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Abstract. ‘Invariant regions’ are self-adaptive image patches that automatically deform with changing viewpoint
as to keep on covering identical physical parts of a scene. Such regions can be extracted directly from a single image.
They are then described by a set of invariant features, which makes it relatively easy to match them between views,
even under wide baseline conditions. In this contribution, two methods to extract invariant regions are presented.
The first one starts from corners and uses the nearby edges, while the second one is purely intensity-based. As
a matter of fact, the goal is to build an opportunistic system that exploits several types of invariant regions as it
sees fit. This yields more correspondences and a system that can deal with a wider range of images. To increase
the robustness of the system, two semi-local constraints on combinations of region correspondences are derived
(one geometric, the other photometric). They allow to test the consistency of correspondences and hence to reject
falsely matched regions. Experiments on images of real-world scenes taken from substantially different viewpoints
demonstrate the feasibility of the approach.
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semi-local constraints

1. Introduction

Wide baseline stereo, i.e. stereo with the two cameras
far apart or with a large vergence angle, has a number of
important advantages: greater precision, wider applica-
bility, and less effort by the user as fewer images can
suffice. There also are important disadvantages though,
like increased levels of occlusion and a correspondence
search that is far more difficult. Especially the latter
problem has hampered the use of wide baseline stereo
setups.

In this paper, we propose a method to find a rela-
tively sparse set of feature correspondences between
wide baseline images. These initial matches yield the
epipolar geometry and thus greatly facilitate the search
for further correspondences. The initial features need
not only be robust against the geometric distortions
caused by a large change in viewpoint, but also against
serious changes in color and intensity that may exist

between views. Moreover, features should be quite lo-
cal, as the risk of parts getting occluded in the other
view increases with feature size.

As our goal is not dense correspondences but a set
of seed matches, we can afford to restrict features to
areas with characteristics that are benign to the task.
One is that the local surface is almost planar. This sim-
plifies the geometric distortions that are to be expected
between the views. A second assumption is that these
almost planar parts contain anchor points that remain
stable under changing viewpoint. In particular, we will
use corners as well as intensity extrema. It is not cru-
cial that all such points can be retrieved robustly from
different views—it suffices if this is the case for a suf-
ficient number. To these anchor points, small patches
will be attached as our features.

The principal contribution of this work is the con-
struction of the patches as invariant regions: patches
attached to the anchor points that have self-adaptive
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Figure 1. (a) Two images of the same object. (b) Two parallelogram-shaped patches as they are generated by the system: when the viewpoint
changes the shapes of the patches are transformed automatically such that they cover the same physical part of the scene. Each of these local
image patches has been extracted based on a single image.

shapes to cover the same, physical part of the scene in-
dependent of viewpoint (under the assumption of local
planarity). With changing viewpoint, these invariant re-
gions change their shape in the image. It is thanks to

the viewpoint-dependency of their shape in the image
that the regions’ scene content can remain invariant. As
an example, Fig. 1(b) shows two invariant regions for
each of the two views shown in Fig. 1(a). The invariant
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regions do indeed represent the same part of the box.
The crux of the matter is that they were extracted from
each of the views separately, i.e. without any informa-
tion about the other view. This is important from both
a computational and practical point of view, as no pair-
wise comparisons between regions are necessary for
their extraction, and one is not limited to a predefined
set of viewpoints.

Scenes can vary widely. In order to make sure that a
sufficient number of invariant regions can be extracted,
several types have been implemented. It is our intention
to build an ‘opportunistic’ system that exploits several
types of image structure, simply depending on what
is on offer. This should maximize the applicability of
the method and the number of invariant regions found.
Here we propose a construction method based on cor-
ners and one based on intensity extrema. Others are
currently being considered.

To achieve efficient matching of the invariant re-
gions, their color pattern is characterized by a feature
vector of moment invariants. They are invariant un-
der both geometric and photometric changes. Finding
corresponding invariant regions then boils down to the
comparison of these vectors. Additional tests on the
mutual consistency of matches are performed to in-
crease robustness.

Both the regions and their feature vectors are in-
variant under geometric changes, which are modeled
by affine transformations as the regions are small,
i.e. [
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Hence, correspondences can be found under a wide
range of viewing conditions. Note that, contrary to
the region description, the region extraction does not
explicitly rely on color information: regions are ex-
tracted based on a single color band. Hence the same
methods can equally well be applied to greyscale
images.

The remainder of the paper is organized as follows.
First, an overview of related work is given in Section 2.
Section 3 describes the selection of anchor points.
The next two sections discuss two different methods
for extracting invariant regions: first a geometry-based
method (Section 4) followed by an intensity-based
method (Section 5). Section 6 describes how the ac-
tual correspondence search, based on affine moment
invariants computed over these regions is carried out.
Consistency checks that can be used to reject false
matches are proposed in Section 7. Section 8 discusses
some experimental results. Section 9 concludes the
paper.

2. Related Work

An important source of inspiration for our approach
has been the work of Schmid et al. (1997). They iden-
tify special ‘points of interest’ (in casu corners) and
extract 2D translation and 2D rotation invariant fea-
tures from the intensity pattern in fixed circular regions
around these points (in casu the local jet as defined by
Koenderink and Van Doorn (1987), based on Gaussian
derivatives of image intensity). Invariance under scal-
ing is handled by including circular regions of several
sizes. Since the level of invariance in their method is
limited, it is not really suited for wide baseline stereo
applications. Nevertheless, they obtained remarkable
results in the context of short baseline stereo, object
recognition and database retrieval—for later versions
of their system even in spite of very large scale changes
(Dufournaud et al., 2000). Similar results have been
reported for color images by Montesinos et al. (2000).
Some extensions towards affine invariant regions have
been reported as well. Lowe (1999) has extended these
ideas to real scale-invariance, using circular regions
that maximize the output of a difference of gaussian
filters in scale space, while Hall et al. (1999) not only
applied automatic scale selection (based on Lindeberg
(1998)), but also retrieved the orientation of the circular
region in an unambiguous way.

Wide Baseline Techniques

To cope with wider baselines, the affine geometric de-
formations in the image should fully be taken into
account during the matching process. One approach
is to deform a patch in the first image in an iter-
ative way, until it more or less fits a patch in the
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second image (Gruen, 1985; Super and Klarquist,
1997). However, the search that is involved reduces the
practicality of this approach. In contrast, our method is
based on the extraction and matching of invariant re-
gions, and hence works on the two images separately,
without searching over the entire image or applying
combinatorics.

