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Abstract— The idea of Airborne Wind Energy (AWE) is to
generate power by flying a tethered airfoil across the windflow.
Tethered flight is a fast, strongly nonlinear, unstable and
constrained process, motivating control approaches based on
fast Nonlinear Model Predictive Control (NMPC) and state
estimation approaches based on Moving Horizon Estimation
(MHE). In particular, the start-up phase of AWE systems
is an involved procedure, and starting and landing using
NMPC has not been investigated yet. In this paper, a control
strategy for starting-up AWE systems is proposed, based on a
rotating carousel that is currently built at the KU Leuven. A
computationally efficient 6-DOF control model for a small-scale,
rigid airfoil is presented. We present and investigate a control
scheme based on receding-horizon Nonlinear Model Predictive
Control to track reference trajectories and Moving Horizon
Estimation to estimate the actual system state and parameters.
The MHE shceme is able to estimate also the wind speed, given
no direct wind measurement.

Keywords : flight control, fast NMPC and MHE, trajectory
tracking

I. INTRODUCTION

Over the last years, conventional wind turbines have grown
in size and mass up to a scale at which the major challenges
are posed by the structural loads [1], [2]. The main idea
behind Airborne Wind Energy (AWE) is to eliminate all the
elements of the system which are not essential for power
extraction, resulting in a much lighter structure that only in-
volves an airfoil tethered to the ground. In this configuration,
higher altitudes can be reached and the swept area is not fixed
by the structure of the system, but can be optimized so as
to maximise the extracted power. The system is thus free to
operate in previously inaccessible portions of the wind field,
where higher wind resources can be found. In the seminal
paper [3], crosswind flight has been proposed as the most
efficient method to extract power from the airmass. Having
the airfoil flying at high velocity across the wind direction,
two options have been proposed to extract the power. The
first one is based on a pumping cycle divided in two phases,
having the system a) reeling out the tether while the airfoil
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strongly pulls it and b) reeling in the tether while the airfoil
flies back at low lift. The second option consists in flying
at constant tether length using on-board turbines to generate
power.

The potential of this technology has been established in
theory [3], nevertheless many engineering questions still
need to be addressed for a practical implementation. In the
design of an AWE system, control issues are still a challenge
that needs to be adequately addressed. The system needs to
be operated in very different stages, including a) launch and
retrieval, and b) power generation. The problem of control
during power generation has been investigated in [4] and
is the object of further research. This paper focuses on the
problem of control during the launch and retrieval of the
airfoil for a pumping-mode application.

The system dynamics are strongly nonlinear and actuator
limitations as well as path constraints (e.g. the flight en-
velope) need to be satisfied by the controller. This paper
proposes to tackle the control problem through Nonlinear
Model Predictive Control (NMPC), which accounts for con-
straints and nonlinearities. The system dynamics are also
strongly influenced by the wind speed and direction, which
need to be known by the controller and can often not
be measured reliably. Moving Horizon Estimation (MHE)
features combined state and parameter estimation, allowing
for online estimation of unmeasured parameters.

Both NMPC and MHE require to compute online the
solution of an optimal control problem. When classical
implementations of those techniques are applied to fast
processes, two issues arise: a) the computational time can
become too large to allow real time implementations, and b)
the latency between the measurements and the application
of the new control input can be excessively large, hence
introducing significant delays in the system dynamics.

AWE systems exhibit fast, unstable and perturbed dynam-
ics, thus the aforementioned issues become critical for the
application of the NMPC and MHE scheme to a real system.
The Real-Time Iteration (RTI) scheme [5], [6] addresses both
issues by performing only a single Newton-type iteration
per sampling instant, and making use of the initial value
embedding. The initial value embedding allows to solve
the problem efficiently, but also to prepare most of the
computations before the initial state is known. Once the state
estimate is available, the system has been already simulated
and the sensitivities computed, thus the solution requires only
few computations, resulting in a negligible latency.

In [4], [7] a fast NMPC controller based on the RTI
scheme was successfully tested for the control of a tethered



airfoil for power generation in the presence of wind distur-
bances. In [8] sampling times of 1 ms were obtained with a
simple model. The model considered the airfoil as a point-
mass, assuming a) a perfect control of the time derivative of
the lift coefficient CL, b) a perfect control of the roll rate,
c) that the side slip is perfectly cancelled by some ad-hoc
control, and d) that the yaw rate is unbounded. Because these
assumptions are not realistic in practice, a more elaborate
control model is required.

