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Airborne Wind Energy Based on Dual Airfoils
Mario Zanon, Sébastien Gros, Joel Andersson and Moritz Diehl

Abstract—The Airborne Wind Energy paradigm proposes to
generate energy by flying a tethered airfoil across the wind
flow at a high velocity. While Airborne Wind Energy enables
flight in higher-altitude, stronger wind layers, the extra drag
generated by the tether motion imposes a significant limit to
the overall system efficiency. To address this issue, two airfoils
with a shared tether can reduce overall system drag. While this
technique may improve the efficiency of AWE systems, such
improvement can only be achieved through properly balancing
the system trajectories and parameters. This paper tackles that
problem using optimal control. A generic procedure for modeling
multiple-airfoil systems with equations of minimal complexity is
proposed. A parametric study shows that at small and medium
scales, dual-airfoil systems are significantly more efficient than
single airfoil systems, but they are less advantageous at very large
scales.

Index Terms—Airborne wind energy, dual airfoil, power opti-
mization, large-scale optimization

I. INTRODUCTION

To overcome the major difficulties posed by the growing
size and mass of conventional wind turbine generators [16],
[5], the Airborne Wind Energy (AWE) paradigm proposes
to eliminate the structural elements not directly involved in
power generation. An emerging consensus recognizes cross-
wind flight as the most efficient approach to Airborne Wind
Energy [17]. Crosswind flight extracts power from the airflow
by flying an airfoil tethered to the ground at a high velocity
across the wind direction. Power can be generated by (a)
performing a cyclical variation of the tether length, together
with cyclical variation of the tether tension or (b) by using on-
board turbines, transmitting the power to the ground via the
tether. In this paper, option (b) is considered, as investigated
by e.g. Makani Power [18].

Because it involves a much lighter structure, a major ad-
vantage of power generation based on crosswind flight over
conventional wind turbines is that higher altitude can be
reached and a larger swept area be achieved, thereby reaching
wind resources that cannot be tapped into by conventional
wind turbines [11].

Unfortunately, the drag due to the motion of the tether
during crosswind flight has a significant impact on the system
performance. To tackle this issue, the dual-airfoil design was
first introduced in [21] and later investigated in e.g. [15], [22],
[25]. The key idea of the dual-airfoil desing is to fly two
airfoils connected on a single main tether (see Figure 1) in
a balanced manner. As a result, only the shorter secondary
tethers move at a high velocity and generate drag, while the
motion of the main tether is negligible.
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Fig. 1. Schematic of a dual-airfoil AWE system (cf. [21], Fig. 3).

While the dual-airfoil design has the potential to reduce
the problem of tether drag for AWE systems, the system
design and trajectory must be carefully selected so as to fully
exploit the gains of reducing the tether drag. More precisely,
a) the airfoil trajectories must balance the forces on the main
tether so as to minimize its motion, maintain the optimal
airfoil velocities, and maintain an optimal angle between the
secondary tethers, b) the aerodynamic forces yielded by on-
board power generation must be appropriately chosen so as to
maximize the system efficiency, c) the tether lengths must be
chosen so as to achieve the best trade-off between reaching
higher altitude and adding airborne mass, and d) the tether
diameters must be selected so as to achieve the best trade-off
between reducing the drag and withstanding the forces in the
system.

Defining the optimal system parameters and trajectory is a
highly involved problem that is best cast in the framework
of optimal control. Single and multiple kite models have
been proposed in the literature, see e.g. [14], [15], [24], [7],
[12], [13]. This paper, however, proposes a generic modeling
procedure for multiple-airfoil AWE systems, including a Finite
Element Model (FEM) for the tethers, that is well suited
for optimal control and that produces model equations of
minimal complexity, so as to reduce the computational burden
of evaluating the model sensitivities. The resulting model has
41 states for the single airfoil and 207 states for the dual
airfoils. A parametric study of the performance of a dual-
airfoil system versus a single-airfoil system is presented.

