Robust and Stable Periodic Flight of Power
Generating Kite Systems in a Turbulent Wind Flow
Field

Julia Sternberg* Jay Goit** Sébastien Gros* Johan Meyers**
Moritz Diehl *

* Optimization in Engineering Center (OPTEC), Departmertlefctrical
Engineering, K.U. Leuven, Kasteelpark Arenberg 10, B-3001

Leuven-Heverlee, Belgium (e-malil: julia.sternberg@dgsaéuven.be,

sgros@esat.kuleuven.be, moritz.diehl@esat.kuleugen.b
**Optimization in Engineering Center (OPTEC), K.U. LeuveapBrtment

of Mechanical Engineering, K.U. Leuven, Celestijnenla@f 3, B3001

Leuven, Belgium (e-mail: jay.goit@mech.kuleuven.be,
johan.meyers@mech.kuleuven.be)

Abstract: Power-generating kite systems extract energy from the vhindperiodically pulling a
generator on the ground while flying fast in a crosswind dioec Kite systems are intrinsically unstable,
and subject to atmospheric turbulences. As an alternatietosed-loop control, this paper investigates
the open-loop stabilization and robustification of a kiteteyn using techniques based on the solution
of Lyapunov differential equation. A wind flow is computed asolution to a time-dependent three
dimensional Navier-Stokes equation. Open-loop stabjedraries for the power-generating kite system
are computed based on the statistical properties of the figlt) and are robustified with respect to the
system constraints. The stability and robustness of thdtieg trajectories are assessed by simulating
the system using the computed time- and space-dependieulent wind flow.
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1. INTRODUCTION the optimization of the asymptotical decay rate of the syste

the optimization of the so called pseudo-spectral absc@sa
) . ] ) o on the smoothed spectral abscissa or radius. Robust optimiz
The idea of using kites for power generation has originagm tjon approaches for non-linear systems are commonly based o

proposed by Loyd (1980). Power-generating kite systems afigear approximations techniques Diehl et al. (2006b); $kau
currently the object of academic and industrial researele (Sand Diehl (2009); Nagy and Braatz (2004).

Canale et al. (2006); Lansdorp and Ockels (2005); Ockels et a ) .

(2006); Williams et al. (2008) and the references thereirafo  This paper builds on the methods developed in Houska and
overview). Power can be generated by a) performing a cyclicRiehl (2010) using a more realistic wind field generated by
variation of the tether length, together with cyclical aign @ computational fluid dynamic (CFD) simulation. The statis-
of the tether tension, reeling a generator fixed to the grpand tical properties of the wind field are computed based on the

ground via the tether. In this paper, the first option is comsid. {0 compute the open-loop stable and robust trajectories. Th
) ~ stability and robustness of the resulting trajectoriesaasessed
An important challenge for the control of power-generatingh simulation.

kites is that the system dynamics are unstable and strongll_}; _ _ ) _
affected by atmospheric turbulences, which are stochastic ne paper is organized as follows: In Section 2 a brief model
very unpredictable. Closed-loop control is a natural choicdescription for power generation with kites based on crazw
to stabilize power-generating kite systems, however deseflightis given. Moreover, an optimal control problem for find
loop control makes the safety of the technology critical té"d periodic trajectories that maximize the power produtis
sensors and actuators faults. Open-loop stability of peweiermulated. Also, in Section 2 it is described how to compute
generating kite systems, if it can be achieved, is theredore the time-and space-dependentturbulentwind flow usinga CFD
attractive alternative to closed-loop control. It is alseful in ~ Simulation code from KU Leuven. In Section 3 we discuss the
combination with closed-loop control in order to improve th Stability and robustness properties of computed trajet@nd
safety of the system. explain some numerical techniques which help us to stabiliz
) ) ) ) and robustify trajectories. We particularly employ techugs
Power-generating kite systems are subject to operati@mal ¢ hased on Lyapunov differential equations. After that, irc-Se
straints. Hence if operated in open-loop, the system ti@j®s  tion 4, the optimal a-priori stable and robust kite trajeiets
must not only achieve stability but also achieve the roletn are simulated considering a realistic time- and space ruttgye

of the system constraints with respect to disturbancestMagind profile characterized by unknown turbulences. The be-
existing stability optimization techniques are eitherdzhen



haviour of the kite influenced by this flow field is studied. In
the last Section 5 of this paper some concluding remarks ani
given.