This is akin to the approach of Pritchett and
Zisserman (1998) who start their wide baseline stereo
algorithm by extracting quadrangles present in the
image and match these based on normalized cross-
correlation to find local homographies, which are then
exploited in a search for additional correspondences.
However, they use shapes that are explicitly present in
the image, while ours are determined locally based on
the color patterns around anchor points, so we are less
dependent on the presence of specific structures in the
scene. Hence, the applicability of our method is wider.

Tell and Carlsson (2000) also proposed a wide base-
line correspondence method based on affine invariance.
They extract an affine invariant Fourier description of
the intensity profile along lines connecting two corner
points. The non-local character of their method makes
it more robust, but at the same time restricts its use to
unoccluded planar objects, which limits the applicabil-
ity of their method.

In summary, our system differs from other wide
baseline stereo methods in that we do not apply a search
between images but process each image and each local
feature individually (Gruen, 1985; Super and Klarquist,
1997; Schaffalitzky and Zisserman, 2001), in that we
fully take into account the affine deformations caused
by the change in viewpoint (Lowe, 1999; Montesinos
et al., 2000; Schmid and Mohr, 1997; Dufournaud et al.,
2000) and in that we can deal with general 3D ob-
jects without assuming specific structures to be present
in the image (Pritchett and Zisserman, 1998; Tell and
Carlsson, 2000).

Affine Invariant Regions

Other approaches to extracting affine invariant regions
described in literature are mainly situated in the context
of texture analysis. Ballester and Gonzales (1998) have
developed a method to find affine invariant regions in
textured images. Implicitly, they use the fact that the
second moment matrix remains more or less constant
when varying the region parameters, which may be a
reasonable assumption for textures but clearly does not
hold for general image patches.

Lindeberg and Gȧrding (1997) on the other hand
have developed a method to find blob-like regions using
an iterative scheme, in the context of shape from tex-
ture. In the case of weak isotropy, the regions found by
their algorithm correspond to rotationally symmetric
smoothing and rotationally symmetric window func-
tions in the tangent plane to the surface. However, in
general, their method does not necessarily converge,
as there are, in most cases, at least two additional
attraction points.

Similar ideas have recently been used for wide base-
line stereo by Schaffalitzky and Zisserman (2001).
First, they roughly match textured regions in the im-
age. Then, they use texture information (the second
moment matrix) to lift some degrees of freedom, fol-
lowed by an exhaustive search over all Harris corner
points within that specific texture and over all pos-
sible 2D rotations to find point correspondences un-
der wide baseline conditions. By exploiting texture
information, they avoid having to delineate invariant
regions, but at the same time this limits the applica-
bility of their method to images containing stationary
textures.

Baumberg (2000) proposed a wide baseline system
that is based on a simplified version of the regions
of Lindeberg and Gȧrding (1997). However, the re-
gions Baumberg uses are only invariant under rotation,
stretch and skew, while scale changes are dealt with
by applying a scale space approach. The error on the
scale also influences the other components of the trans-
formation, such that the resulting invariant regions are
probably not as accurate as ours.

Nevertheless, we believe that it could be beneficial
to include the above region extraction methods into
our system to further improve the performance of the
system (i.e. more correspondences and a wider range
of applicability).

3. Selection of Anchor Points

The first step in the extraction of affine invariant re-
gions consists of selecting ‘anchor points’, that serve
as seeds for the subsequent region extraction. This
allows to reduce the complexity of the problem and
the needed computation time, since the attention can
be focussed on regions around these points instead
of examining every single pixel in the image. At
the same time, extra assumptions can often be made
concerning the regions based on the type of anchor
point.
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Good anchor points are points that result in stable in-
variant regions, are repeatable and easy-to-detect. With
repeatability, we mean that there is a high probability
that the same point will be found in another view as
well—or at least, a point that would result in the same
region.

Harris corner points (Harris and Stephens, 1983) are
good candidates. Apart from the necessary properties
of good anchor points mentioned above, they typically
contain a large amount of information (Schmid and
Mohr, 1998), resulting in a high distinctive power, and
they are well localized, i.e. the position of the corner
point is accurately defined (even up to sub-pixel accu-
racy) (Shi and Tomasi, 1994).

Instead of using corners, local extrema of image in-
tensity can serve as anchor points as well. To this end,
we first apply some smoothing to the image to reduce
the effect of noise, causing too many unstable local
extrema. Then, the local extrema are extracted with
a non-maximum suppression algorithm. These points
cannot be localized as accurately as corner points, since
the local extrema in intensity are often rather smooth.
However, they can withstand any monotonic intensity
transformation and they are less likely to lie close to
the border of an object resulting in a non-planar region.
This last property is a major drawback when working
with corner points.

Of course, which kind of anchor points perform best
also depends on the method used for the region extrac-
tion, and how good this method deals with the short-
comings of the anchor points. For instance, for the cor-
ner points, the high chance of a non-planar region can
be alleviated by constructing a region that is not cen-
tered around the corner point. Similarly, regions start-
ing from local intensity extrema should not depend too
much on the exact position of the extremum, to over-
come the inaccurate localization of these points.

Other types of anchor points could be used as well.
For instance, Lowe (1999) uses extrema of a difference
of Gaussians filter.

4. Geometry-Based Method

The first method for affine invariant region extraction
starts from Harris corner points (Harris and Stephens,
1983) and the edges that can often be found close to
such a point (extracted using the Canny edge detector
(Canny, 1986)). As this method so strongly relies on
the presence and accurate detection of these geometric
entities, we coined it the geometry-based method. Two

Figure 2. Based on the edges close to the corner point, an affine
invariant region can be constructed.

different cases are considered: one method is developed
for curved edges while a slightly different method is
applied in case of straight edges.