In this paper a model is used, that considers the airfoil
as a rigid-body, 6-DOF object interacting with the air mass.
The full rotational dynamics are modeled and it is assumed
that the aileron and elevator deflection rates are directly
controlled. A control scheme based on MHE and NMPC
using the proposed model and tracking a static reference is
presented, resulting in a computational performance that is
suitable for a real-time application. The problem of defining
a reference trajectory that robustly satisfies the problem
constraints is beyond the scope of this paper.

This paper is organized as follows. The process model is
presented in Section II, the MHE and NMPC schemes are
proposed in Section III. The control strategy for the launch
and retrieval phases is detailed in Section IV. Simulation
results are presented in Section V. Future developments and
conclusions are proposed in Section VI.

Contribution of the paper: this paper proposes a control
scheme for the rotational startup, based on an efficient
formulation and implementation to allow for a real-time
application. The MHE is formulated in order to estimate
the wind speed and direction in the absence of direct mea-
surements, thus increasing the robustness of the proposed
scheme.

II. SYSTEM MODEL

A. Plane Model

The airfoil is considered as a rigid body having 6 degrees
of freedom (DOF). The position of the airfoil center of mass
is described through a set of Cartesian coordinates {x,y,z}
relative to the rotating reference frame eT , attached to the
carousel arm tip. The reference frame E is attached to the
plane, with the x-axis pointing to the nose of the plane, the
y-axis aligned with the left wing and the z-axis defined so
as to yield a right-handed orthonormal frame. The change of
reference frame E → eT is obtained by the rotation matrix
R = [e1 e2 e3]. In this paper, a full parametrization of R is
used, as already proposed in [9].

Let P = [x y z]T , PT = [rT 0 0]T , with rT the arm length
and Rδ the matrix defined by a vertical rotation of the
carousel by an angle δ . Using PE = Rδ (P+PT), the kinetic
and potential energy functions associated to the airfoil read:

TA = 1
2 mAṖT

E ṖE + 1
2 ωT JAω, VA = mAgz,

The Lagrangian associated to the translational dynamics of
the system reads:

L= TA−VA +µc, c =
1
2
(
PT P− r2) ,

where r is the tether length. Note that the tether kinetic and
potential energy has been neglected in this model.

As the carousel inertia is much bigger than the plane
inertia, direct control of the second time derivative of W =
[r δ ]T can be asssumed. The dynamics of the tethered plane
are given by:

M0

 P̈
ω̇

µ

= G, G =

 F−∇PVA
T −ω× JAω

−c̈0

 ,
M0 =

 mI3 0 ∇Pc
0 JA 0

(∇Pc)T 0 0

 , (1)

Ṙ = RΩ−Rδ Ṙδ R,

where F and T are respectively the aerodynamic forces and
torques [10], which yield strong nonlinearities in the model
equations. The angular velocity matrix Ω is given by Ω=ω×
and c̈0 is given by:

ċ = (∇Pc)T Ṗ+(∇W c)TẆ ,

c̈ = (∇Pċ)T Ṗ+(∇Ṗċ)T P̈+(∇W ċ)TẆ +(∇Ẇ ċ)TẄ

= (∇Pc)T P̈+ c̈0. (2)

Because a Cartesian coordinate system is used, the gener-
alized forces F in (1) are given by the sum of the aerody-
namic forces acting at the airfoil center of mass, projected in
frame eT. Introducing the relative velocity v, i.e. the velocity
of the airfoil w.r.t the air mass given by:

v =
[

ẋ− δ̇y, ẏ+ δ̇ (rA + x), ż
]T
−RT

δ
w,

where w = [wx,wy,0]T ∈W⊂ R3 is the wind velocity field.
The norms of the lift and drag forces are given by [11]:

‖FL‖=
1
2

ρCL‖v‖2, ‖FD‖=
1
2

ρCD‖v‖2,

where CL and CD are the lift and drag coefficient respectively,
ρ is the air density and the airfoil surface A has been included
in the coefficients CL and CD.

The lift force is orthogonal to the relative velocity v,
moreover, it is assumed in this model that the lift force
is orthogonal to the airfoil transversal axis spanned by Ey,
therefore the lift force is collinear to the vector L given by:

L = v×Ey.