* wind

The main contributions can be summarized as follows: |I"*

this paper we present some new robust and open-loop stal

trajectories for a power generating kite system. Here thlwi """ #

profile for the model is given by mean velocities of the tudmil
time- and space-dimensional wind flow, which will be usec
for the post-processing simulation. Two different models f
unknown wind disturbances are considered: a) uncorrelate
white noise random process; b) uncorrelated bounded randc
process with turbulence intensities depending on theudkit

The second contribution consists in testing the intrirfkica Fig. 1. Schematic illustration of a single kite system, Haus

open-loop stable and robust orbits simulating them in a-time
and space-dependent turbulent wind flow.

- .

(2007)

generator/motor

Table 1. Parameters of the kite model

2. MODEL DESCRIPTION, PROBLEM FORMULATION Dimension Description [uni] Value
AND WIND FLOW COMPUTATION A wing surface area [} 500
Cp aerodynamic drag coefficient [-[] 0.04
2.1 Model description P air density [kg/nd] 123
m kite mass [kg] 850
This section provides a brief description of the kite system @ lower bound forp —0.34
- . . @ upper bound forp 0.34
model. A more detailed overview can be found in Houska A lower bound for@ 04
(2007); Houska and Diehl (2007, 2010). The system is con- 0, upper bound fo 145
sidered in a 3-dimensional Euclidean space, so that the iwind m lower bound fory 029
blowing in thee, andey directions only. The vecta points to Wy upper bound fory 0.29
the sky andyy is defined bye, := €, x €, such that{ey, e, e} C lower bound forC, 01
builds an orthonormal right-handed basis of the 3-dimeradio Cu upper bound fo€, 15
Euclidean space. The generator is fixed at the origin of this 7 lower bound forp —0.065
coordinate system. Thus, the positipre R3 of the kite can be b I“pperbbour:jdffo".” 0.065
described byp = re;, wherer stands for the tether length, i.e., G ower bound foiC, 35
. . . CLy upper bound fo€_ 35
the distance between the generator and the kite. The unit vec : | :
. . ; - . . | ower bound for —40
tor e is defined byer := (sin(6) cog @), sin(6) sin(¢),cos6)). i upper bound for ° 10
Note thatp = 0 corresponds to the direction. The anglé =0 f lower bound forr” _o5
corresponds to the zenith position, ahek 7 indicates that the Fu upper bound for " 25

kite touches the ground.
] o where all the state variables that characterize the pasifithe

The control variables are: a) the second derivative of ttite ite and its velocity are collected into the vecter), i.e.,x(t) =

lengthr; b) the first derivative of the roll angle of the Kkitg; (r, @, G,r',(,b, 9)_ The optimal control problem (OCP) for finding

¢) the first derivative of the lift coefficie@,. Vectoru consists  heringic trajectories and maximizing the power produced, ¢
of all the control variables, i.ey = (f,{,C.). The steering pa formulated as

of the system can be performed in the following manner: the min IT X))

lengthr of the tether can be controlled by the winch and the x()u(),T

roll angle ¢ by varying the difference between the lengths of subject to:

the two tethers leading to the right and left wing tip of theeki vt € [0,T]: X(t) = f(x(t),u(t),w(zt)), 1)
The lift coefficientC_ can be controlled by an elevator. This 0> h(x(t),u(t)),

point model of the kite includes the physical equations lier t X(0) = x(t),

lift and drag force (considering tether drag), and graiote!
forces. Here, the orientation of the kite is computed under t
assumption that the main axis is always in line with the diffec
wind i.e., a possible side slip is neglected.

with the objective functiond(T,x(t)) defined as)(T,x(t)) =
—W. The periodicity of the kite orbit is guaranteed by the pe-
riodic constraintx(0) = x(t). The functiorh(x(t),u(t)) lumps
together the system operational constraints and actulators
tation (cf. Table 1). Table 1 summarizes the choice of patame
values, that describe physical properties and constriinits-
tions for a particular kite system. The wind disturbances ar

In this section the optimal control problem for finding pelio  gescribed by the functiow(zt), which are in our case time-
trajectories and maximizing the power produced, is fortedla 5 altitude-dependent.