4.1. Case 1: Curved Edges

Let p = (x p, yp)T be a Harris corner point on an edge,
as in Fig. 2. Two points p1 and p2 move away from the
corner in both directions along the edge. Their relative
speed is coupled through the equality of relative affine
invariant parameters l1 and l2:

li =
∫

abs
(∣∣pi

(1)(si ) p − pi(si )
∣∣)dsi i = 1, 2

with si an arbitrary curve parameter, pi
(1)(si ) the first

derivative of pi(si ) with respect to si , abs() the absolute
value and |..| the determinant. From now on, we simply
use l when referring to l1 = l2. At each position, the two
points p1(l) and p2(l) together with the corner p define
a region � for the point p as a function of l: the paral-
lelogram spanned by the vectors p1(l)−p and p2(l)−p
(see Fig. 2). This gives us a one dimensional family of
parallelogram-shaped regions. The points stop at posi-
tions where some photometric quantities of the texture
covered by the parallelogram go through an extremum.
We typically generate regions for a few extrema, which
introduces a kind of scale concept as now regions of
different sizes coexist for a single corner. Since it is
not guaranteed that a single function will reach an ex-
tremum over the limited l-interval we are looking at,
more than one function is tested. Taking extrema of
several functions into account, we get a better guaran-
tee that a high number of corners will indeed generate
some regions.

Thanks to a good choice of the functions, the whole
process can be made invariant under the aforemen-
tioned geometric and photometric changes. Examples
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Figure 3. Physical interpretation of the functions f2(�) (left) and f3(�) (right).
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with Mn
pq the nth order, (p+q)th degree moment com-

puted over the region �(l), pg the center of gravity
of the region, weighted with intensity I (x, y) (one of
the three color bands R, G or B), and q the corner of
the parallelogram opposite to the corner point p (see
Fig. 2).

The first function, f1(�), represents the average in-
tensity over the region �(l). It is not in itself invari-
ant under the considered photometric transformations,
but reaches its extrema in an invariant way. We do not
use this function in our implementation though, since
the minima of f2(�) and f3(�) tend to be better lo-
calized than the extrema of f1(�), resulting in more
stable regions. Nevertheless f1(�) could be the better
choice if the application needs high speed. f2(�) and
f3(�) consist of two components each: first, a ratio
of two areas, one of which depends on the center of

gravity weighted with intensity and hence on the re-
gion pattern, and second, a factor that compensates for
the dependence of the first component to offsets in the
image intensity.1 Figure 3 illustrates the geometrical
interpretation of the first component for f2(�) (left)
and f3(�) (right) respectively. It is twice the ratio of
the marked area, divided by the total area of the re-
gion. By looking for local minima of these functions
we favor more balanced regions, i.e. regions for which
the center of gravity lies on or close to one of the di-
agonals of the parallelogram. In contrast to f1(�), the
functions f2(�) and f3(�) are invariant. Nevertheless,
we still select the regions where the function reaches a
minimum instead of selecting regions where the func-
tion reaches a specific value, hence avoiding the in-
troduction of another (rather arbitrary) parameter. For
a proof of the geometric and photometric invariance
of the local minima of these functions, we refer to
Appendix A.

Figure 4 shows two invariant parallelogram-shaped
regions found for corresponding points in two widely
separated views of the same object. Although there is
a large image distortion between the two images (ge-
ometrically as well as photometrically), the affine in-
variant regions—which have been found for each im-
age independently—cover similar physical parts of the
scene. For clarity, the curved edges on which the ex-
traction was based are added as well.

Note that the affine invariant regions found are not
centered around the anchor point. A centered alterna-
tive is the parallelogram that has the non-centered par-
allelogram as one quadrant. Nevertheless, we prefer the
non-centered regions, as—and experiments have borne
that out—restricting the region to one quadrant (delin-
eated by the edges) makes the assumption of planarity
much more realistic, due to the fact that the anchor
points we start from are corners, often lying close to a
depth discontinuity (see Section 3).
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Figure 4. Affine invariant regions based on corners and curved edges.

4.2. Case 2: Straight Edges

In the case of straight edges, the method described
above cannot be applied, since l = 0 along the entire
edge. However, since straight edges occur quite often,
we cannot simply neglect this case.

A straightforward extension of the previous tech-
nique would then be to search for local extrema in a
2D search-space spanned by two arbitrary parameters
s1 and s2 for the two edges, instead of a 1D search-
space over l. However, the functions f2(�) and f3(�)
we used for the curved-edges case, do not show clear,
well-defined extrema in the 2D case. Rather, we have

some shallow valleys of low values (corresponding to
cases where the center of gravity lies on or close to one
of the diagonals). Instead of taking the inaccurate local
extrema of one function, we combine the two functions
and take the intersections of the two valleys, as shown
in Fig. 5. The special case where the two valleys (al-
most) coincide must be detected and rejected, since the
intersection is not accurate in that case. The regions
so obtained proved to be much more stable than those
based on a 2D local extremum.

Figure 6 shows some affine invariant regions ex-
tracted for the same images as in Fig. 4, but
now using the method designed for straight edges.
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Figure 5. For the straight edges case, the intersection of the “valleys” of two different functions is used instead of a local extremum.

Figure 6. Affine invariant regions based on corners and straight edges.
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Again, they clearly cover identical parts of the
object.

5. Intensity-Based Method

A drawback of the method described in the previous
section is that the edges it relies on are often a source
of errors. Edges that were found in one image may be
undetected, interrupted or connected in a different way
in the second image. This section presents an alternative
method for extracting invariant regions, that is directly
based on the analysis of image intensity, without an
intermediate step involving the extraction of features
such as edges or corners. It turns out to complement
the previous method very well, in that invariant regions
are typically found at different locations in the image.

Instead of starting from corner points, this method
uses local extrema in intensity as anchor points (cfr.
Section 3). Given such a local extremum, the intensity
function along rays emanating from the extremum is
studied, as shown in Fig. 7. The following function is
evaluated along each ray:

f I (t) = abs(I (t) − I0)

max

(∫ t
0 abs(I (t) − I0)dt

t
, d

)

with t the Euclidean arclength along the ray, I (t) the
intensity at position t , I0 the intensity extremum and
d a small number which has been added to prevent
a division by zero. The point for which this function
reaches an extremum is invariant under the aforemen-
tioned affine geometric and linear photometric trans-
formations (given the ray). Typically, a maximum is

Figure 7. The intensity along ‘rays’ emanating from a local ex-
tremum are studied. The point on each ray for which a function f I (t)
reaches a maximum is selected. Linking these points together yields
an affine invariant region, to which an ellipse is fitted using moments.

reached at positions where the intensity suddenly in-
creases or decreases dramatically compared to the in-
tensity changes encountered on the line up to that
point, for instance at the border of a more or less
homogeneous area. f I (t) is in itself already invari-
ant. Nevertheless, we again select the points where
this function reaches an extremum for reasons of
robustness.