This paper is organized as follows. First a generic
modeling procedure for multiple-airfoil systems is proposed
and discussed in Section II. Section III describes the power-
generation optimization problem, the solution approach used
to compute power-generating trajectories, and the software
used to perform the optimization. Section IV proposes a
comparison between optimal power generation based on single
and dual airfoils for different system scales. Finally, Section



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 2

Ground, Node: n = 0

Node: n = 1, parent i = 0, airfoil 1

Tether: k = 1

Fig. 2. Schematic of the single-airfoil architecture, with N = 1, A = {1},
F(1) = 0.

V concludes the paper and outlines further developments.

Contributions of the paper: a generic modeling procedure
of minimal computational complexity for multiple-airfoil
systems is developed. A large-scale model of single and dual
airfoils is developed, including a FEM of the tethers. An
optimization procedure to determine the optimal trajectories
and design parameters is proposed. A comparison of a
dual-airfoil vs. a single-airfoil AWE system is presented.

II. SYSTEM MODEL

The airfoils are inertially modeled as point-masses. An
orthonormal right-handed reference frame e = {ex,ey,ez} at-
tached to the ground is chosen to generate the Cartesian
coordinate system defining the positions of the airfoils. The
frame e is chosen s.t. a) the wind is blowing in the ex-direction,
b) the vector ez is opposed to the gravitational acceleration
vector g. The origin of the coordinate system coincides with
the attachment point of the main tether to the ground. In the
following, a general procedure for the modeling of multiple-
airfoil systems is proposed. Both single and dual airfoils are
special cases of this formulation, as shown in Figures 2 and
3.

A. System Architecture

The system is described as a set of N nodes n ∈ {0, ...,N}
with associated coordinate vectors Xn ∈ R3. The fixed node
X0 = [0, 0, 0]T stands for the attachment point of the AWE
system to the ground. The subset A⊂ {1, ...,N} of the set of
nodes describes the nodes associated to the airfoils. Assuming
a tree structure, to each node n ∈ {1, ...,N} a single tether
k = n is associated, and the parent node i to which the tether
is attached is defined by the map i = F(n). See Figures 2 and
3 for an illustration. The system architecture is then defined by
the number of nodes N, the set A, and the map F. Note that the
proposed formulation allows for tree-like system architectures
only.

In the following, the component-wise notation Xn =
[xn, yn, zn]

T of the node coordinate vectors Xn is used. The
position of the node n is given by Pn = xnex + yney + znez.
Each tether k = 1, ...,N has associated length lk and diameter
dk.

Ground, Node: n = 0

Node: n = 1, parent i = 0

Node: n = 2, parent i = 1, airfoil 2

Node: n = 3, parent i = 1, airfoil 3

Tether: k = 1

Tether: k = 2

Tether: k = 3

Fig. 3. Schematic of the dual-airfoil architecture, with N = 3, A = {2,3},
F(1) = 0, F(2) = 1, F(3) = 1.

B. Airfoil model

For any node n ∈ {0, ...,N}, we define the velocity relative
to the airmass:

vn = (ẋn −W )ex + ẏn ey + żn ez,

where W ∈ R is the local wind velocity in the ex direction.
A generalization of this formulation to a 3D wind field is
straightforward. If n ∈A, the norms of the lift and drag forces
acting on the airfoil n are given by [20]:

‖Fn
L ‖=

1
2

ρSCn
L‖vn‖2, ‖Fn

D‖=
1
2

ρSCn
D‖vn‖2,

where Cn
L and Cn

D are the lift and drag coefficients of the airfoil,
ρ is the air density and S the airfoil surface.

The lift force is defined to be orthogonal to the relative
velocities vn of the airfoil. Moreover, it is assumed in this
model that the lift force is orthogonal to the airfoil transversal
axis [20], [8]. Airfoil n is linked to its parent node i = F(n)
by tether n. One can form the unitary coordinate vector:

en
r =

Xn −Xi

‖Xn −Xi‖
, i = F(n),

and introduce the following definition of the transversal and
lift axis:

en
T =

vn × en
r

‖vn × en
r‖

,

f n
L = en

T × vn.

