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Abstract

In the study of face perception and face anhnation, there is a grow-
ing interest in using 3-D data. The advent of dedicated laser scanners
has proved instrumental in this regard. The availability of 3D face mod-
els makes it easier to change viewpoints and iHuminatlion conditions in
perception experimemds or to build animated likenesses in graphics.
Here we propose {o go one step further and also capture face dynamics
(visemes, epressions) in 3-I. To that end, an active 3-D acquisition
system is proposed, that yields 3-D, fextured snapshots from a single
image. By the fact that data are captured from a single shot, the face
may move during the operation. Alternatively, images can be taken
at video rate and for each frame a 3-I) reconstruction (still textured if
required} can be made. Such 3-D movies can then be used to analyse
facial expressions in 3-D, through the tracking of points or features on
the face. Preliminary experiments in that direction are presented. The
reported work is part of an effort to model facial expressions without
taking recourse to the modeling of the underlying physiclogy.

veseach,

1 Introduction

An ideal authentication system should allow quite some liberty in the heacd
pose of the person to be checked. Similarly, it would be ideal if the person
can be in motion during the control. Insisting on the person freezing before
the system wonld make it rather intrusive or oflensive, or at least a bit of
a nuisance. It seems easier to reach such goals with 3-D measurements of
the face than when only 2-D iimages are taken. From a 3-D description it
is easter o extract viewpoint-invariant characteristics. In order to deal with
moving faces, traditional active devices would pose difficulties, however, as
they vequire scanning operations of several seconds. Moreover, only a few of
such systems yield the surface texture, which is crucial for face recognition by
humans. It stands to reason then to add texture extraction for the recognition
of faces by computers.
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In the case of face animation for virtual actors, avatars, videophone talk-
ing heads, and diverse applications of graphics, the importance of 3-D, tex-
tured face descriptions has also been recognised. Starting from such data,
efforts have been made to build anatomical models, with detailed models for
the skin, nmscles and skull [131. Animation is then guided by the physiolog-
ical processes that govern the dynamiecs of this skin/muscle/skull complex.
Sometimes video data are used to drive such nrodel, based on the 2-1) track-
ing of features. The question is whether a more phenomenological approach
couldn’t be more beneficial, due to its simplicity. At ihe end of the day,
humans don’t have to know about muscles pulling, pushing, and squeezing
skin to ‘know’ all too well whether a facial expression fooks natural or not.
Thus, it secms interesting to model facial dynamics divectly from observa-
tions. This requires measuring the 3-D changes that faces undergo during
expressions and this with a sufficiently frequent, temporal sampling. Even if
in the end intenmediate views would be generated by the interpolation of ex-
tremal positions of the facial features, knowledge about intermediate stages
may suggest the most appropriate interpolation schemes,

The paper proposes a 3-D acquisition method that fullfills several of these
requirements, It extracts 3-D information and the corresponding surface
texture from image data that can be captured at video-rate. This is the
hasis for its capacity to densely sample the changes that 3-1) shapes undergo
over time.

In section 2 the 3-D acquisition system is described, Section 3 ilhustrates
the use of the system for the extraction of 3-1) face shape and texture. Sec-
tion 4 describes a first application, where the data are used to assist police
forces in the identification of offenders. This work includes {he derivation of
a simple model for skin reflectance. Section 5 shows the use of the 3-D data
for the extraction and tracking of facial features such as the lips, the mouth
and the nose. This is useful e.g. to animate a virtual face from the facial
expressions of an actor. The section illustrates this with a simple ‘special
effect’ movie.

2 Three-dimensional face capture

Extracting 3-D information from scenes is a longstanding research issue in
the computer vision commmnity [9]. Two major strands have developed.

A first class are so-called ‘passive’ techniques, thal work with normal,
ambient hght. The reconstruction is based on finding the projection of several
points in different images taken from different viewpoints. If the images are
taken siimultaneously, the scene may contain moving parts and the motion can
evenr be relrieved by processing subsequent camera frames [21]. Moreover,
given the 3-D shape and the multiple views, one is in a good position to
map texture onlo the surface or to try and extract the surface reflectance
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Figure L: a: Original steveo image pair of e face. bt Two views of the
reconsiructed surface.

characteristics in detail.