Note that in theory, leaving out the denominator in
the expression for f I (t) would yield a simpler function
which still has invariant positions for its local extrema.
In practice, however, this simpler function does not
give as good results since its local extrema are more
shallow, resulting in inaccurate positions along the rays
and hence inaccurate regions. With the denominator
added, on the other hand, the local extrema are in most
cases more accurately localized.

Next, all points corresponding to maxima of f I (t)
along rays originating from the same local extremum
are linked to enclose an (affine invariant) region (see
again Fig. 7). This often irregularly-shaped region is re-
placed by an ellipse having the same shape moments up
to the second order. This ellipse-fitting is again affine
invariant. Finally, we double the size of the ellipses
found. This leads to more distinctive regions, due to a
more diversified texture pattern within the region and
hence facilitates the matching process, at the cost of a
higher risk of non-planarity due to the less local char-
acter of the regions.

Problems may arise when more than one local ex-
tremum can be found along the ray. In such case, in-
stead of choosing the global extremum, we select an
extremum by imposing a continuity constraint: in case
of multiple extrema, we select the extremum closest to
the extrema found along the neighbouring rays.

Figure 8 shows some intensity-based regions
(ellipses) and the linked points on which the region
extraction is based.

Note that the resulting elliptical regions are not cen-
tered around the original anchor point (the intensity ex-
tremum). In fact, the whole procedure is pretty robust to
the inaccurate localization of this point. In most cases
(i.e. if the area enclosed by the linked points is more
or less convex), small changes in its position have only
a limited effect on the resulting region if the intensity
profile is indeed showing a shallow extremum. This
is illustrated in Fig. 9, where we repeated the region
extraction starting from different anchor points lying
close to the intensity extremum and having similar in-
tensity values. Although the elliptical regions found are
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Figure 8. Affine invariant regions found with the intensity-based region extraction method and the linked points used to extract
them.

not identical, they are similar enough to be matched. To
highlight the source of the deviations, we also added the
linked points found along the rays, used in the region
construction.

6. Finding Correspondences

Once local, invariant regions have been extracted, find-
ing correspondences between two views becomes rel-
atively easy. This is performed by means of a near-
est neighbour classification scheme, based on feature

vectors of invariants computed over the affine invari-
ant regions. As in the region extraction step, we con-
sider invariance both under affine geometric changes
and linear photometric changes, with different offsets
and different scale factors for each of the three color
bands.

6.1. Normalization

Although it is very well possible to construct a feature
vector that is in itself invariant to all the geometric and
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Figure 9. Robustness of the region extraction to the inaccurate
localization of the intensity extremum.

photometric transformations we consider (e.g. Mindru
et al., 1999), our experiments show that better results
are obtained if one first compensates for (part of) the
deformations through an extra normalization step, ex-
ploiting extra knowledge about the region.

For the geometry-based case, we first transform the
parallelogram-shaped region to a square reference re-
gion of fixed size. Since we know a specific corner of
the parallelogram (from the original anchor point) and
since it is reasonable to assume that the clockwise or-
der of the corners is preserved (i.e. the image is not
being mirrored), the entire affine deformation can be
compensated for in this way.

For the intensity-based case, the situation is slightly
more complex. We can transform the elliptical region
to a circular reference region of fixed size, but (again
assuming the image is not being mirrored) this still
leaves one degree of freedom to be determined (cor-
responding to a free rotation of the circle around its
center). This last degree of freedom cannot be derived
from purely geometric information gathered during the
region extraction. Instead, we determine it based on a
photometric invariant version of the axes of inertia. The
major and minor axes of inertia are extracted as the lines
passing through the center of the circular region with
orientations θmax, θmin defined by the solutions of:

tan2(θ ) + m20 − m02

m11
tan θ − 1 = 0

with m pq the p + qth order, first degree moment (see
Section 4.1) centered on the region’s geometric cen-
ter. This equation differs from the usual definition of
the axes of inertia by the use of these moments in-
stead of moments centered on the center of gravity

weighted with image intensity. This makes them in-
variant to linear intensity changes (including offsets).
Based on these axes of inertia, one can apply an ad-
ditional rotation, that brings the major axis of inertia
into a horizontal position, hence fixing the last degree
of freedom.

Instead of computing the axes of inertia to com-
pensate for the last degree of freedom, one could also
extract features that are invariant under rotation. This
would probably give comparable results. However, re-
trieving the complete affine deformation not only al-
lows to treat intensity-based and geometry-based re-
gions in the same way but also allows to further com-
pare the content of two matched regions in a pixelwise
manner, based on normalized cross-correlation, inde-
pendent of the geometric distortions (see Section 6.3).

Also the illumination variations can be compensated
for in an extra normalization step. This is achieved by
replacing each intensity value I (i.e. R, G or B) by
I ′ = aI +b with a and b such that the average intensity
is 128 and with a spread on the intensities of 50.

6.2. Region Description

Each region is then characterized by a feature vector
of moment invariants. The moments we use are Gener-
alized Color Moments, which have been introduced in
Mindru et al. (1999) to better exploit the multi-spectral
nature of the data. They contain powers of the image
coordinates and of the intensities of the different color
channels.

Mabc
pq =

∫∫
�

x p yq [R(x, y)]a[G(x, y)]b[B(x, y)]c dxdy

with order p + q and degree a + b + c. In fact, they
implicitly characterize the shape, the intensity and the
color distribution of the region pattern in a uniform
manner.