It can be observed that vector en
T is normed to 1, thus vector

f n
L is normed to ‖vn‖. Because f n

L is orthogonal to the relative
velocity vn and lies in the plane spanned by {en

r ,vn}, if the
airfoil is not tilted with respect to vector en

r , the lift force acts
along vector f n

L . Introducing the roll angle ψi describing the
tilting of the lift force around the axis vn, the lift force can be
defined by:

Fn
L =

1
2

ρSCn
L
(
cos(ψi) f n

L‖vn‖− sin(ψi)en
T‖vn‖2) .

By definition Fn
L is always orthogonal to vn, and lies in the

plane defined by {en
r ,vn} if ψi = 0.

The airfoil drag force is opposed to the relative velocity,
and is readily given by:

Fn
D = −1

2
ρSCn

D‖vn‖vn.
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The drag generated by the onboard turbines can be modeled
as:

Fn
G =−κn‖vn‖vn,

where κ̇n(t) = uκn(t), uκn(t) is a control variable and we assume
that the generated force is opposed to the relative velocity. The
resulting aerodynamic power is:

Pn = vT
n Fn

G =−κn‖vn‖3.

The resulting airfoil aerodynamic force acting on airfoil n is
given by Fn

A = Fn
L +Fn

D +Fn
G.

In this model, it is assumed that the time-derivative of the
lift coefficient is directly controlled, and the drag coefficient
Cn

D is approximated by [20], [8]:

Cn
D = C0

D +CI
D (Cn

L)
2 ,

where C0
D and CI

D are the airfoil drag and induced-drag
coefficients respectively.

The kinetic and potential energy functions associated with
the airfoil dynamics are:

Tn
A =

1
2

MA‖Ẋn‖2, Vn
A = MAgzn,

where MA is the airfoil mass, and the Lagrange function for
the airfoils reads:

LA = TA −VA, TA = ∑
n∈A

Tn
A, VA = ∑

n∈A
Vn

A.

C. Wind and atmosphere model

Assuming a laminar wind flow with a logarithmic wind
shear model blowing uniformly in the ex-direction, the free-
flow windspeed W∞ at altitude z is given by [19]:

W∞(z) =W0
log(z/zr)

log(z0/zr)
, (1)

where W0 ∈R is the wind velocity at altitude z0 and zr is the
ground roughness.

To account for the drop of density with altitude the follow-
ing atmospheric model is introduced [2]:

T (z) = T0 −TLz,

P(z) = P0

(
1− TLz

T0

) gMa
RTL

,

ρ(z) =
PMa

RT
,

where T0 is the sea level standard temperature, TL is the
temperature lapse rate, P0 is the pressure at sea level, Ma is
the molar air density and R is the universal gas constant.

D. Tether model

In the proposed formulation, the tethers are modeled with
a lumped mass Finite Element Model. For a rigid tether
k ∈ {1, ...,N} of length lk, density ρc, diameter dk, we define
Nk elements linked by massless rigid links, where link k, j
connects elements k, j and k, j+1. Note that with this notation,
the position of the endpoint Xk,Nk of each tether k coincides
with the position Xk of node k. The index j ranges from 1

to Nk when it refers to the elements and from 1 to Nk − 1
when it refers to the links between elements. In the proposed
model, all links have the same length lk, j = lk/(Nk − 1) and
each element k, j with 2< j <Nk has mass mk, j =mk/(Nk−1),
while mk,1 = mk,Nk = mk/(2(Nk − 1)). The tether kinetic and
potential energy functions read:

Tk
T =

Nk

∑
j=1

1
2

mk, j‖Ẋk, j‖2,

Vk
T =

Nk

∑
j=1

mk, jgzk, j,

where mk, j is the mass associated with each element and Ẋk, j
and zk, j are respectively its velocity and height.

