: once the model is in place, we assign to each
point on the model’s surface the color of its nearest
voxel. Then, the colors of all points which belong to
the same patch are mixed together to a single color model
for the patch. Each color model is represented by a
Gaussian distribution in YUV space. Given the time
constraints, every color channel is modeled by a single
Gaussian and the color channels are assumed to be inde-
pendent. During tracking, we update the mean of each
Gaussian by

lþi ¼ ð1� aÞli þ aci ð16Þ

with ci the newly incoming value for color channel i and a
an updating rate in the range of [0..1]. Given the noisy col-
ors of the reconstruction and the slow capturing frequency
of 15 Hz, a learning rate of 0.3 came out to work best.

The color segmentation is done before the optimization
starts. Each surface voxel is tested if it fits any of the color
models we have. Then, during the nearest neighbor search
for the closest voxel of a surface point, those voxels can be
discarded which do not fit the color-model of the point’s
patch. This color segmentation is illustrated for a point
on the right lower arm in Fig. 7 and brings the two follow-
ing advantages:

(1) The term fs(p) for the surface matching is not robust
against body parts coming close to each other. Limbs
may be left stuck to the wrong part of the data upon
their actual departure. The color segmentation can
help to overcome such situations if the body parts
have contrasting colors. If the person wears clothes
of similar colors, the segmentation has no effect, i.e.
does not corrupt the tracking either.
shows the complete reconstructions, while the second row shows the voxels
e person holds a green cube which extends the length of the ‘arm’. Color
peed up the tracking. (For interpretation of the references to color in this
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(2) The nearest-neighbor search for the surface matching
gains in speed as voxels which do not match the color
model can be discarded.
6.2. Stochastic meta descent

We propose to use Stochastic Meta Descent for optimi-
zation of f(p). Stochastic Meta Descent (SMD) is a gradient
descent with local step size adaptation that combines rapid
convergence with excellent scalability. It is built on 3
concepts:

• The use of stochastic sampling of the sampling points at
each iteration of SMD offers better convergence than
standard optimization methods relying mostly on deter-
ministic sampling (i.e. a fixed subset of tracking points).

• SMD performs two levels of optimization: firstly, it opti-
mizes for all parameters the individual step sizes a at
each iteration by a gradient descent which is controlled
by a meta step size l. Then, the state parameters p are
optimized in a gradient descent manner via a.

• SMD updates parameters while taking into account the
past history of step sizes, and thus is able to capture
long-range effects missed by other algorithms. This
dampens erratic variations and increases the method’s
efficiency.

Stochastic sampling is a strong feature of SMD. Instead
of using all available points for evaluating the objective
function, only a subset is used and shuffled at each itera-
tion. Indeed, randomly shuffling the sampling points lets
SMD escape from local spurious minima more easily as
demonstrated in Section 7.1. Furthermore, one can afford
to use a smaller sample set than with other standard deter-
ministic optimizers and can be faster as a consequence.

Here we give a concise overview of SMD. More detailed
explanations can be found in [28]. If gi is the gradient (of
f(pi)) at iteration step i, the parameter vector pi is updated
via

piþ1 ¼ pi � ai � gi; ð17Þ

where � denotes the Hadamard (i.e. component-wise)
product. The vector a of local step sizes is in effect a diag-
onal conditioner for the gradient system.

The local step size vector a is adapted via

ai ¼ ai�1 �max
1

2
; 1þ l � vi � gi

� �
; ð18Þ

where v is an exponential average of the effect of all past
step sizes on the new parameter values and l is a vector
of meta step sizes. v is updated via:

viþ1 ¼ kvi þ ai � ðgi � kH iviÞ; ð19Þ

where Hi denotes the Hessian (i.e., matrix of second order
derivatives), or a stochastic approximation thereof, at
iteration step i. The factor 0 6 k 6 1 governs the timescale
over which long-term dependencies are taken into
account.