More precisely, we use 18 moment invariants, sum-
marized in Table 1. These are invariant functions of mo-
ments up to second order and first degree (i.e. moments
that use up to first order powers of intensities (R, G, B)
and second order powers of (x, y) coordinates). Since
we already normalized the regions with respect to view-
point and illumination variations, any measurement can
actually be used as an invariant measure, as all vari-
ations have been compensated for already. The rea-
son why we still stick to moments is that these are
more robust to noise. inv[1] to inv[3] are related to the
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Table 1. Moment invariants used for comparing the patterns
within regions after normalization against geometric and photomet-
ric deformations.

inv[1] = M110
00 /M000

00 inv[2] = M011
00 /M000

00 inv[3] = M101
00 /M000

00

inv[4] = M100
10 /M100

00 inv[5] = M010
10 /M010

00 inv[6] = M001
10 /M001

00

inv[7] = M100
01 /M100

00 inv[8] = M010
01 /M010

00 inv[9] = M001
01 /M001

00

inv[10] = M100
11 /M100

00 inv[11] = M010
11 /M010

00 inv[12] = M001
11 /M001

00

inv[13] = M100
20 /M100

00 inv[14] = M010
20 /M010

00 inv[15] = M001
20 /M001

00

inv[16] = M100
02 /M100

00 inv[17] = M010
02 /M010

00 inv[18] = M001
02 /M001

00

correlation between two color-bands. inv[4] to inv[6]
and inv[7] to inv[9] are the x- and y-coordinates re-
spectively of the centers of gravity weighted with one
color-band, while inv[10] to inv[18] are combinations
of higher order moments.

As an additional invariant, we use the region type.
This value refers to the method that has been used for
the region extraction. Only if the type of two regions
corresponds, can they be matched.

6.3. Region Matching

Each region in the first image is then matched to the
region in the second image for which the Mahalanobis-
distance between the corresponding feature vectors is
minimal and below a predefined threshold d . Then, all
regions of the second image are matched in a simi-
lar way to the regions extracted from the first image.
Only a mutual match is accepted as a real correspon-
dence between the two views. The covariance matrix
needed to compute the Mahalanobis-distance has been
estimated by tracking representative regions over a set
of images. Due to the different nature of the different
region types, better results are obtained when different
covariance matrices are computed for each region type
separately. The comparison of feature vectors can be
done in an efficient way using indexing-techniques. At
this moment, only indexing based on the region type
has been implemented.

Once corresponding regions have been found, the
normalized cross-correlation between them is com-
puted as a final check before accepting the region cor-
respondence. This cross-correlation check is not per-
formed on the raw image data, but after normaliza-
tion of the two regions to a fixed-size square or cir-
cular reference region (depending on the region type),
as described in Section 6.1. In this way, the effect of
the geometric deformations on the normalized cross-
correlation is annihilated.

7. Robustness—Rejecting Falsely
Matched Regions

Due to the wide range of geometric and photometric
transformations allowed and the local character of the
regions, false correspondences are inevitable. These
can be caused by symmetries in the image, or sim-
ply because the local region’s distinctive power is in-
sufficient. Semi-local or global constraints offer a way
out: by checking the consistency between combinations
of local correspondences (assuming a rigid motion),
false correspondences can be identified and rejected.
The best known constraint is checking for a consistent
epipolar geometry in a robust way, e.g. using RANSAC

(Fischler and Bolles, 1981), and rejecting all correspon-
dences not conform with the epipolar geometry found.
Although this method works fine in many applications,
our experiments have shown that it may have difficul-
ties in a typical wide baseline stereo setup, where false
matches abound and may even outnumber the good
ones while the total number of matches is rather low.
In that case, many of the randomly selected seven-point
samples contain outliers, resulting in large computation
times (each time rejecting the sample and trying out a
new combination), or even erroneous results (a sample
containing outliers coincidentally yielding a reason-
able amount of matches). The latter case happens more
often than expected, since matches are in general not
randomly spread over the image, but tend to clutter on
linear or planar structures in the scene.

Here, two other semi-local constraints are proposed
that may be used to reject outliers. Both work on a com-
bination of two region correspondences only, hence the
amount of combinatorics needed is limited. The first
one tests the geometric consistency, while the second
one is a photometric constraint. Checking these con-
straints first before testing the epipolar geometry with
RANSAC can considerably improve the results under the
hard conditions of wide baseline stereo. This is akin to
the work of Carlsson (2000), who has recently proposed
a view compatibility constraint for five points in two
views based on a scaled orthographic camera model.

7.1. A Geometric Constraint

Each match between two affine invariant regions de-
fines an affine transformation, matching the region
in one image on the corresponding region in the
second image. Such an affine transformation is in
fact an approximation of the homography linking the
projections of all points lying in the same plane.
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Figure 10. Viewpoint invariance of the region extraction and matching: number of correct, symmetric and false matches found as a function
of the rotation angle with respect to the 0 degrees reference view.

Sinclair et al. (1995) proposed a method to test
whether two rigid plane motions are compatible based
on their homographies H1 and H2. Combining them as
H−1

1 H2 yields a planar homology, whose eigenanaly-
sis reveals one fixed point (the epipole) and one line of
fixed points (the common line of the two planes). They
project this common line to the other image using H1,
and once again using H2. If the two planes are indeed
in rigid motion, the two resulting lines in the second
image should coincide, which can easily be checked.

The geometric constraint we use here is a simple al-
gebraic distance. As it only requires the evaluation of
the determinant of a 3×3 matrix, it can be applied quite
fast. This makes it well suited for applications like ours,
where many consistency checks are performed on dif-

ferent combinations of planes (i.e. matches). To check
whether two correspondences found are geometrically
consistent with one another, it suffices to check whether

det




a23 − b23 b13 − a13 a13b23 − b13a23

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23




≤ δg

with δg a predefined threshold, A = [ai j ] and B = [bi j ]
the affine transformations mapping the region in the
first image to the region in the second image, for the
first and second match respectively. For the derivation
of this semi-local constraint, we refer to Appendix B.
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Figure 11. Scale invariance of the region extraction and matching: number of correct, symmetric and false matches found as a function of the
scalefactor with respect to the reference image.

7.2. A Photometric Constraint

Apart from geometric constraints, photometric con-
straints can be derived as well. Although it is not nec-
essarily true that the illumination conditions are con-
stant over the entire image (due to shadows, multiple
light sources, etc.), it is reasonable to assume that at
least some parts of the images have similar illumina-
tion conditions.

First, we compute for each region correspondence
the offsets and scalefactors of the photometric trans-
formation using moments. Then, given a pair of
region corespondences, we check for their photo-
metric consistency by comparing their photometric
transformations. For two region correspondences to
be consistent, only an overall scale factor is allowed,
to compensate for the different orientations of the
regions.
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Figure 12. Illumination invariance of the region extraction and matching: number of correct and symmetric matches found between the images
shown along the horizontal axis and the reference image shown on the right.