The tether drag on each tether section k, j is given by:

Fk, j
S =−1

2
ρk, jdklk, jCT‖vk, j‖vk, j,

where CT is the drag coefficient of a cylinder, lk, j is the length
of link k, j and vk, j is the velocity of its midpoint, computed
as

vk, j =
Ẋk, j + Ẋk, j+1

2
−W

(
zk, j + zk, j+1

2

)
,

where W is the windspeed at the midpoint’s altitude. The lift
generated by the tethers is not considered in this formulation.
The contribution of the tether drag forces to the generalized
forces acting on the generalized coordinates Xk, j is given by:

Fk, j
T =

Fk, j
S +Fk, j+1

S
2

.

E. Generalized forces

The vector of generalized forces F =
[
FT

1,1, ..., FT
N,NN

]T
,

where Fk, j ∈ R3 is the vector of generalized forces acting on
the vector of generalized coordinates Xk, j, is resulting from the
sum of the various contributions coming from tether drags and
airfoil aerodynamic forces. Though this summation can be per-
formed very intuitively, it can be formulated as the following
systematic construction. For any k ∈ {1, ...,N}, j ∈ {1, ...,Nk} ,
Fk, j is given by:

Fk, j =


F1,1

T if j = 1, k = 1
Fk, j

T if j ∈ 2, ...,Nk −1
Fk, j

T +∑Fkc,1
T if F(kc) = k and j = Nk

Fk, j
T +Fk

A if k ∈ A and j = Nk

F. System model

In the following, the generalized coordinate vector X =[
XT

1,1, ..., XT
N,NN

]T
of the system is used. The system is con-

sidered as a set of independent tethers and airfoils, with
associated Lagrange functions. The tethers introduce a set of
constraints in the system configuration, given by:

Gk, j =
1
2
(
(Xk, j+1 −Xk, j)

T (Xk, j+1 −Xk, j)− l2
k, j
)
= 0, (2)
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for k = 1, ...,N, j = 1, ...,Nk. The system Lagrange function
reads:

L= T−V−λ T G, T = TA +TT, V= VA +VT,

where λ ∈RK is the vector of Lagrange multipliers associated
to the constraints G. Using the Lagrange equation [9] d

dt
∂L
∂ Ẋ −

∂L
∂X = F , it can be verified that the system dynamics are given
by the following index-3 DAEs:

TẊ Ẋ Ẍ +GT
X λ +VX = F, G = 0, (3)

where λ is the DAE algebraic state, GX = ∂G
∂X , TẊ Ẋ = ∂ 2T

∂ Ẋ2 and
VX = ∂V

∂X .
For any t0 ∈R, equation (3) can be reformulated as an index-

1 DAE by performing index reduction, which yields G̈(t) =
0, Ġ(t0) = 0, G(t0) = 0. The resulting equations read (together
with the consistency conditions):[

TẊ Ẋ GT
X

GX 0

][
Ẍ
λ

]
=

[
F −VX

− ∂
∂X

(
GX Ẋ

)
Ẋ

]
, (4)

G(t0) = 0, Ġ(t0) =
(
GX Ẋ

)
t=t0

= 0. (5)

It can be verified that the tension in tether k is readily given
by:

Γk = λklk.

For long integration times, a correction of the numerical drift
of G may be required.

Note that (4) can be treated as an ODE by inverting the
DAE mass matrix so as to compute Ẍ and λ explicitly.
While this approach sounds appealing, and can be efficient for
model simulations if the mass matrix is inverted numerically,
the symbolic expressions for the resulting ODE are highly
complex and the sparsity in the model expressions is usually
lost. As a result, computing the model sensitivities given in
its ODE formulation is very expensive. In the framework of
optimization, the system model is therefore best treated in the
implicit form (4), using implicit integration methods.