A condition for stopping the optimization at conver-
gence is necessary. However, finding a suited termination
rule for SMD is difficult. Shuffling the points on each iter-
ation changes the gradient at any point in the parameter
space and SMD tends to oscillate around the optimum
instead of converging directly into it. To handle oscillation
we propose to put a tolerance on the change of the moving
average over the past n states pi caused by the new state
pi+1. Furthermore, an upper limit for the maximum
number of iterations is given.

1

n

Xi

k¼i�nþ1

pk �
1

n

Xiþ1

k¼i�nþ2

pk

�����
����� ¼ 1

n
pi�nþ1 � piþ1

�� �� 6 � ð20Þ

i 6 imax ð21Þ

The maximum number of iterations imax is set to 40 and
n to 3 in our experiments. The tolerance � is set to values
between [0.1. . .2] for tracking.

6.2.1. Enforcing constraints

The freedom of movement of human joints is limited by
their anatomical design and by various physical con-
straints. For example, one can not arbitrarily elevate one’s
leg sidewards or yaw an arm to the side until the elbow
touches the back. Considering these constraints for track-
ing in a high dimensional parameter space is essential.
Indeed, enforcing anatomical joint constraints not only
helps to avoid implausible configurations, such as limbs
intersecting each other, but they also reduce the search
space we have to explore.

Joint limits can be enforced elegantly in the SMD algo-
rithm. We enforce the constraints by means of a function
that after each update (17) maps the parameters back into
the feasible region:

pc
iþ1 ¼ constrainðpiþ1Þ ð22Þ

Since SMD uses the gradient not only to update the param-
eter vector p, but also to adjust a and v, we must make
these adjustments also compatible with the constraints on
p. We do this by calculating a hypothetical ‘constrained’
gradient gc which, applied in an unconstrained setting,
would cause the same parameter change that we observe
after application of the constraints. In other words, we
require that

pc
iþ1 ¼ pc

i � ai � gc
i ) gc

i ¼
pi � pc

iþ1

ai
ð23Þ

SMD’s step size adaptation machinery can then perform
accurately in the constrained space by using this
constrained gradient instead of the usual one in Eq. (19).

6.3. Automatic model initialization

The initialization of the model is fully automatic. The
user first has to adopt an initialization pose, standing
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upright with his/her arms and legs spread in the ‘‘Da
Vinci’’-pose.

A first estimate of the user’s position can be derived
from the reconstruction’s centroid. Two foot patches can
be detected by using a plane sweeping algorithm near the
bottom of the voxel space. The same can be done from left
to right and vice-versa in order to find the hand positions
and from top to bottom to find the top of the head. Then,
statistics of the ratios between the different limb lengths
and dimensions as proposed by Dreyfuss [12] are used to
complete the skeleton.

6.4. Final algorithm

In [19] we proposed a hierarchical tracking concept by
first fixing the torso and then tracking the arms, legs and
the head independently. This concept lowers the dimen-
sionality of the involved optimizations significantly and
allows parallelization over multiple machines. However,
regarding occlusions, the articulated chains are not truly
independent anymore and must be optimized simulta-
neously. This is taken into account by the tracker described
here.

Simultaneous optimization of all DoFs is obviously
slower compared to the hierarchical method due to the lost
parallelization. Even worse, experiments showed that con-
vergence speed decreased because the higher number of
parameters amplifies the oscillation effect around the opti-
mum. As a solution we propose to first optimize all 24
DoFs at a large tolerance �1 and then refine this initial esti-
mate hierarchically with a lower tolerance �2. During the
refinement, the torso is kept fixed and only the positions
of the head, the arms, and the legs are optimized. This
way, the model is brought in place by the first (full) optimi-
zation and then each articulated chain is independently
refined. This optimization-refinement scheme brings two
advantages: first, convergence is fast for all optimizations
involved and, in the refinement step, parallelization is
possible.

The final optimization algorithm is summarized in
Fig. 8.