Passive techniques also pose problems, however. First, the correspondence
problem, i.e. the search for the same points in several views, is still a weak but
essential step. Even with the latest algorithms the preciston of passive, 3-D
recoustrictions compares unfavourably with the active techniques discussed
next. Figure 1 shows the results for a face using a passive technique [18].
Although convincing to some extent, accuracy is wanting when it comes to
person identification or the modelling of well-known persons.

A second class of 3-D acquisition systems are ‘active’ in the sense that
they apply a special illumination to extract the 3-D information {for a review
see eg. [1, 9]). The illwnination should reduce the problem ol finding cor-
respondences, The projected patlerns are often observed with two or more
cameras, but also from a single view can 3-D information be gathered, with
the projector replacing one of the cameras in a slereo system. On the whole,
active lechniques yield higher precision. Simultaneously, the image process-
ing operations are simpler. They obviously are also more intrusive, although
the pattern{s) could be projected using near-infrared light, to which CCDs



are quite sensitive., The projection of the pattern can also mnake it more
difficnlt to extract the underlying surface texture. As a consequence, active
cdlevices can yield misalignments between the shape and its texture, hecanse
they are captured neither simultaneously nor by the same sensor. Also —
and this is particularly important for faces - active systemns usually scan the
abject surface or use a series of subsequent projections. In such cases, the
acquisition time easily gels loo long to deal with object motion.

The sysiem proposed here combines features of both approaches, making
it quite appropriate for 3-D face capture. It uses a special illumination pattern
to obtain good precision, but only a single image 1s used lor the extraction
of the 3-D shape {‘one-shot’ operation}. Irom the same image alsso the
sarface texture is extracted, resulting in a perfect aligninent between the
two. This one-shot system is an improvement over an earlier version by our
tab [23], where the spatial resolution was lower, the system more difficult to
set up, and surface texture was not extracted. The improvement was possible
because the llumination pattern was simplified. Fig. 2(a} shows the setup.
Note that the projector and camera can be put quite close, leaving a small
opening angle between the rays of viewing and projection. The advantage
is that problems of occlusion are minimised and 3-D reconstruction can he
performed until close to the occhuding boundaries of the object’s surface (as
viewed from the camera). Tig. 2(b) shows a detail of the face, so that the
pattern Is clearly visible. It consists of a simple line grid.

i From the perspective of aclive systems, an interesting novelty it that
both 3-1 shape and texture are extracted from a single image. As already
mentioned, there is no alignment problem between the two because they are
derived from the same image. Fig. 3{a) shows an image of a face, (b) the
extracted 3-D shape, and [(¢) the result with the image texture mapped.
Texture extraction is based on filtering out the grid lines from the original
image or, if the person keeps very still, from a second image taken without
the pattern. In all the examples shown in the paper, the forimer approach -
filtering out the Hnes — was used.

The system is not actually a ‘range acquisition’ system. So far, 3D ac-
quisition has been almost synonymous to range — i.e. distance - extraction.
Getling shape via variations in distance might be a costly detour, however.
It usually is the requirement to know absolute distance that complicates the
necessary hardware and calibration. The system yields 3-D shape only up to
scale. This can be easily fixed by giving a single, measured length, if there s
a need..,

It is also useful Lo note that this system is easy to calibrate. It suffices to
show a scenc with two dominant planes (like the corner of the room or a box
for instance) and to specify the angle subtended belween these planes. From
there, the system auntocalibrates. This makes it easy to change the setup of
the camera and the projector or, generally, to transport the system toward
the people or objects to be reconstructed.
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Figure 2: a: Required hardware: o camera, a projector and a compuler. A
reqilar square pattern is preojected on the scene (here the face of the person
sitting on the chair). b: Detail of the face, with the projected paliern.
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Figure 3: a: Original image of a face; by A profile view of the reconstruction;
¢t Texfure mapped reconsiruction. All vesulis were oblnined from the image
ma.