7.3. Rejecting False Matches

Suppose we have N correspondences, each linking a
different local region in image I to a similar region
in image I ′ by N different transformations. For each
combination of two such correspondences, the above
consistency constraints can be checked. A specific re-
gion correspondence is considered incorrect if it is con-
sistent with less than n other correspondences (with n
typically 8 for the geometric constraint and 4 for the
photometric constraint). Hence each good correspon-
dence should have at least n other consistent corre-
spondences. This procedure may have to be repeated
a number of times, since rejecting a correspondence
may cause other correspondences to have their num-
ber of consistent correspondences decreased below the
threshold as well.

After having rejected most false matches among the
region correspondences using the geometric and photo-
metric constraints described above, we apply RANSAC

(Fischler and Bolles, 1981) (a robust method based on
random sampling) to find a consistent epipolar geom-
etry and to reject the remaining false correspondences.
Since the number of false matches has already seri-
ously been reduced, this process usually stops after a
limited number of samples. One must note though that

the computation of epipolar geometry is very sensitive
to small misallignments in the data. The region matches
we have found so far give in most cases only one sta-
ble point correspondence (e.g. the harris corner point
in case of the geometry-based method). In theory, two
more linearly independent point correspondences can
be extracted from the invariant region. However, these
additional point correspondences are insufficiently sta-
ble for the epipolar geometry computation, mainly due
to deviations from our model, such as the object sur-
face not being perfectly planar. This problem can be
overcome by mapping one image onto the other us-
ing the affine transformation, and looking for more
accurate point correspondences within the matched
regions using small baseline matching techniques.
RANSAC is then applied to the resulting set of point
correspondences.

8. Experimental Results

8.1. Viewpoint Invariance

To quantitatively check the viewpoint invariance of our
method, we took images of an object starting from head
on and gradually increasing the viewing angle in steps
of 10 degrees. All images were taken with our Sony
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Figure 13. Example 1: Final region correspondences (top) and epipolar geometry (bottom).
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digital camera, with a resolution of 768 × 576 pixels.
The results of this experiment are shown in Fig. 10.

For each image, the affine invariant regions were
extracted and matched to the regions found in the 0
degrees reference image. Next, the regions were fil-

Figure 14. Example 2: Final region correspondences (top) and epipolar geometry (bottom).

tered using the semi-local geometric and photometric
constraints. Finally, we applied the epipolar test using
RANSAC to automatically select the good matches, and
verified these matches visually, subdividing them into
three different categories: correct, symmetric and false.
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Figure 15. Example 3: Final region correspondences (top) and epipolar geometry (bottom).

With symmetric matches, we refer to those matches
that do not link physically identical points, but points
that can not be distinguished on a local scale due to a
symmetry in the image. For instance, the text on the
drink can used in this experiment contains twice the
letter ‘M’. Moreover, these letters are exactly below one
another, so they lie more or less on the same epipolar
line due to the chosen camera movement. As a result,
there is no way for the system to distinguish between
the regions found on these two letters.

From Fig. 10, one can see that the system can deal
with changes in viewpoint up to 50 or 60 degrees. Only
correct and symmetric matches were left. For larger
angles, the geometric consistency test could no longer
be applied, as the number of matches was too low (re-
member that we need at least n = 8 consistent matches
to classify them as geometrically ‘correct’). The hori-

zontal line added to the figure indicates the minimum
number of matches needed for this geometric filter-
ing stage. It is mainly the change in scale due to the
foreshortening of the object that causes problems, in
combination with more and more specular reflection.

8.2. Invariance to Scale Changes

As scale changes seem to be the weakest point in
the viewpoint invariance of the regions, we performed
some extra experiments to specifically test for the in-
variance to scale changes. For the same test object,
images with different scales were taken by zooming
in and out with our digital camera. As can be seen
from Fig. 11, the number of matches found decreases
with increasing scale change. Nevertheless, one can
conclude that the extraction and matching of affine
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Figure 16. Example 4: Final region correspondences (top) and epipolar geometry (bottom).

invariant regions is able to withstand scalefactors rang-
ing from 2/3 to 3/2. If larger scale changes are to be
expected, a scale space approach should be adopted.

8.3. Illumination Invariance

Since changes in the illumination are harder to quantify
than changes in scale or viewpoint, we decided to use
the images provided by Funt et al. (1998) to test the
illumination invariance of our system, as they provide
very detailed information on the different illuminants
used. Using these images, which are readily available
through ftp,2 allows for easy comparison of our re-
sults with other systems. Figure 12 shows the result.
Each of the images shown below the horizontal axis
was compared with the reference image taken under
halogen illumination shown to the right. The left part

of each image shows the white to black row of the Mac-
beth Color Checker, highlighting the large difference in
illumination. Most of the ‘symmetric’ matches found
were actually matches between these reference squares.
For all images, plenty of correspondences were found,
clearly showing the robustness of our region extraction
and matching to changing illumination conditions.

8.4. Wide Baseline Stereo Examples

Figures 13–17 show some views of scenes taken
from substantially different viewpoints. Note the large
changes in scale in some parts of the images (e.g. Ex-
ample 3), the serious occlusions (e.g. Example 4) and
the extreme foreshortening (e.g. Example 5). Never-
theless, in all cases sufficient matches were found for
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Figure 17. Example 5: Final region correspondences (top) and epipolar geometry (bottom).

Figure 18. Negative examples: Image pairs our system was not able to match.
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an accurate determination of the epipolar geometry.
Sometimes the number of matched regions is pretty
low (e.g. Example 4). However, one must not forget
that a single region correspondence yields three point
correspondences. Each time, the upper part of the fig-
ure shows the regions that contributed to the epipolar
geometry, i.e. those that were matched and survived
both the geometric and photometric filtering as well as
RANSAC. Some corresponding epipolar lines are shown
in the lower half of the figures.

Finally, Fig. 18 shows some examples of scenes
our system was not able to process. Although these
scenes do not seem extraordinarily complex or dif-
ficult, the system failed, mainly due to the different
backgrounds (car-example), the lack of texture on the
objects (both examples), a large amount of specular
reflection (car-example) and non-planarity (simpsons-
example). These images clearly show some possible
future research directions.