7. Results

We evaluated our system with several sequences where
a person performs complex motions. For the following
experiments five cameras were used, with a resolution of
640 times 480 at 15 Hz. Each camera was attached to a
Fig. 8. Final optimization algorithm.
dedicated client machine with a 2.4 GHz AMD Athlon
and 1 GB of RAM. The foreground/background segmen-
tation and the edge detection were performed in parallel
on the corresponding client machines and then sent to
the main host, a 3.0 GHz Pentium IV machine. The
volumetric reconstruction and the full optimization were
done on the main host, whereas the refinements of the five
articulated chains were distributed over the client
machines.

For tracking, 160 points were chosen on the model’s sur-
face: 60 on the torso, 20 on each limb and on the head.
More surface points were chosen on the torso because of
its size and the fact that its 3D reconstruction is the least
accurate one of all body parts. For the edge term, 40 points
were chosen on the model contours: 10 on each limb, none
on the torso and the head, giving a total of 120 points con-
sidering the contours of three camera views. Experiments
showed that using edges for the torso and the head is not
beneficial. Since the torso and the head yield quite salient
blobs in the reconstruction, matching their surface against
the reconstruction is more robust than using edges. Indeed,
edges rather confuse the tracker due to the influence of the
arms and legs on the torso’s silhouette.

The tolerance �1 (Eq. (20)) for the full optimization was
set to 2� for the angles and 2 cm for the model’s displace-
ment. For the refinement of the arms, legs and head the
required accuracy was set to �2 ¼ 1

2
�1. An intuitive way to

initialize the step sizes for SMD is to observe the value of
the gradient in the first few iterations to estimate the order
of magnitude one wants to apply to each dimension. In our
case, the initial step sizes were set as 2500 for all pitch and
yaw angles. The roll angles were given higher values of
5000 since the objective function tends to be rather flat
for these dimensions. The importance of the knees and
elbows has been taken into account with a high initial step-
size of 10,000. The l vector also depends on the applica-
tion, i.e. the gradient of the objective function. We found
values of one-tenth of the initial step sizes working best.
Indeed, increasing l too much can cause the instability of
the gradient descent for the step sizes and therefore of
the system. k regulates the time scale over which long-term
dependencies are taken into account (0 6 k 6 1). For our
experiments a value of 0.3 proved to be best.

7.1. Stochastic vs. deterministic sampling

Shuffling the sample points on each iteration lets
SMD escape from local minima more easily. A compar-
ison between SMD and a deterministic version thereof
(i.e. SMD without shuffling the points on each iteration)
demonstrates this property. We have chosen a sequence
with strong occlusions of the lower arms, as they are
rotated around each other like the pedals of a bicycle,
see Fig. 11. Then, the right arm of the model was dis-
placed and both the stochastic and the deterministic ver-
sion of SMD were used to bring it back into its correct
position.



Shoulder Ry Angle

E
lb

ow
 R

y 
A

ng
le

–90 –80 –70 –60

–90

–85

–80

–75

–70

–65

–60

–55a b c d

Fig. 9. A stochastic and a deterministic version of SMD were used to optimize the position of the arm. Image (a) shows the optimal placement of the arm,
image (b) the starting position for the experiment. The optimization result for the deterministic version of SMD is shown in image (c). The arm is still out
of place as SMD got stuck in a local minimum after 12 iterations. Plot (d) shows the iterations and the objective function where a local minimum at the
upper left corner is seen to trap the arm pose in its basin of attraction. The optimum is the indicated point in the center.
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For the experiment, the y-rotation angles of the right
shoulder and the right elbow were moved from their opti-
mal position �73.9� and �72.3� (Fig. 9a) to the position
�92.2� and �78.0� (Fig. 9b)) resp. For tracking, 10 points
on the arm surface and 10 points on each projected contour
were chosen.