The one-shot nature of this system, i.e. the extraction of the 3-D data
from a single image, makes it possible to take a video sequence of a face, and
reconstruct every frame of it. The result is a dynamic, 3-D reconstruction.
Such dynamic 3-1) sequences could be of particular interest for the study
of facial expressions, the extraction of visemes, etc. The one-shot nature of
this system also allows to extract the 3-1) shape of objects while in motion,
a consideration that might be of particular importance for visual inspection
along production lines. The capture of dynamic 3-1 is still guite rare, but a
few other systems are around. Kanade and coworkers have demonstrated the
extraction of 3-D, whole hody dynamics with a passive system with ahout
50 cameras [21]. Nayar and coworkers [25, 15] used shape from defocus.
Multiple aligned cameras take images of the same scene through a system of
half-translucent mirrors. Their system alsc uses a simple, regular illumination
pattern. To the best of our knowledge, the system doesn’t extract surface
texture, but such an extension would seem feasible.

The system used here is also not alone in its one-shot operation. Hall ¢f
al. [7] developed a grid-pattern method for extracting sparse range images for
shinple shapes, where the identification is based on the interactive labeling of
some line iptersections, Vuori and Smith [24] based their line identification
on the restriction that the objects have a maximal height and lines will fall
i predictable stripes of the image. Therefore, the grid has te remain quite
sparse. Blake et al. [3] use a calibrated stereo setup to observe two sets of
subsequently projected lines. By having the lines intersect the epipolar lines
obliquely, these intersections help narrow down the possible line identity.
Again, lines must not be positioned too close in order for this strategy to
work. As a result, the reconstructions obtained with these systems all have



a rather tow resolution.

Other systems use a “single” image of denser grids, but with somne form of line
coding. Boyer and Kak [4] developed a light striping concept based on colour-
coding. Vuylsteke and QOosterlinck [23] use a binary coding schete where each
line neighbourhood has its own signature. Marnyama and Abe [}4] introduce
random gaps in the line pattern which allows to uniquely identify the lines.
An exception is the work by Chia ef al[6). The authors assume orthographic
projection of a pattern combined with sufficient perspective distorsions in the
camera image. The latter is necessary to identify the lines in the pattern.
They also assume that the intrinsic camera parameters are known. We believe
that the strategy behind the system proposed here is more robust, because
it doesa’t depend on subtle effects of perspective deformations. A unique
feature is that neo attempt is made to identify the lines in absolute terims.
Only the relative positions of the lines in the pattern is used.

More details about the system can be found elsewhere [201

3 INustration of 3-D face reconstructions

This section illustrates some of the typical results obtained with the system.

Fig. 4 shows 3-ID reconstructions for 5 faces. The [eft column shows the
input images. The other three coluinms show the 3-D reconstructions from
different viewpoints. Note the gaps in some of the views (black areas): parts
of the faces that were not visible to the camera could not be reconstructed.
Taking multiple views can remedy this problem. This is illustraled in fig. 5
where 2 views are taken of a face and the resulting reconstructions have been
brought in registration, as shown on the right. In this case, part ol the nose
is hidden for each of the two camera positions. The combined reconstruc-
tion (fig. 5, image on the right) shows that the two reconstructions fit well.
Bright areas are those for which data are available in the two reconstructions,
dark areas correspond fo data extracled from the first view exclusively. The
registration was carried out using the ICP algorithm [5]. The holes in the
reconstructions show that the system successfully handles depth discontinu-
ities. A bigger problem is hair. Typically, hair is not captured well and these
parts are also left open by the system.

In the previous illustration, the strategy has been to use as few images
as possible for the complete reconstruction of a face. The resulting 3-D
descriptions consist of approximately 8000-10000 bilinear patches. 1f this
resolution is too low, one can project a finer grid and either take a higher
resolution camera (e.g. one of the latest digital photo cameras), or zoom in
and compite the 3-D model ont of smaller pieces. The latter is possible by
only moving the camera, and without additional calibration. On the statue,
a grid was projected of 600 x 600 lines. This is too niany to even be visible
it a single image. Hence, one can ‘scan’ the scene by taking a series of more



Figure 4: 3-D reconstructions of § faces. The left column shows the nput
images.