1) Dual-airfoil model: the system architecture reads (see
Figure 3):

N = 3, A= {2,3}, F(1) = 0, F(2) = 1, F(3) = 1,

the coordinate vector is X ∈ R3(N1+N2+N3) and the constraints
are defined by:

G =
1
2



(
(X1,2 −X1,1)

T (X1,2 −X1,1)− l2
1,1

)
...(

(X1,N1 −X1,N1−1)
T (X1,N1 −X1,N1−1)− l2

1,N1−1

)(
(X2,2 −X2,1)

T (X2,2 −X2,1)− l2
2,1

)
...(

(X2,N2 −X2,N2−1)
T (X2,N2 −X2,N2−1)− l2

2,N2−1

)(
(X3,2 −X3,1)

T (X3,2 −X3,1)− l2
3,1

)
...((

X3,N3 −X3,N3−1
)T (X3,N3 −X3,N3−1

)
− l2

3,N3−1

)



,

where X1,1 = X0 = [0, 0, 0]T , the joint position is X1,N1 =
X2,1 = X3,1 = X1, the first airfoil position is X2,N2 = X2 and
the second airfoil position is X3,N3 = X3. The two airfoils
and the two secondary tethers are considered identical. The
discretization is thus also identical and N2 = N3.

2) Single-airfoil model: the system architecture reads (see
Figure 2):

N = 1, A= {1}, F(1) = 0,

the coordinate vector is X ∈ R3N1 and the constraints are
defined by:

G =
1
2


(
(X1,2 −X1,1)

T (X1,2 −X1,1)− l2
1,1

)
...(

(X1,N1 −X1,N1−1)
T (X1,N1 −X1,N1−1)− l2

1,N1−1

)
 ,

where X1,1 = X0 = [0, 0, 0]T and X1,N1 = X1.

G. Model assumptions & discussion

The proposed model is based on the following assumptions:
1) the tethers are modelled with a lumped-mass finite

element model
2) the lift forces are orthogonal to the airfoil transversal

axis
3) the airfoils have a perfect yaw control, resulting in no

side-slip
4) the time-derivatives of the lift coefficient and roll angle

are controlled and actuation is instantaneous
5) the time-derivative of the onboard turbine drag coeffi-

cient is controlled and actuation is instantaneous
The proposed model construction can straightforwardly ac-

commodate different tether and airfoil models, e.g.: a 6-DOF
airfoil description and more elaborate aerodynamic models.
Yet in this paper a simple model was preferred, so as to
reduce the complexity of the presentation. Further research
will seek at improving the tether models by including the tether
aerodynamic lift and elasticity.

In this paper, no assumption has been made on the inter-
action between the airfoils and the airmass. For conventional
wind turbines, Betz first developed a simplified model [19],
[3]. While such a formulation can be adapted for AWE systems
and included in the problem formulation, experimental data is
needed to assess the validity of such a simplified model. This
validation process is the subject of ongoing research at KU
Leuven.

III. OPTIMIZATION PROBLEM

The airfoil trajectories as well as the tether lengths and
sections are manipulated so as to maximize the system average
power generation over an orbit of free duration Tp. The
periodicity of the system is guaranteed by satisfying the
boundary conditions:

X(0)−X(Tp) = 0. (6)

However, it can be observed that (6) together with (5) form
a redundant set of equality constraints, violating the Linear
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Independence Constraint Qualification (LICQ). The directions
violating the consistency conditions must then be removed
from the set of periodicity conditions [6]. Defining a matrix
Z that forms a basis of the null-space of:

J =

[
∂G
∂X
∂ Ġ
∂X

]
t=0

,

i.e. JZ = 0, the set of consistency conditions (5) together with:

ZT (X(0)−X(Tp)) = 0, (7)

have no redundancy. The basis Z is non-unique, and can be
chosen so as to limit its computational complexity. As an
alternative, it can also be introduced as a set of parameters
in the optimization algorithm, and computed numerically.