The deterministic version of SMD converges after 12 iter-
ations to orientations�91.6 and�61.7, as shown in Fig. 9c.
The plot (d) shows the objective function for a hyperplane
through the parameter space for the two parameters to be
optimized. The iterations are drawn as line segments. Obvi-
ously, the deterministic version of SMD was trapped in a
local minimum and thus converged at a wrong position.

The same experiment was then repeated with the original
SMD algorithm, i.e. with point shuffling. SMD converged
after 15 iterations to position �78.9� and �70.7�, obviously
closer to the optimum than the deterministic version. Fig. 10
shows the end position and the objective function for itera-
tions 3, 8, 11, and 15. The objective function changes at each
iteration. The spurious local minima tend to move around,
while the true optimum stays put. This gives SMD the chance
to hop out of a local minimum at each iteration.
Fig. 10. Stochastic sampling overcomes the local minima as shuffling the po
resulting solution after 15 iterations (at black cross) is closer to the optimum
7.2. Single vs. multiple cues

In [19] we showed that tracking of complex motions is
possible even if only the model’s surface is matched to
the reconstructed one. The 3D color segmentation was
the key element to successfully disambiguate difficult situa-
tions when limbs come close to each other. However, color
information must be available to benefit from the 3D color
segmentation. Otherwise, the tracking can fail and the col-
or models can be destroyed as they are updated with the
wrong colors.

An example of such a situation is given in Fig. 11
where the person brings his arms close to the body and
creates occlusions. The uppermost row shows the noisy
reconstruction of three frames of the sequence, with many
artifacts. The gap between the arms and the torso is
closed and the color of the shirt is rather similar to skin
color. Tracking with the surface alignment only is prob-
lematic in this case as shown in the second row: the left
arm gets stuck to the body for some frames. The bulky
reconstruction gives no clue about the exact placement
of the arms.
ints on each iteration lets the spurious local minima move around. The
(centered circle) then for the deterministic version.
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The third row shows the results obtained with the same
configuration but with the edge alignment enabled. The
tracker is successful during tracking the whole sequence
and the accuracy is clearly better. Yet, the placement of
the arms is not perfect for some frames of the sequence.
This is caused by the slight twist of the torso which the
tracker can not pick up from the bulky reconstruction.

7.3. Comparison to Levenberg–Marquardt

In Section 7.1 we have shown that shuffling the points at
each iteration lets SMD escape from local minima. More-
over, using only a subset of the points, the tracking gains
significantly in speed. To prove our claims we want to com-
pare SMD to the widely used Levenberg–Marquardt (LM)
method. The speed and accuracy of both methods were
compared for a challenging test sequence.

The test sequence (115 frames) shows a person perform-
ing full articulation. Some frames are shown in Fig. 12.
First, the person puts his hands on the hips and then he
kicks with both legs while slightly turning and keeping the
a

b

c

Fig. 11. Tracking a sequence with inaccurate reconstruction (a) and using
incorporating edges the tracker performs well and more accurate over the full
arms in a defensive manner close to the upper body. The
tracker must be able to keep the arms separated from the
torso and should survive the fast motions. Furthermore,
the person leans backwards and turns to the left while the
extremities move fast. The reconstruction of the sequence
was computed with a voxel space resolution of 643.

Reference poses for the test sequence were generated
using a semi-automatic procedure. The sequence was
tracked with a gradient descent and considering all points
on the model’s surface and contours. Manual intervention
was used to correct the pose when a misplacement could be
visually noticed. We consider these reference poses to be
groundtruth to compare against.

For our comparison with LM optimization, the same
number of points were used. Furthermore, while tracking
with LM, the set of points is shuffled once for each new
frame before optimization is performed.