Figure 5: The same fuce from two different camera vicwpoints. The image on
the right shows the superposition aefter registration of the {wo reconsfructions.

detailed images., While doing so, the position of the projecior is kept fixed.
Only the camera is moved around, taking images of the detailed patches. The
setup is calibrated only once, best for the camera position that corresponds
to the most central patch. The patches have to overlap, in order to support
registration afterwards. A series of such images is shown in fig. 6. For every
image a reconstruction is made of the corresponding surface patch. Only the
reconstruction of the patch for which the calibration was carried out will be
‘correct’, however. The olhers have — by approximation — an affine skew,
Therefore, a registration step was implemented that allows them to deform
affinely while being matched. Fig. 7 shows the resulting mosaic of matched
patches. As all the patches are based on a single grid of Hnes, it is easy to
integrate them into a single surface description. As to the texture, this can
be extracted as a weighted sum of the overlapping image lextures. Fig. 8
show the result for the statue. As these results show, because of the high
resolution one can zoom in quite a bit on parts of this structure while keeping
a realistic impression. OF course, the reconstruction is still only a partial one,
Such large, but high resolution parts can in a second pass be vegistered as
well, to form a complete reconstruction,

I the previous examples, the face to be capture remained still. As men-
tioned before, the system holds special promise for the extraction of dynamic
3-I). Fig. 9 shows a few frames of a video taken for the 3-D reconstruction
of facial expressions. The grid was projected onto the face all the time. For
every frame of the video, a 3-D reconstruction was made and the skin tex-
ture was extracted. Hence, not only shape but also texture dynamics are
captured, which is important e.g. to include the blinking of the eyes. Fig. 10
shows the results for the frames selected in fig. 9. The reconstructions are
viewed from three different directions. Armed with such dynamic 3-1> data,



Figure 6: A series of detailed image of a Greek statue. The corresponding
paiches overlap.

Figure 70 The mosaic of paiches afler registration.



Figure 8: Six views of the reconstrucied stelue, The reconstruction has been
butll from different patches, as explained in the et



Figure 9: Three frames oul of a video sequence showing a gesturing face



Figure 10: Texfure-mapped 3D reconstructions for the frames of fig. 9 shown
Jrom 3 different viewpoints.



it is tempting to use the observed changes directly as a means for driving
face animation suites. Rather than going through the painstaking process
of modelling the skull, muscles, and skin, the 3-D optical flow of the data
could be calculated, the typical motions could he extracted for different facial
expressions over several individuals, and applied to the corresponding points
on other faces, much in line with the approach pioneered by Thoinas Vetler
{cfr. same volume).

4 Forensic applications of 3-D face models

Three-dimensional face data can play a useful role in the identification of
criminals. The comparision of surveillance video data and mugshots of po-
tential offenders or suspects often is a difficult task. Surveillance cameras
typically look down upon the scene, whereas mugshots usually are frontal or
profile pictures. Similarly, the illumination conditions can be quite different.
Sometimes the police forces will take a suspect to the scene of the crime and
images can be taken with at least the same camera and from a similar view-
point. Such procedure is time consuming, expensive and not always without
risk, liowever.

The availability of a 3-D head model for a suspect can alleviate such
problems considerably. Tt then becomes possible to depict a suspect’s head
in a stmilar 3-1 position and to emulate the lighting that was in place at the
time of the crime. It is then much easier to make direct comparisons with
the surveillance data. 1t becomes e.g. possible to overlay a mumber of facial
features and to check whether the rest of the faces fall in registration.

The possibility to show a 3-D face model from different relative view-
points, including those of the original surveillance cameras, is obvious. The
emulation of changing illumination is not so obvious at this point. The fex-
{ure that is mapped onto the faces is obtained from the image that is used for
the extraction of the 3-D shape. Image based texture does not yield the true
surface reflectance, however, and this is needed to simulate changes in illu-
mination. Therefore, from the image texture, the illumination at the time of
data capture has to be decoupled from the surface reflectance characteristics.
In general, this is a very difficult problem. Fortunately, the situation here is
less complex, because the angle of the incoming (projected) light is calenlated
explicitly when the system is calibrated. Armed with the 3-D shape and the
kuowledge of where ihe light is coming from, reflectance modelling becomes
much easier. Nevertheless, sonie problems remain, because the derivation
of a BRDI" wonld require a sufficient number of samples. To that end, as-
sumptions have Lo be made on parls of the face having similar reflectance
characteristics. Moreover, with the current setup the angle between viewing
and projection is always small. It is also a bit naive to assume that all light
is coming from a single direction, i.e. from the projeclor. In a typical room,



there will be ambient light. So far. our work in this area has been restricted
to the modelling of the lalter effect.