In order to ensure that the tethers are always under tension
but that their resistance is never exceeded, the constraints:

γ
fs

π
4

d2
k ≥ Γk(t) = λklk ≥ 0, ∀t, k = 1, ...,N, (8)

are imposed, where γ is the tether yield strength and fs the
safety factor. Moreover, the following bounds are proposed:

0 ≤Ci
L ≤ 1, −5 s−1 ≤ Ċi

L ≤ 5 s−1,

−80◦ ≤ ψ i
L ≤ 80◦, −5 s−1 ≤ ψ̇ i

L ≤ 5 s−1,

−1000 kg/(ms)≤ κ̇i ≤ 1000 kg/(ms), ∀t, i ∈A.
(9)

The periodic power optimization problem reads:

P̄ = max
U,X ,θ ,Tp

1
Tp

∫ Tp

0
∑
i∈A

Pidt, (10)

s.t. (4)− (5),(7)− (9)

where Ui = {Ċi
L, ψ̇ i

L, κi}, i ∈ A, θk = {lk, dk}, k = 1, ...,N.
Note that Tp is an optimization variable, thus the duration of
the orbit will be adapted by the optimizer so as to maximize
the average power. In order to be able to treat this problem,
a time transformation can be introduced, as proposed in [10,
p. 27].

A. Solution approach

The Optimal Control Problem (10) is large-scale and highly
non-convex and therefore requires a good initial guess to be
tackled by derivative-based optimization. However, no such
guess is readily available. To address this issue, a complex
procedure is needed to compute an initial guess for problem
(10). For the sake of brevity the details of this procedure will
be omitted.

For the dual-airfoil system, solving (10) on a full orbit yields
quasi-identical trajectories for the two airfoils, hence (10) was
solved on a half orbit instead, using the periodicity conditions
X2(0) = X3(

1
2 Tp), X3(0) = X2(

1
2 Tp) so as to match the terminal

state of one airfoil with the initial state of the other. For both
the single and dual-airfoil problems, the control input profiles
were discretized using a piecewise-constant parametrization
having 20 intervals per full orbit. One collocation element has
been used per control interval.

TABLE I
FIXED MODEL PARAMETERS

Parameter Symbol Value Unit
Air density ρ 1.23 kg ·m3

Tethers density ρc 1450 kg ·m3

Airfoil parasitic drag coefficient C0
D 0.02 -

Airfoil induced drag coefficient CI
D 0.02 -

Airfoil aspect ratio AR 10 -
Wind velocity at altitude z0 W0 10 m/s

Altitude of wind velocity W0 z0 100 m
Roughness factor zr 0.1 m

Sea level standard temperature T0 288.15 K
Temperature lapse rate TL 0.0065 K/m

Sea level pressure P0 101325 Pa
Molar air density Ma 0.0289644 kg/mol

Universal gas constant R 8.31447 J/(molK)
Tether drag coefficient CT 1 -
Tether yield strength γ 3.9 ·109 Pa

Safety factor fs 5 -

B. Methods & Software

Because dynamics (4) are unstable, a simultaneous optimal
control technique is required to optimize the system model.
In this paper, the discretization of the model dynamics (4)
was based on a direct collocation approach [4], where the
model simulation, constraints and optimization are handled
simultaneously in a large-scale sparse Nonlinear Program
(NLP). Collocation approaches provide a straightforward way
to deal with implicit index-1 DAE systems [4].

The problem transcription was performed using the open-
source optimization framework CasADi [1]. The resulting NLP
was solved using the interior-point solver IPOPT 3.10.1 [23]
using WSMP as a linear solver.

IV. PARAMETRIC STUDY

The parametric studies aim at assessing the relationship
between the total airfoil surface and the average generated
power, i.e. P̄(Stot) where Stot = ∑n∈A S. This study focused
on assessing if, for a given total airfoil surface, a single or a
dual-airfoil system should be preferred.

The study was based on airfoils having a maximum gliding
ratio L/D = 25. The tethers are assumed to be made of
Dyneema R©, which has a very high stiffness and yield strength
for a low density. The fixed model parameters are summarized
in Table I.

For the single airfoil the tether has been discretized using
5 segments. For the dual airfoils the main tether has been
discretized using 20 segments, while 5 segments were used
for both secondary tethers. This results in 41 states for the
single airfoil and 207 states for the dual airfoils. More refined
tether discretizations have been tested and the obtained results
don’t show any relevant difference.