Note that L is normed to ‖v‖. The drag force is defined as
collinear and opposed to the relative velocity v. The lift and
drag forces, FL and FD acting on the airfoil are therefore

FL =
1
2

ρCL‖v‖L, FD =−1
2

ρCD‖v‖v.

In order to compute the lift and drag forces in frame eT,
vectors Ey and v shall be projected in eT. The resulting total
aerodynamic force is:

FA =
1
2

ρ

(
CL [v]eT

× e2−CD [v]eT

)
‖v‖,



For the aerodynamic torques the following model is pro-
posed [11]:

TA =
1
2

ρ‖v‖2

 S 0 0
0 C 0
0 0 S

 ·
 CR

CP
CY

 , (3)

where S is the wing span, C the wing chord. The lift, drag,
roll, pitch and yaw coefficients, CL, CD, CR, CP and CY
respectively, are given by [12]:

CL = Cα
L α +Cp

Lup +Cr
Lur +C0

L,

CD = Cα
Dα +Cα2

D α
2 +Cβ2

D β
2 +Cp

Dup +Cr
Dur +C0

D,

CR = −RDω1 +Cβ

RβT +Cαβ

R αTβT +Cr
Rur,

CP = Cα
P αT +Cp

P up +Cr
Pur +C0

P,

CY = Cβ

YβT +Cαβ

Y αTβT, (4)

where α is the aircraft angle of attack, αT the tail angle of
attack, and βT the tail side-slip angle, and ur, up are the
ailerons and elevator deflection respectively. In this paper,
we assume that the time derivatives of the deflections, u̇r
and u̇p, are directly controlled. The aerodynamic coefficients
have been estimated for the small scale setup at KU Leuven
through wind tunnel experiments and in-flight estimation
[10]. The tail effective velocity νT is:

νT = ω×

 −LT
0
0

+ν , (5)

where the parameter LT stands for the tail effective length.
The angles α , αT, β and βT are well approximated by:

α =−νz

νx , αT =−
ν

z
T

νx
T
,

β =
νy√

(νx)2 +(νz)2
, βT =

ν
y
T√

(νx
T)

2 +(νz
T)

2
. (6)

In this paper the tether drag has been neglected. NMPC
has been tested in simulations with this an accurate drag
model, but the results have shown that the difference in the
trajectories is negligible.

All model parameters can be found in [10]. In the follow-
ing, the process dynamics and the process initial conditions
will be put in the form:

M(X)

[
Ẋ

µ

]
= f (X,U,w) , C (X(t0)) = 0,

where f and M lump together the process dynamics de-
scribed in this section. The control vector is given by

U =
[
r̈, δ̈ , u̇r, u̇p

]T
∈ R4 and the state vector is given by

X=
[
P, Ṗ, e1, e2, e3, ω1, ω2, ω3, r, ṙ, δ , δ̇ , ur, up

]T
∈ R24.

B. Measurement Model

The available measurements are coming from the sensors
installed on the carousel and on the plane at the KU Leuven
and summarized in Table I. Two cameras provide the position
of 3 LEDs installed on the plane. The data is passed to the

Sensor Measurements Standard deviation

IMU Linear acceleration 0.25 m/s2

IMU Angular velocity 0.025 rad/s
Cameras LED position 25 px
Encoder Tether length 2.5 ·10−3 m
Encoder Carousel angle 2.5 ·10−3 rad
Encoder Control surface angle 2.5 ·10−4 rad

TABLE I
AVAILABLE MEASUREMENTS

algorithm as the position of the marker uM in the camera
plane, given by the pinhole camera model:

uM = PCRC (RpM +P) ,

where pM is the position of the marker in reference frame
E, RC is the rotation matrix describing the orientation of the
camera and PC is the camera projection matrix. Matrices RC
and PC, as well as vector pM are fixed parameters that have
been estimated through camera calibration.

An Inertial Measurement Unit (IMU) is mounted on the
plane, which provides measurements for the accelerations
and the rotational velocities. While the mounting point of
the IMU is assumed to be in the center of mass, the rotation
matrix of the IMU with respect to the plane frame RIMU has
been identified. The IMU model is thus

aIMU = RT
IMU

(
P̈+[0 0 1]T g

)
,

ωIMU = RT
IMUω,

where aIMU are the measured accelerations and ωIMU are the
measured rotational velocities.