Our preliminary experiments start with the assumption that Lambertian
reflection is a good model for most of the face. This might seem far-fetched
in view of the observations that have heen made for diffuse reflection from
real surfaces [1G]. The angle between the rays of projection and viewing is
quite small {typically 107 or less) and under these conditions the Lambertian
inodel can be expected to apply rather wel {28]. Assuming the [ace surface
is Lambertian,

I

PP —
! cos(a)

with 4 the albedo, I the image intensity, and o the angle between the surface
normal and the incoming lght. Using this model, the resulting albedo is
shown in fig. 11b. One would expect to find values that are more or less

b

d

Figure L1 ar Original texture mapped surface. b: ‘Albedo’ for Lamberlion
surface. ¢ ‘Albedo’ with the proposed lighting model. dt Black areas denote
places where speeular reflections may occur,

constant over the face, but under the jaw substantially higher values are
{ound. This clearly is not correct, but it is in line with the expectations about
diffusely reflecting surfaces. It is typical that the Lambertian model yields
albectos that are Loo high where the normal on the surface deviates strongly
from the incoming light direction [27]. A second factor that could contribute



is ambient light. This assumption was tested by refining the illomination
model. In addition to the incoming, directed lght, it was assumed that there
was a constani, omnidirectional ambient component (e.g. reflections from
the walls etc.). In that case

A~ wmf——, with  f(a) = L =y 4 y.cos{a}
fla)

with v a number between 0 and 1 that determines the relative weight of the
directional and ambient light components, In a little experiment, the value of
~ was chosen as lo minimize the variations in ‘albedo’ over the face. I'or the
example image, the optimal value came out to be v = 0.3 and the resulting
albedo is given in fig. 1lc. As can be seen, there are still substantial variations
in the value of the albedo. The brighter regions correspond to spectlarities,
which would require additional care. The regions underneath the chin and
the jaw are darker now. This again is a deviation from the expectations.

It therefore seems necessary to modify the Lambertian model itself, both
by refining it according o the refined models for diffuse reflection {16, 27, 28]
and by adding a specular component. The places where specular reflection
might occur can be predicted rather well. The strongest specularities will
be cansed by the directional light and its incident direction is known with
respect to the surface normal and the viewpoint of the camera. Fig. iid
shows the places where the mirror conditions for incoming and outgoing light
are satisfied {black dots). It is interesting to note that these positions can
he found without a 3-1) reconstruction. They correspond to positions where
the grid looks square in the camera immage. This is caused by the fact that
enlarging and foreshortening eflects of projection and viewing resp. cancel
out, due to the mirror configurations of projecting and viewing rays.

An example of a virtual change of Hlumination, based on the albedo re-
sulting from the mixed lighting model, is shown in fig. 12

5 Facial feature extraction in 3-D

Most current work on facial feature extraction takes video sequences as input.
It has proved not so straightforward to achieve good robustness from such
images. It can e.g. be very difficult to extract the lips, certainly if the images
contain a complete Face and the resolution of the mouth is not so high. In
order to build stable lip detectors and trackers researchers usually had to
control the viewpoint, to zoom in on the mouth area or to use lipstick to
increase contrast (see e.g [11, 12, 2| for state-of-the-art contributions).

For one thing, the availability of 3-D data can help to reduce the influence
of the viewpoint, through the use of viewpoint invariant geometrical features.
What we propose is a kind of syntactical approach to facial feature extraction,
much in the tradition of the face recognition literature but based on 3-D



Figure 12: A simulated change in dlumination (right image) on the basis of
the original view {Ileft image).

data. The first step is to detect the nose as the point where both principal
curvatures &y and ks are karge. The nose tip can thus be defined as the point

where one finds
max(z min{x), K2))
W

in some window with width IV around it. The position of the nose tip gives
a first indication of the location of the mouth area. Each lip can be modeled
as a long stretched region with one large and one small principle curvature.
Furthermore it is assumec that both lips have the same extent, lie almost
parallel to eachother, and have approximately the same carvature. Both hps
are determined simultaneously as

. pe P f’ l - t..
max( g min(gupper e lower linyy

lip region

with wy the largest principal curvature. Simifar methods can be applied to
find the evebrows and the chin.