The average powé¥ at the generator can be computed as

2.2 Problem formulation

1 T 2.3 Computation of time- and space-dependent three dimensi
W= Fc rdt, .
T Jo nal turbulent wind flow
whereF; > 0 is the tether tension and is the duration of
the periodic trajectory. The dynamics of the kite system ark this section we discuss the time dependent flow field wisgch i

described by the model equaticu(t) = f(x(t),u(t),w(zt)), used first to compute, and second to simulate open-loopestabl



and robust kite trajectories in a more realistic environten
Three dimensional flow field is generated from a boundaryrlaye
simulation. The instantaneous flow field is saved for evengti
step of the simulation. For the boundary layer simulatioman
house research code Calaf et al. (2010) is used. This code is
based on large eddy simulation and solves the filtered Navier
Stokes equations, i.e.,

v 1
0.V = 0,

wherev stands for the filtered velocity fieldy the pressure,
Tsgsthe subgrid-scale tensor afid= 10~* sec t is the Coriolis
parameter at 43 degree latitude.

(2)

Fig. 2.vx component of the wind velocity at the time poinrt 3

The KU Leuven code uses a pseudo-spectral discretization in _, 14 1
the streamwise and spanwise directions and a fourth-order £ ., -
energy-conservative finite difference discretizationha ver- w0/

tical direction. As a result, horizontal boundary condisaare

periodic. The top boundary condition is a zero vertical e#lo
zero shear stress boundary. The bottom boundary condition 7,
uses Monin-Obukhov similarity theory to calculate filtesea- 4

4
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face shear stress as a function of the velocity at the firsicedr altitude m] altude [m]

cell. Time advancement is performed using a four-stagdlieur _. . . _ . .
order Runge-Kutta methodpand the code isgfully dealia%ercgusi Fig. 3. Mean velocity profiles, (left) andvy (right) of the wind

3/2 rule. speed in the atmospheric Ekman layer. (Note that 0)
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The height of the computation domain it = 2500 m and 3.1 Nominal periodic trajectory

therefore it is high enough for the kite flying at the height of

approximately 506- 1000 m. The domain spans a distance ofn order to compute an open-loop stable and robust trajgaor

Lx = 6280 m and.y = 3140 m in horizontal directions. Number nominal periodic solution to problem (1) must be obtaines, i

of grid points in these directions alg x Ny x N, = 128x 192x  the OCP (1) is solved assuming thafz,t) = 0. This means
151. We save the complete flow field every three seconds. that the system has no disturbances. The mean-vahies, 0)

of the local wind velocityW(X,t) = (vx,V, V) are used for the
nominal optimization, and are assumed to be functions of the
altitudez only (see Fig. 3).

Thex-component of the wind velocity(X,t) = (v, v, V,) atthe
time pointt = 3 seconds is shown in Fig. 2.

The nominal periodic kite trajectory was computed using the
3. STABLE AND ROBUST OPTIMAL CONTROL OF  gptimal control softwareACADO Tool kit Houska et al.
PERIODIC SYSTEMS (2011). The locally optimal solution for the OCP (1) with no
wind disturbances, i.ew(zt) = 0, is shown in Fig. 4 (solid
This section describes a methodology to compute open-lotipe).

stable and robust periodic trajectories for the OCP (1). No .
inally optimized periodic orbits are presented in Sectidhn B mBefore we add some wind turbulences to the model and start

Section 3.2 an approach based on the solution of the perio«%ﬁc makg ;[jhe nolm!nal _opt|_mal trrz]ijector)t/) robuslt aggunst thée_m,
Lyapunov differential equation, which is used in order taifin 1'c. Periodic solution in Fig. 4 has to be analysed regarding
open-loop stable and robust trajectories, is briefly dbscii S2Piiy aSpects, since stability is a necessary requererfor
Section 3.3 and Section 3.4 discuss robustly optimized opewe robustification of the periodic solution.
loop stable periodic orbits, considering two different ratsd

for unknown wind disturbances, respectively: a) uncotegla

white noise random process; b) uncorrelated bounded random T ALl

process with turbulence intensities depending on theudkit

It was already shown in Houska and Diehl (2010) that open-
loop stable orbits exist in simulation for a large power-
generating kite system with almost 2 km tether length and a
kite with 500 nf wing area and 850 kg weight. A wind shear
model was used and it was assumed that the wind blows in the
x-direction only.