9. Conclusion

A new approach to the wide baseline stereo correspon-
dence problem has been proposed, that extends the
ideas of Schmid and Mohr on local invariant features
towards more invariance and hence wider baselines.
In each image, local image patches are extracted in
an affine invariant way, such that they cover the same
physical part of the scene (under the assumption of lo-
cal planarity). These patches or ‘invariant regions’ are
matched based on feature vectors of moment invariants
that combine invariance under geometric and photo-
metric changes. The consistency of the matches found
is tested using semi-local constraints, followed by a test
on the epipolar geometry using RANSAC. As shown in
the experimental results, the feasibility of affine invari-
ance even on a local scale has been demonstrated.

Robust matching is quite a generic problem in vi-
sion and several other applications can be consid-
ered. Object recognition is one, where images of an
object can be matched against a small set of refer-
ence images of the same object. The sample set can
be kept small because of the invariance. Moreover,
as the features are local, recognition against variable
backgrounds and under occlusion is supported by this
method. Another application is grouping, where sym-
metries can be found as repeated structures. Image
database retrieval can also benefit from these regions,
where other pictures of the same scene or object can
be found. Here, the viewpoint and illumination invari-

ance gives the system the capacity to generalize to a
great extent from a single query image. Finally, be-
ing able to match a current view against learned views
can allow robots to roam extended spaces, without
the need for a 3D model. Initial results for such ap-
plications can be found in Tuytelaars and Van Gool
(1999), Tuytelaars et al. (1999) and Turina et al.
(2001).

Appendix A: Affine Invariance
of the Function Extrema

Suppose we have the following geometric and photo-
metric deformations between two views:

[
x ′

y′

]
=

[
a b

c d

] [
x

y

]
+

[
e

f

]




R′

G ′

B ′


 =




sR 0 0

0 sG 0

0 0 sB







R

G

B


 +




tR

tG

tB




with (R, G, B) and (R′G ′, B ′) the three different color-
bands and (x ′, y′) and (x, y) coordinates of correspond-
ing points. In the sequel, we use I and I ′ to refer to
either of the three color-bands R, G or B.

We now prove that the extrema of the functions
given in Section 4.1 are invariant to the above defor-
mations. In other words, for each region � in image I
for which f (�) reaches an extremum, there must be a
corresponding region �′ in image I ′ for which f ′(�′)
reaches an extremum as well, with f (�) = f1(�),
f2(�) or f3(�).

Affine Invariant Extrema of f1(�)

As mentioned already earlier, the first function repre-
sents the average intensity over the region. The extrema
of this function being invariant to the considered de-
formations, can easily be understood intuitively. Here,
we give a more formal proof.

f1(�) =
∫
�

I (x, y)dxdy∫
�

dxdy

f ′
1(�′) =

∫
�′ I ′(x ′, y′)dx ′dy′∫

�′ dx ′dy′



82 Tuytelaars and Van Gool

=
∫
�

(s I (x, y) + t)(ad − bc) dxdy∫
�

(ad − bc) dxdy

= s

∫
�

I (x, y)dxdy∫
�

dxdy
+ t = s f1(�) + t

In practice, s is always positive, such that

f1(�1) > f1(�2) ⇔ f ′
1(�′

1) > f ′
1(�′

2)

Hence, extrema of the function f1(�) are preserved
under the considered deformations. Even if s would
have been negative, extrema would still be preserved,
although maxima would be turned into minima and
vice versa.

Effects of the Deformations on the Center of Gravity

For the other functions mentioned in Section 4.1, it
is important to first fully understand the effect of the
deformations on the center of gravity

pg = (xg, yg)

=
(∫

�
I (x, y)xdxdy∫

�
I (x, y)dxdy

,

∫
�

I (x, y)ydxdy∫
�

I (x, y)dxdy

)

First, let us consider only geometric deformations. In
that case, we get for p′

g = (x ′
g, y′

g)

x ′
g =

∫
�′ I ′(x ′, y′)x ′ dx ′dy′∫
�′ I ′(x ′, y′) dx ′dy′

=
∫
�

I (x, y)(ax + by + e)(ad − bc) dxdy∫
�′ I (x, y)(ad − bc) dxdy

= a

∫
�

I (x, y)x dxdy∫
�′ I (x, y) dxdy

+ b

∫
�

I (x, y)y dxdy∫
�′ I (x, y) dxdy

+ e

= axg + byg + e

y′
g =

∫
�′ I ′(x ′, y′)y′ dx ′dy′∫
�′ I ′(x ′, y′) dx ′dy′

=
∫
�

I (x, y)(cx + dy + f )(ad − bc) dxdy∫
�′ I (x, y)(ad − bc) dxdy

= c

∫
�

I (x, y)x dxdy∫
�′ I (x, y) dxdy

+ d

∫
�

I (x, y)y dxdy∫
�′ I (x, y) dxdy

+ f

= cxg + dyg + f

Hence, the center of gravity behaves as a normal point
under the affine deformations.

Now, let us consider the effect of photometric de-
formations. Here, we investigate the coordinates of the
center of gravity pg relative to the coordinates of the
region center pc.

pc = (xc, yc) =
(

M0
10

M0
00

,
M0

01

M0
00

)

It can be shown that the effect of the photometric de-
formations on pg is a shift towards pc:

x ′
g − x ′

c =
∫
�′ I ′(x ′, y′)x ′dx ′dy′∫
�′ I ′(x ′, y′)dx ′dy′ −

∫
�

x ′dx ′dy′∫
�

dx ′dy′
= . . .

= (xg − xc)

∫
�

I (x, y)dxdy∫
�

(I (x, y) + t
s )dxdy

= (xg − xc)
M1

00

M1
00 + t

s M0
00

y′
g − y′

c =
∫
�′ I ′(x ′, y′)y′dx ′dy′∫
�′ I ′(x ′, y′)dx ′dy′ −

∫
�

y′dx ′dy′∫
�

dx ′dy′
= . . .