Additional measurements come from the encoders placed
on the rotation axis of the carousel and on the winch, which
provide direct measurements of the rotation angle δ and the
tether length r. In the following, the outputs of the system
will be lumped together in the output function y(X).

C. Constraints

The following control input and state bounds are proposed:

−20 rad/s ≤ u̇k ≤ 20 rad/s, k = {r, p}
−0.5 m/s2 ≤ r̈ ≤ 0.5 m/s2,

−30 deg/s2 ≤ δ̈ ≤ 30 deg/s2,

−0.3 rad ≤ uk ≤ 0.3 rad, k = {r, p}
−1 m ≤ z (7)

In addition to the previous constraints, in order to keep
the system in the region where the model assumptions are
valid, the following path constraints need to be considered:

−0.1 ≤ CL (X,w) ≤ 1.1,
λ (X,w) ≤ 0. (8)

Constraint λ ≤ 0 is required to keep the tether under tension
(model Assumption 1). Constraints on CL are required to
prevent the airfoil from stall.

In the following, (7) and (8) are lumped together as the
inequality constraint function h(X,U,w)≤ 0.



III. CONTROLLER SYNTHESIS

A. NMPC Formulation

It is proposed here to formulate a receding horizon NMPC
scheme using a least squares (LSQ) function penalizing the
deviation of the process control inputs and states from the
reference trajectories. The NMPC is based on repeatedly (k =
0,1, ...) solving the dynamic optimization problem:

Uc(·) = argmin
U(·),X(·),µ(·)

1
2
(
‖X−Xr‖PLQR

)
t=t0+TP

+
1
2

∫ t0+TP

t0
(‖X−Xr‖Q +‖U−Ur‖R)dt,

s.t. M(X)

[
Ẋ

µ

]
= f (X,U,w) ,

X(t0) = X̂(t0), h(X,U, ŵ)≤ 0, (9)

where tk = k Ts and Ts is the NMPC sampling time, TH the
NMPC prediction horizon, Xr and Ur define the state and
control reference and Q, R and PLQR are constant positive-
definite weighting matrices. Vectors X̂(tk) and ŵ(tk) are the
process state and wind velocity estimated at time instant tk
by solving problem (10).

Note that the process state estimate must satisfy the con-
sistency condition C

(
X̂(ti)

)
= 0. However, the consistency

conditions are enforced by the state estimator, and therefore
need not appear in the NMPC formulation.

The choice of the weighting matrices Q and R is the result
of a tuning procedure based on simulations. To compute
PLQR, the Riccati equation needs to be solved using the
chosen weighting martices Q and R. As the system is
modeled by using non-minimal coordinates, invariants are
present in the dynamics due to: a) the tether constraint
C(t) = 0 and b) the orthonormality of the rotation matrix
RT R= I3. Invariants correspond to uncontrollable modes with
associated zero eigenvalues and the Riccati equation does not
have a solution. To recover the existence of the solution of the
Riccati equation, the stabilization of the invariants proposed
in [9] has been used.

B. MHE Formulation

It is proposed here to formulate a MHE scheme using a
least squares (LSQ) function penalizing the deviation of the
process control inputs and outputs from the measurements.
The MHE estimate of the state X̂(tk) and parameters ŵ(tk)
is computed by repeatedly (i = 0,1, ...) solving the following
dynamic optimization problem:

min
U(·),X(·),µ(·),w(·)

1
2

∫ t0

t0−TE

(
‖y(X)− ȳ‖2

QE
+‖U− Ū‖2

RE

)
dt,

s.t. M(X)

[
Ẋ

µ

]
= f (X,U,w) ,

C(X(t0)) = 0, h(X,U,w)≤ 0, (10)

where y(X) is the system output function defined in Section
II-B, ȳ the corresponding set of measurements and QE the
corresponding covariance matrix. The windspeed w is a
parameter that is also estimated by the scheme. The controls

computed by the NMPC scheme can differ from those
actually applied to the system, due to actuator noise and
inaccuracy. The control inputs are thus also included in the
MHE formulation as decision variables and their deviation
from the inputs provided by the NMPC Ū is penalized with
weights RE .