1601 | 1

In the present paper we consider the more realistic windlprofi angleg [rad

computed in Section 2.3. The wind flow resulting from the CFD _ _ _ _ . _
simulation provides a 3-dimensional wind profile, whereaalo Fig. 4. Unstable kite trajectory: nominal solution (solidel)
wind velocity vector/(X,t) = (vx, W, V) is defined as a function and S|m.ulated §o|ut|on in presence of small perturbations
in space and time. of the wind profile (dashed line). The periodlis= 19.6s.



The stability of the periodic solution of the optimal cortro reachability Grammian matriQ(T) is positive definite. The
problem (1) can be investigated by computing the spectredachability Grammian matriQ(T) € R™*™ is defined as

radius of the monodromy matrix, defined as:

Definition 1.(Monodromy matrix). The monodromy matrk
is defined asX := Y(T,0) whereY : R x R — R™*™ is the
fundamental solution obtained as

oY(t,1) of
S = g X, UM, 0)Y(t.T)

forallt,T € R.

with Y(1,7)=1

O

A periodic solution of a nonlinear differential system igrinsi-
cally stable, if the spectral radigsof the monodromy matriX
is less than one. The spectral radiusf the monodromy matrix
X associated with the solution from Fig. 40s= 1.2 > 1, and
thus, the power optimal trajectory is unstable. The inditsuif
the nominal solution to (1) can be illustrated via a simolati

of the dynamic system in the presence of small perturbatbns
the wind profile. It can be seen in Figure 4 (dashed line) that i
such a case the kite diverges quickly from the nominal smiuti

and finally crashes after less than three periods.

3.2 Stable and robust optimal control based on periodic

Lyapunov differential equation

In order to achieve stability of the periodic solution a feack

!
Q(T) ::/O Y(T,1)B(1)B(1)TY(T,7)Tdr.
O

The robust counterpart of the OCP (1) using the periodic
Lyapunov differential equation to compute sensitivities be
formulated as

a0 Ty @)

s.t.
x(t) = f(x(t),u(t),0), WVte[0,T], (5)
P(t) = A(t)P(t) +P(1)A®L) " +B(t)ZB(t)", (6)
x(0) = x(t),  P(0) = P(T), @)
0 > hi(x(t),u(t)) +yy/C(OPLC(L)", 8)
J(T,x(t)) > 0.8 Jnominal(T, X(1)), 9)
Alt) = w, B(t) := w, (10)
C(t) = dh(;;,u), (11)

controller can be introduced (see e.g. Canale et al. (200%}here the matrixZ in (6) is the variance-covariance ma-
llzhoefer et al. (2007), where a non-linear model predectivtrix of the disturbances of the wind field(zt), i.e., = =

controller was used). In this paper, however, we are loofong
open-loop stable trajectories which have several prdciida
vantages, e.g. flying an open-loop stable trajectory treedaes
not rely on sensors and actuators faults. Additionallyrejo®p

E{w(zt)w(zt)T} — E{w(z1)}2

In the OCP (4) - (11), the confidence lewelis maximized
while the resulting loss of generated powks J(T,x(t)) =

stable and robust orbits are also useful in combination With%ij Fc f dt is required to be less than 20% of nominal power
feedback control as tracking an inherently open-loop stabfieneration (constraint (9)). The state of the Lyapunov gégua

orbit is typically easier than tracking an unstable trajegt

In order to guarantee first the open-loop stability of the- sy
tem, and second its robustness w.r.t. the path constraints,
approach based on the Taylor expansion is employed, seé D

is required to satisfyP(0) = P(T) = O such that open-loop
stability of the solution can be guaranteed due to Lemmaé. Th
Inequality in (8) implies the robustness of the solutiontwthe

i gﬁth constraints.

et al. (2006a); Houska (2007); Houska et al. (2009); Nagy argl3 stable and robust periodic trajectory assuming whits@o
Braatz (2004, 2007). In this paper we consider the first ordgisturbances

approximations. Required sensitivities can be computetus

the solution of the periodic Lyapunov differential equatio

P(t) = A{t)P(t)+P(t)At)" +B(t)B(t)", 3)
P(0) = P(T).

We refer to Houska (2007); Houska et al. (2009) for a detalil

description of this method. Once the solutiB(t) of the pe-
riodic Lyapunov differential equation (3) is availablegtfirst
order approximation of the path constraihtg(t),u(t)) can be
calculated as

T '
Fi(x(t).ut) =+ vy T PO

In this section an open-loop stable and robust trajectory is
computed assuming that the disturbances are the random whit
noise process. This implies that the variance-covariaratexn

e% is the identity matrix.