Problem (10) being nonconvex, there is no a priori guarantee
that the computed solution is a global optimum. Nevertheless,
using insights on the physics of the system, it is possible to
assess the solution and compare it to the results of simplified
studies, such as the ones proposed in [17]. Initializing prob-
lem (10) at different intial guesses, it has been observed that
the NLP solver consistently converges to the same solution,
hence suggesting that it is the optimum of a reasonably large
set of possible trajectories.
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Fig. 4. Dual vs. one large single airfoil: average power output for different
wing surface S, keeping the wing loading constant. The comparison assumes
that both systems have the same overall airfoil surface, i.e. Sdual =

1
2 Ssingle,

hence assessing the advantage of having a dual-airfoil system with two smaller
airfoils vs. having a single large airfoil.

Using the method proposed in Subsection III-A a solution
to (10) for the single-airfoil system using parameter values
S = 500 m2 and MA/S = 20 kg/m2, and a solution for the
dual-airfoil system using parameter values S = 250 m2 and
MA/S = 20 kg/m2 are computed.

Starting from these solutions, a homotopy with respect
to the total airfoil area Stot is applied to (10). Keeping the
wing loading MA/S = 20 kg/m2 constant (i.e. the airfoil mass
scales linearly with the total airfoil area), Stot is gradually
reduced and (10) repeatedly solved, using the solution from the
previous step as an initial guess for the subsequent step. The
average generated power for both the single and dual-airfoil
systems are displayed in Figure 4, top graph. The ratio between
the average generated power for the dual-airfoil system and
the single-airfoil system is displayed in Figure 4, bottom
graph. Note that the graphs in Figure 4 display the mechanical
power dissipated by the onboard turbines. The actual electrical
power depends on the generators and converters efficiency,
whose value is arguably similar for the two systems. For
the chosen parameters, the dual-airfoil system is always more
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Fig. 5. Study of the impact of the safety constraint on the extracted power P
for the largest dual-airfoil system. The parameter sfac expresses the distance
between the airfoils, measured in wingspans. For comparison, the energy
extracted by the single airfoil is displayed as a continuous line.

advantageous than the single one. As the total airfoil surface
increases, however, the ratio between the power extracted by
the dual and single airfoil decreases significantly.

It should be observed that the required total airfoil surface
for a desired amount of average generated power is also
indirectly assessed through the proposed parametric study.
Indeed, it can be seen from Figure 4 that for an average power
generation of 10MW the dual-airfoil system requires a total
airfoil surface of approximately half the one of the single-
airfoil system, but the dual airfoil system requires gradually
less airfoil surface as the desired average generated power
decreases.

For safety reasons, it is desirable that the dual-airfoil trajec-
tories keep the airfoils far from each other, thus avoiding the
risk of collisions. A second reason for having the airfoils flying
large orbits, is to reduce the interaction with the airmass. In
this paper no hypothesis is made on this complex interaction,
which is assumed to be small and is thus neglected. This
assumption might not hold if the airfoils fly too close to
each other, as the interaction will be higher. A study has
thus been done, to check how the extracted power is affected
by imposing a safety constraint on the distance between the
airfoils. This safety constraint is expressed as

(X2 −X3)
T (X2 −X3)≥ (sfacws)

2, (11)

where the wingspan is given by ws =
√

SAR, with AR the aspect
ratio. For the simulations, the value AR = 10 has been chosen.
The results are displayed in Figure 5 for the largest dual-airfoil
system, i.e. Stot = 500 m2. It can be seen that allowing the
airfoils to fly closer than 9 ws does not lead to an increase
in the extracted power. For larger orbits, the extracted power
diminishes but the loss is not dramatic and, even for very large
orbits, the dual airfoils still extract more power than the single
airfoil.

The trajectory for the biggest systems considered, i.e. Stot =



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 7

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1000

2000

3000

4000

y
[m

]

x [m]

0 250 500 750 1000 1250 1500 1750 2000

0

1000

2000

3000

4000

PW [W/m2]

 

 

PW

Tethers

Airfoils

Fig. 6. Trajectory comparison between the single and dual airfoils for a total wing surface Stot = 500m2. The trajectories are shown as thick lines. The
available wind power Pw = ρW 3

∞/2 is plotted as a dashed line. For the dual airfoils, two wind profiles have been considered: a) the logarithmic profile (1) and
b) the logarithmic profile saturated above z = 500 m.