C. The Direct Multiple Shooting Method
The system dynamics being unstable, the problems (9)

and (10) are best solved using simultaneous approaches [13]
such as multiple shooting or collocation. In this paper, a
discretization on the uniform time grid T = {tk ∈ R, k =
1, . . . ,N | tk < t j, ∀k < j} based on the Direct Multiple
Shooting method [14] has been used. The discrete-time
formulation is thus obtained by independently integrating
the system over each time interval [tk, tk+1] and the path
constraints are evaluated on the selected time grid T. The
basis functions for the control vector parametrization (CVP)
have been chosen piecewise constant. The discretization
of both (9) and (10) yields a least-squares NLP, that can
be efficiently solved with a Gauss-Newton algorithm. The
dimension of the resulting QP is reduced by condensing [15].

D. The Real Time Iterations with Shift
The Real Time Iteration scheme is based on solving only

a single full Newton-type iteration per sampling instant.
Thanks to the initial value embedding, the computed solution
is a good approximation of the exact solution. The needed
computations for the RTI scheme reduce to the computation
of the sensitivities of the problem and the solution of a single
QP. In this context, a clever initialization of the algorithms
is crucial to guarantee contractivity of the scheme [5].

Based on the solution at the previous time instant, the
initial guess for (9) and (10) is obtained by shifting the
state and control vectors X and U in time. The last element
of each vector needs then to be defined. For the MHE the
last controls are set to the ones applied to the system and
the last states to the ones predicted by the previous NMPC
solution. For the NMPC, the last controls are computed
using the discrete-time LQR formulation that yields the
weights for the terminal cost, and the states are obtained by
forward integration of the dynamics. Note that in the ideal
case of tracking a feasible steady-state reference, without
perturbations nor noise, the computed initial guess coincides
with the exact solution to problems (9) and (10).

The initial value embedding consists in introducing the
initial value in the NLP and constraining it to match the
estimated state of the system. This makes it possible to sim-
ulate the system, compute the sensitivities and thus run most
of the computations before the current estimated state X̂(t0)
becomes available. Once the estimated state is available, the
computation of the new controls can be done in a very short
time by solving the QP prepared in the previous phase. See
[5], [6], [16] for a detailed description of the RTI scheme.

E. ACADO Code Generation
In order to meet the real-time requirements, the code

generation tool of ACADO [6], [17] has been used. This
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Fig. 1. Aircraft trajectory 3D plot (thick line) with turbulent wind. Left
figure (system seen from a fixed point of view): the MHE estimates are
shown as circles and the carousel armtip trajectory as a thin line. Right
figure (system seen from the carousel arm tip): the MHE estimates are
shown as circles and the carousel armtip as a black dot.

tool exports an efficient algorithm based on Direct Multiple
Shooting and the RTI scheme. The resulting C code exploits
the structure of the specific problem and avoids all irrele-
vant or redundant computations. The effectiveness of code
generation in terms of reduced computational time, has been
shown in [6], [18].

F. NMPC and MHE Tuning

The NMPC prediction horizon was set to TH = 1s. The
CVP is based on N = 10 elements of uniform duration
T NMPC

cvp = TH/N. The system dynamics are discretized over
the shooting intervals via an implicit Gauss-Legendre Runge-
Kutta integration method of order 2. The NMPC sampling
time Ts = ti− ti−1 was chosen as Ts = Tcvp. Matrix Q was
chosen diagonal, with diag{Q}= [ 10−3 16, 10−2 118], where
1n is a row vector of dimension n, filled with ones. The
remaining weights in (9) were chosen as diag{R}= 10−2 14
and PLQR as the solution to the Riccati equation computed
with the chosen weights Q and R. Note that the units of
the weights are defined consistently with the variables they
correspond to, so as to yield a dimensionless cost.

The chosen MHE estimation horizon was set to TE = 1s.
The CVP is based on N = 10 elements of uniform duration
T MHE

cvp = TE/N. Matrix QE was chosen so as to match the
variance of the measurement noise, given in Table I. Based
on the same variance, Gaussian noise has been added to all
measurements in the proposed simulations.

IV. START AND LANDING STRATEGY

For a tether length r = 0 the system is in a singular
configuration and the proposed model is not valid. In practice
such a configuration is undesirable and the airfoil can be
docked to a support at r 6= 0.

At very short tether lengths, the system is open loop
stable. The control strategy can thus consist in reeling out
the tether until a minimal length is reached. By keeping the
system in the open loop stable region, MPC and MHE can
be warm started. After this phase of initialization, the control
algorithms can safely control the process. A similar strategy
can be used for landing: the controller needs to bring the
system into the open loop stable region and, from there, the
tether can be reeled in until the airfoil docks to the carousel.