= (yg − yc)

∫
�

I (x, y)dxdy∫
�

(I (x, y) + t
s )dxdy

= (yg − yc)
M1

00

M1
00 + t

s M0
00

Affine Invariant Extrema of f2(�) and f3(�)

f2(�) and f3(�) are both composed of two factors, a
ratio of two areas, one of which depends on the center
of gravity, and an expression of moments up to the
second order.

f2(�) = abs

( |p1 − pg p2 − pg|
|p − p1 p − p2|

)

× M1
00√

M2
00 M0

00 − (
M1

00

)2

f3(�) = abs

( |p − pg q − pg|
|p − p1 p − p2|

)

× M1
00√

M2
00 M0

00 − (
M1

00

)2

with q = p1 + p2 − p

The first factor is a ratio of two areas, defined by the
points p, p1 and p2 fixed to the region and the center of
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gravity pg. As we have seen in the previous section, the
center of gravity behaves as a normal, physical point
under the affine geometric deformations, such that this
first factor clearly is geometrically invariant. Also the
second factor can easily be checked to be invariant to
the geometrical deformations.

Next, we show that the effect of the photometric de-
formations on this first factor is similar to their effect
on the coordinates of the center of gravity relative to the
region center, namely a rescaling with the same scale-
factor. This can be understood by the fact that the region
center pc lies on the diagonals of the parallelogram-
shaped region, i.e. on the line connecting p and q on
one hand and the line connecting p1 and p2 on the other
hand, which also form one side of the areas in the nu-
merator (see Fig. 3). Hence the shift in the position of
the center of gravity causes a proportional rescaling of
the area in the numerator:

|p′
1 − p′

g p′
2 − p′

g|
|p′ − p′

1 p′ − p′
2|

= |p1 − pg p2 − pg|
|p − p1 p − p2|

M1
00

M1
00 + t

s M0
00

|p′ − p′
g q′ − p′

g|
|p′ − p′

1 p′ − p′
2|

= |p − pg q − pg|
|p − p1 p − p2|

M1
00

M1
00 + t

s M0
00

This extra scale-factor must be compensated for by
the second component in the expressions of f2(�) and
f3(�). And indeed, the second component seems to
have exactly the inverse scale-factor:

M ′1
00√

M ′2
00 M ′0

00 − (
M ′1

00

)2

=
∫
�′ I ′(x ′, y′)dx ′dy′√∫

�′ I ′2(x ′, y′)dx ′dy′ ∫
�′ dx ′dy′ − ∫

�′ I ′(x ′, y′)dx ′dy′ ∫
�′ I ′(x ′, y′)dx ′dy′

= · · · = M1
00√

M2
00 M0

00 − M1
00 M1

00

M1
00 + t

s M0
00

M1
00

Appendix B: Derivation of a Geometric
Semi-Local Constraint

Consider two images I and I ′. Points in image I are de-
noted with homogeneous coordinates p = (x, y, z)T ,
while points in image I ′ are denoted with homoge-
neous coordinates p′ = (x ′, y′, z′)T . For the coordi-
nates of real world (3D) points, capital letters are used,
such as P = (X, Y, Z ). A homography Hi belonging to
a plane �i defines the following relation between the
projections in images I and I ′ of 3D points lying on the

plane �i

p′ = Hi p

with Hi a 3 × 3 matrix.
Take an arbitrary point p = (x, y, z)T in image I ,

corresponding to the 3D point P = (X, Y, Z )T and
two homographies H1 and H2, corresponding to two
different planes �1 and �2. Then, both H1p and H2p
lie on the epipolar line corresponding to the point p
in the second image. Hence, the following formula for
the epipolar line corresponding to the point p can be
derived

l = (H1p) × (H2p)

where × denotes the vector product.
All epipolar lines pass through the same point e, the
epipole.

∃e∀p : (H1p × H2p)T e = 0

From this property, we can derive a constraint on H1

and H2.
If Hij denotes the j-th column of matrix Hi , this can
be worked out as follows:

∃e∀(x, y, z) : [(xH11 + yH12 + zH13)

× (xH21 + yH22 + zH23)]T e = 0

This is a second-order equation in x , y and z with co-
efficients A, B, C , D, E and F functions of e and Hij.

∀(x, y, z) : Ax2 + By2 +Cz2 + Dxy+ Exz+ Fyz = 0

Since this equation has to be fulfilled for all possible
values x , y and z, all the coefficients in the equation
have to be zero.

A = (H11 × H21)T e = 0

B = (H12 × H22)T e = 0

C = (H13 × H23)T e = 0

D = (H11 × H22 + H12 × H21)T e = 0

E = (H11 × H23 + H13 × H21)T e = 0

F = (H12 × H23 + H13 × H22)T e = 0
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In order for all the above equations to have a solution
e �= (0, 0, 0)T , the following matrix, which is a function
of Hij, must be rank-deficient.

rank




(H11 × H21)T

(H12 × H22)T

(H13 × H23)T

(H11 × H22 + H12 × H21)T

(H11 × H23 + H13 × H23)T

(H12 × H23 + H13 × H22)T




≤ 2

Applied to Local Regions

For local regions, the perspective deformation is
too small to be detected. As a result, only
an affine transformation can be derived. In this
case, the homographies can be approximated by
affine transformations A and B of the following
form:

A =




a11 a12 a13

a21 a22 a23

0 0 1


 B =




b11 b12 b13

b21 b22 b23

0 0 1




The rank-2 constraint derived in the previous section
then becomes:

rank




0 0 a11b21 − b11a21

0 0 a12b22 − b12a22

a23 − b23 b13 − a13 a13b23 − b13a23

0 0 a11b22 − b12a21 + a12b21 − b11a22

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23




≤ 2

Rows (1), (2) and (4) force the epipole to lie at in-
finity. This corresponds to an orthographic projection
model, which indeed leads to affine transformations
between two views of a planar object. But also without
forcing the epipole to infinity there is one constraint
left:

rank




a23 − b23 b13 − a13 a13b23 − b13a23

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23




≤ 2

The actual consistency constraint used in our
experiments is then

det




a23 − b23 b13 − a13 a13b23 − b13a23

a22 − b22 b12 − a12 a12b23 − b13a22 + a13b22 − b12a23

a21 − b21 b11 − a11 a11b23 − b13a21 + a13b21 − b11a23




≤ δ

with δ a predefined threshold.
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Notes

1. Alternatively, one could leave out this second factor, and com-
pensate for the offsets by an appropriate normalization of the
intensities before computing the moments.

2. For more information about these images, see
http : //www.cs.sfu.ca/~color/image db/index.html.
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