SMD was successful in tracking the whole sequence as
can be seen for the five selected frames in Fig. 12b). The
average number of iterations was computed as the mean
of all six optimizations (one for the full optimization and
only surface alignment is problematic if limbs come close (b). When
sequence (c).
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Fig. 12. Comparison between Levenberg–Marquardt (LM) and stochastic meta descent (SMD) optimization. The first row shows the reference poses for
five keyframes (15, 55, 75, 115) and the second row the poses obtained by tracking with SMD. LM could only succeed if five times as many points were
used for tracking than for SMD. The results for LM are shown in the last row.
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five for the refinement of the head, arms and legs) over all
frames. On average SMD needed 6 iterations to converge
where the first optimization of all DoFs usually needed
slightly more iterations. The processing time per frame
was obtained by adding the computation time of the full
optimization, the slowest refinement time, 45 ms for the
network overhead, and 15.02 ms for the volumetric recon-
struction. SMD was able to track the sequence with an
average processing time of 793.0 ms per frame what corre-
sponds to a framerate of 1.3 fps. The processing times for
the individual frames are shown in Fig. 13a).

LM was not able to track the sequence with the same
number of points. After 25 frames, LM misplaced the torso
and consequently lost track of the left arm. We had to
increase the number of points to at least five times more
than SMD needed to achieve robust tracking. Therefore,
the experiment was repeated with five times more points
for tracking. This time, LM was successful in tracking the
whole sequence as can be seen for the five selected frames
in Fig. 12c). On average, LM needed 9 iterations and
1374.5 ms per frame, corresponding to 0.73 fps. The pro-
cessing times for the individual frames can also be seen in
Fig. 13a). For some frames LM needed far more iterations
than average to converge what is undesirable for tracking.
In contrast, SMD’s processing times were more constant.

The experiment has demonstrated that SMD is able to
track a complex sequence with fewer points and is faster
as a consequence. However, the tracking accuracy should
also be considered. We will do this by comparing the result-
ing poses of both methods to our set of reference poses.

An obvious method to compare two poses is to consider
the Euclidean distance between their pose vectors p. How-
ever, this measurement does not necessarily correspond to
the perceptually difference. As a more appropriate measure
we propose the mean distance between the groundtruth 3D
joint positions and the computed ones. Fig. 13b) shows the
computed distance errors for both optimizers over the test
sequence. The distance error of SMD is 2.89 cm, the one



a b

Fig. 13. Plot (a) shows the processing times for SMD and LM over the test sequence. SMD is obviously faster as fewer points were sufficient for tracking.
Plot (b) shows the mean distance of the expected 3D joint positions and the computed ones. The distance error of SMD is 2.89 cm, the one achieved by LM
is 4.27 cm. Outliers often result from bad localization of the torso.
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achieved by LM is 4.27 cm. Strong outliers are mostly
caused by bad localization of the torso. The decrease of
accuracy starting at frame 40 results from the left turn of
the person. During this left turn the orientation of the per-
son is some times not optimal for our camera alignment
what becomes apparent in a bulky reconstruction. Conse-
quently, optimal alignment of the torso is difficult.

The tracking result of SMD for additional frames can be
seen in Fig. 15. After the test sequence the person performs
a full 360� turn and brings the arms close to the body.
Again, during the turn the placement of the torso is some-
times not optimal as the reconstruction is quite bulky and
inaccurate. Consequently, the arms can not be brought into
perfect position due to their fixed length. However, SMD
succeeds in tracking this complex sequence.

7.4. Fast motions

Fast motions are critical for tracking as they require
the optimization to find the optimum far away from the
starting point. This involves the risk of divergence or even
a b

Fig. 14. Plot (a) shows the pitch angles of the hip joints during the walking
variation during fast motions. The parameter changes up to 31� between cons
of convergence to the wrong position. For instance, if an
arm moves fast away from the torso, the ‘optimal’ solution
found by the optimization could be to put the arm on the
torso, although there would be a better solution but further
away.

The sequence presented here was used to test the robust-
ness of our tracker during fast movements and is 375
frames long. Our system was successful in tracking this
sequence as can be seen in Fig. 16. The average processing
time was 788.4 ms or 1.27 fps. However, the achieved accu-
racy of the pose estimates is clearly worse compared to
slower motions, especially for the torso parameters.