For the above kite model it was possible to find an open-loop
stable and robust solution of the OCP (4) - (11) with= 1.
The maximal possible confidence leveyis- 2.13. The optimal
cycle duration isT = 20.7 seconds. The spectral radius of
the associated monodromy matrixg$X) = 0.86 < 1. Thus,

the orbit is stable. The optimized robust and open-looplstab
trajectory is shown in Fig. 5.

wherey > 0 is a confidence-level parameter. Using the fol- o ] _ _
lowing lemma, we can guarantee the existence and uniquends$ Stable and robust periodic trajectory assuming algud

of the periodic solution for the Lyapunov differential etjoa,
provided that the system is asymptotically stable:

Lemma 1(Lyapunov Lemma, cf. Bolzern and Colaneri (1988)5;.
The periodic Lyapunov differential equation admits a unaeiqud

T-periodic and positive definite solutid?(t) > O if and only
if the monodromy matrixX :=Y(T,0) is asymptotically stable

dependent turbulence intensities

n this section an open-loop stable and robust trajectory is
omputed assuming that the turbulence intensities ateicsti

ependentand, thus, time varying throughout the kitedtajg.

The averages in time of the vertical turbulence intensajgs),

(all eigenvalues are contained in the open unit disc) and tlwg(z) andoy(z) are shown in Fig. 6. The turbulence intensities
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Fig. 5. Open-loop stable and robust kite trajectory inghe6  Fig. 7. Open-loop stable and robust kite trajectory in the
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altitude’ m] 4. SIMULATION OF OPTIMAL PERIODIC KITE
_ , N TRAJECTORY IN TIME DEPENDENT TURBULENT
Fig. 6. Three components of the vertical turbulence intessi WIND FLOW

oy, oy ando;

In this section the a-priori stable and robust kite trajeet
computed in Sections 3.3 and 3.4 are simulated considering

the realistic time- and space-dependent turbulent wind flow
omputed in Section 2.3.

are computed as the root mean square of the velocity fluotuati
(V, Wy, Vi) in the specified direction (averaged over the time an
the horizontal plane), i.e., for the fixed altitud¢he turbulent

intensitiesoy(z) are given as First, the open-loop stable and robust trajectory, obthime
Section 3.3 for white noise disturbances, is simulated iech r
ox(2) = <m>1/2, (12) turbulentwind flow and is visualized in Fig. 8. As predicttts
kite trajectory robustly satisfies the boundary constsedimt the
where the velocity fluctuatiow(Xt) is calculated as duration of one period, i.e., for= 20.7 seconds. The trajectory

- _ becomes non-periodic because of wind turbulences. Flyiag t
(X 1) = w(Xt) —W(2) (13)  computed trajectory in the turbulent wind flow for four pefo

for every point% = (x,y,2) in space and for every time The the kite stays airborne for at ledst 60 seconds.

vertical turbulent intensitiesy (z) ando,(2) can be evaluated in Second, the stable and robust kite trajectory, compute@in S
the same way. tion 3.4 where non-uniform turbulence intensities are lawesi)
In order to improve the robustness of the solution from SedS Simulated in a real turbulent wind flow. As a result, much
tion 3.3, the turbulence intensities from Fig. 6 are taken in MOre stable and robust behaviour compared to the simulation
account throughout the optimization procedure. The vagan F19- 8 iS observed. This is because the confidence leve8.5
covariance matrix® in this case is defined a5 = 3(2) = computed for the orbit in Fig. 7 is much bigger than for the
diag{az(z) 02(2) az(z)} The corresponding open-loop stg.one in Fig. 5, where white noise disturbances are considered
x \£), Uy (£), 07 .

; . Thus, assuming non-uniform turbulence intensities thhoud
b:]e and_ r(::k?ust7traject0ry as a solution of the OCP (4) - (11) the OCP moregstable and robust solutions can be computed
shown in Fig. 7. ! ’

The corresponding trajectory is simulated in the turbuent
The maximal possible confidence levelis- 8.5. The optimal flow for almost seven periods and is visualized in Fig. 9. 1idyi
cycle duration isT = 24.8 seconds. The spectral radius of thehis trajectory the kite stays airborne for more thas 165
associated monodromy matrixggX) = 0.8 < 1. seconds.
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