The results of the nose and mouth extraction procedures arve illustrated on
a series of Images. A video sequence was taken of a talking face. Throughout,
the reconstruction grid was projecled onto the face. Fig. 13 shows 3 frames
from the talking head sequence. Fig. 14 shows a part of the original images,
with the position of the nose indicated with a point and the lips as two line
segments. Both the nose and lips have been detected at a resolution given by
the squares of the pattern. Each frame was treated separately, so no tracking
was used to improve the results and the results therefore lustrate the quality
that can be expected from a single view. As can be seen, the position of the
nose point is stable and the lip lines nicely stick to the upper and lower parts
of the upper and lower lips, also when the teeth become visible,
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Figure 15 §-D mouth shapes {visemes) for /m/ (left) and /n/ (right).

Facial feature tracking is useful for several applications. One is the cre-
ation of intelligenl himan-machine interfaces, The machine can be made to
look at the facial expressions an adapt its behaviour accordingly. Another
example is ‘visual speech’. In noisy environments, the performance of speech
recognition systems can be improved by simultaneously looking at the mouth.
Rather than apply speech recognition or lip reading in isolation, both can be
nsed to complement each other. As an example, /m/ and /n/ sound very
similar, but can be distinguished quite easily by their ‘visemes’, t.e. the shape
of the mouth area, This is illustrated in fig. 15. A further example where
facial features have a role to play is in the world of virtual actors, special
effects, and related issues in the postproduction industry for broadcasting
and the movies. Fig. 16 shows six frames of a small movie. The face was
put through a virtual ordeal, heing submerged, deformed, tossed and turned.
The input was the gesturing face sequence already shown in fig. 10. In order
to implement this demo, facial features like the nose and chin were automali-
cally detected and deformed. Note how also the orientation and ilhunination
constantly change. Achieving the same level of realism using graphics-based
aniination would take quite an effort.

6 Conclusions and future work

The paper focused on an active technique to generate 3-D models of faces.
These were used for the extraction of basic textural and geometric features.
The proposed 3-D acquisition method also allows capturing dynamic 3-D
data, rendering it especially useful for the analysis and reconstruction of
facial expressions and visemes. In summary, the main characteristics of the
proposed acquisition method are:



Figure 168: A number of frames oul of the VR demo sequence.



1. the required hardware is minimal - a slide projector, a camera and a
computer — and hence the system is cheap:

2. the calibration is simple, requiring no exotic calibration objects or pat-
terns, and making the system easy to transport;

3. the acquisition time for the necessary input is that one of a single image
at standard video frame rate, therefore head motion is nol a problem
and can be captured;

4. the spatial resolution is sufficiently high for most facial feature extrac-
tion Lasks:

5. the output is a mesh of connected points, rather than a mere clond of
points, hence the topology of the surface is known;

6. it extracts realistic surface texture, in colour if required;
Planned work encompasses the following aspects:

¢ Speeding up the system. Currently it takes a few minutes for the ex-
traction of the 3-D shape and texture for a single frame. A first and
self-evident improvement would be to exploit the temporal continuily
that exists between the shapes and textures of subsequent frames. All
dynamic resulis shown in this paper have been obtained by carrying
out the reconstruction of each frame from serateh. In fact, the stability
of the reconstructions when viewed as a video testifies to the precision
of the methaod.

o Refining the skin reflectance model. Given the rather detailed informa-
tion from the image textured 3-D models, it seems worthwhile spending
more time on the derivation of refired skin reHlectance models.

e Combining photometric and geometric cues. For the extraction of the
facial features only geometrical cues were used. Combining these with
texture cues looks like a promising avenue.

¢ Extending the applications. We have plans to work on several appli-
cations of 3-D faces. One is building tools that assist the police forces
with the identification of critninals. Another is the animation of virtual
actors based on a real actor’s performance, or visual speech extraction.
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grant from the Flemish Institute for the advancement of Science and Tech-
nology in Industry (IW'T). The authors also gratefully acknowledge support
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