The sequence is divided into three parts. During the first
part (frames 1–95), the person dances and swings the arms
around. In the second part of the sequence (frames 96–175)
the person walks fast on the spot. The walking motion can
be nicely seen at the pitch angles of the hip joints, as illus-
trated in Fig. 14 a), Fig. 16. In the last part of the sequence,
the person adopts different extreme poses with fast transi-
tions in between. In doing so, the joint angles of the shoul-
ders undergo large changes as illustrated in Fig. 14b) for
motion. Plot (b) shows the pitch angle of the right shoulder joint and its
ecutive frames.
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the pitch angle of the right shoulder joint. During these fast
motions the parameter changes up to 31� between consec-
utive frames. However, the average change is 4.1� during
the whole sequence.

7.5. Presence of an object

Next we test the performace of our method in presence
of an object. The captured sequence is 200 frames long and
shows a person playing with a cube. The cube is passed
from one hand to the other, thrown against a wall, kicked,
Fig. 15. Tracking result of a sequence where the person pe
and finally pickup up again. Again, fast motions of the
limbs can be observed. The resolution of the voxel space
was set to 1283 to illustrate the effect of such higher resolu-
tion on the tracking.

The results are shown in Fig. 17. SMD had no problem
to track this sequence. The average processing time was
1131.0 ms or 0.8 fps including 70 ms for the computation
of the reconstruction. The processing time for tracking
increased as an effect of the higher voxel space resolution
and, as a consequence, the larger set of voxels which had
to be considered for the nearest-neighbor search.
rforms full articulation and turns around its own axis.



Fig. 16. Tracking result of a sequence where the person first performs fast dancing motions and then adopts extreme poses with fast transitions in between.
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8. Conclusions

In this paper, we presented an algorithm capable of
tracking a person’s full body pose during complex motions
without any markers. We follow a model-based approach
by fitting a body model to the images of several synchro-
nized video streams. For model-fitting, multiple image cues
are combined into an objective function which yields
robust tracking.

We propose an efficient method to compute the volu-
metric reconstruction of the person. We have shown that
voxel-based procedures can achieve real-time reconstruc-
tion. Instead of projecting each voxel onto the image plane
of each cameras we keep lookup-tables for the inverse map-
ping: they hold a list for each pixel containing all voxels
which are projected on it. This brings two advantages: (1)
the lookup-tables can be computed off-line and thus no
projections have to be done during runtime and (2) the
reconstruction can be updated for consecutive frames
instead of being extracted from scratch.

The volumetric reconstruction is the strongest cue in our
tracking framework. However, in difficult situation such as



Fig. 17. Tracking result of a sequence where the person plays with a cube.
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when limbs come close, tracking becomes ambiguous.
Therefore we combine multiple cues. The image edges offer
good localization for the model and help to disambiguate
the solutions. We use color edges as they produce less
clutter because of shadows or wrinkles on the clothes.
Moreover, we perform a 3D color segmentation of the
reconstruction. This segmentation lowers the computation-
al costs for the surface matching by discarding unlikely
voxels and further strengthens the tracking by separating
limbs.

For optimization we propose to use SMD. Its stochastic
sampling, i.e. shuffling the points on each iteration, lets
SMD overcome local minima and increases tracking speed
at the same time. Spurious minima tend to move around
while the global optimum stays fixed.

We illustrated the performance of our method by several
challenging sequences where a person wears different, casu-
al clothes. Five cameras were sufficient for tracking the
complex motions. The multi-cue approach proved effective
in providing the required robustness. The small set of
points needed for optimization with SMD and our efficient
reconstruction algorithm made it possible to track at about
1 frame per second. The comparison of SMD to the com-
monly used Levenberg–Marquardt proved our claim that
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the use of stochastic optimization is beneficial in terms of
speed and robustness.

The videos of the experiments presented here can be
downloaded from our webpage http://www.vision.

ee.ethz.ch/~rkehl/Videos/
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