500 m2, is displayed in Figure 6. It can be noted that the dual
airfoils operate at much higher altitude, approaching the peak
of the available wind power formula (2850 m), also displayed
in Figure 6. The proposed wind shear model (1) is valid
only in the atmospheric boundary layer, which is typically
lower than 2000 m. In this paper, the boundary layer was
supposed to have an infinite thickness. The resulting optimal
trajectories for the dual-kite systems reaches over 2000 m,
which strongly suggests that the optimal altitude is always
at the top of the boundary layer, regardless of its thickness.
Arguably, in boundary layers that are not developed to the top
altitude of 2000 m, the dual-airfoil system would loose some of
its efficiency, and its advantage over the single-airfoil system
would be reduced. In regard of these results, in practice, the
optimization of a dual-airfoil AWE system should consider
the average altitude of the boundary layer in the region of
interest. As a term of comparison, a second scenario has been
considered, where the wind profile saturates for z> 500 m. The
resulting trajectory and related available wind power are also
displayed in Figure 6. In this second case, the trajectory is still
in proximity of the peak of available wind power, which occurs
at much lower altitude. For a total wing surface Stot = 500m2,
also in the case of a saturated wind profile, the power extracted
by the dual airfoils exceeds the one extracted by the single
airfoil by the ratio Pdual = 1.54 Psingle.

The tether length obtained for the dual-kite system is
arguably extremely large. It was observed, however, that the
sensitivity of the power generation to the tether length is rather
small, i.e. constraining the tether to smaller length does not
result in a large power loss. Arguably, economical factors such
as the material cost and the electrical resistance of a very long
tether would yield a system with a shorter tether. In this paper,
however, only the physics of the system were considered.

To check the precision of the collocation discretization,
an optimization for the biggest system has been run with a
refined collocation scheme having 4 times more collocation
elements, resulting in an NLP with 47350 variables. No
relevant difference has been noticed in the resulting trajectory,

suggesting that the chosen collocation scheme is accurate
enough.

The proposed scenario assumes that the airfoils do not
modify the wind field. The development of an accurate model
needs extensive studies. Future research will aim at investigat-
ing the impact of the presence of the airfoils on the wind field.
Early results relying on simplified interaction models suggest
that the dual airfoils would still extract more power than the
single airfoil. Yet, a higher performance loss is observed for
the dual-airfoil system.

Observe that the computed trajectories are only valid for the
nominal case and in a real application wind perturbations and
unmodeled dynamics will affect the performance of the sys-
tem: this problem can be tackled within a robust optimization
framework. The resulting NLP will, though, be considerably
more complex than the proposed one. In the context of a real
application, performance is also affected by the choice of the
controller. Both investigations are out of the scope of this paper
and are the subject of ongoing research.

V. CONCLUSION & FURTHER DEVELOPMENTS

This paper has proposed a generic multiple-airfoil modeling
procedure of minimal computational complexity, aimed for
the optimization of power generation. This procedure can
straightforwardly accomodate for 6-DOF airfoil models.

The proposed procedure has been applied to develop a
large-scale model for the comparison of single vs. dual-airfoil
systems so as to investigate which system is best suited, given
the required average power output.

The results show that dual systems extract more power for
all scales on the given scenario. Scaling up from small to large
scales, the ratio of the power extracted by the dual airfoils vs.
the one extracted by the single airfoil decreases.

Tether elasticity has been neglected and the airfoil model
has been simplified for the sake of clarity of the presentation.
Future research will focus on building a model database for
both airfoils and tethers to be interfaced to the modeling
procedure and optimization routines proposed.
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For a more accurate study, the interaction between the
airfoils and the airmass should be included in the model. A
Computational Fluid Dynamics (CFD) simulation is the object
of ongoing research.
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