In this paper it is proposed to track a static reference
trajectory, obtained by computing the equilibrium for given
height z = zr, tether length r = rr, rotation speed δ̇ = δ̇r and
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Fig. 2. Lift coefficient CL and tether tension Γ for the given trajectory.
The path constraints on those variables are never active.

Time zr [m] rr [m] δ̇r [rad/s]

5≤ t < 11 0 1.2 2π

11≤ t < 23 2 6.0 1.5π

23≤ t < 35 0 1.2 2π

TABLE II
REFERENCE TRAJECTORY FOR THE NMPC.

no wind (w = 0). The NMPC and MHE optimization prob-
lems being nonconvex, convergence guarantees hold only for
initial conditions beeing sufficiently close to the provided
reference. The wind being turbulent and the system close to
the ground, the best startup strategy consists in designing a
trajectory of increasing height and tether length that robustly
satisfies the constraints h(X,U,w). The computation of such
a trajectory involves the solution of a robust optimization
problem and is the subject of ongoing research at the KU
Leuven.

V. SIMULATION RESULTS

In this Section, the simulation results obtained for the
model proposed in Section II and the control algorithm
proposed in Section III are presented. The model parameters
are relative to the small scale setup at KU Leuven and are
reported in [10]. The proposed scenario considers a turbulent
wind, displayed in Fig. 3 (solid line). After 12 s an abrupt
change in the wind speed and direction is introduced. At
every timestep tk a static reference, reported in Table II, is
provided.

In the first 5 s the tether is reeled out to r = 1.2 m. After
this phase, the control scheme starts to control the plane by
keeping it in the stable region. After 11 s, the reference is
changed and the controller elongates the tether and steers the
airfoil to an altitude of z = 2 m. In the rest of the simulation,
the airfoil is controlled back to the stable initial configuration
where the tether can be reeled in. The proposed procedure is
reversible and the controller is able to safely bring the airfoil
to landing.

The trajectory obtained for the given scenario is displayed
in Fig. 1 as a thick line, together with the state estimates in
circles. It can be seen that in the initial and final part of the
trajectory, the airfoil is close to the armtip and no estimate
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Fig. 3. Real wind profile (x and y components) in continuous line and
wind speed estimated by the MHE (x and y components) in circles.

is shown, as the system is in the open-loop stable region and
doesn’t need any feedback control.

The lift coefficient and the tether tension are displayed in
Fig. 2. Note that the proposed path constraints are never
active for the proposed scenario. The proposed scheme
is able to adequately control the system in the proposed
scenario, while respecting the state and control bounds.

The x and y components of the wind speed are introduced
as parameters to be estimated by the MHE scheme. Their
estimates are displayed in Fig. 3 in circles. Though no direct
measurement of the wind speed is available, it can be seen
that the proposed MHE scheme provides a good estimate to
both wind speed and direction. The introduction of adequate
wind models in the MHE scheme is subject of ongoing
research at the KU leuven.

The simulations were run on a 2.8 GHz CPU and the
computational times are displayed in Fig. 4. The compu-
tational times are consistently below Ts = 100 ms, allowing
for a real-time implementation. While the simulations show
the effectiveness of the control scheme, a thorough study
on its robustness would require an extensive simulation and
experimental campaign which is out of the scope of this
paper.

VI. CONCLUSION & FURTHER DEVELOPMENTS

This paper has proposed a control strategy for the launch
and retrieval of tethered airfoils in perturbed wind conditions.
A highly descriptive 6-DOF control model has been used for
the control and estimation schemes.

The estimation and the control problem have been tackled
using MHE and NMPC respectively. To meet the real-
time requirements, automatic code generation of efficient
algorithms has been used.

The proposed scheme has been able to control the system
in the presence of turbulent wind with abrupt changes
without any direct wind speed measurement. The tether has
been extended to 6 m and the flying height has reached 2 m.

Future work will focus on the computation of robust
trajectories for launching and landing. The control of the
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Fig. 4. Computational times tcomp for the MPC (crosses) and MHE (circles)
scheme. The sampling time Ts = 100 ms is represented by a thick line.

complete power production cycle (i.e.: startup, power extrac-
tion and landing) under various wind conditions is subject of
ongoing research at the KU Leuven. A small scale setup is
currently being built to test the proposed algorithms in open
air experiments.
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