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Abstract: Power-generating kite systems extract energy from the windby periodically pulling a
generator on the ground while flying fast in a crosswind direction. Kite systems are intrinsically unstable,
and subject to atmospheric turbulences. As an alternative to closed-loop control, this paper investigates
the open-loop stabilization and robustification of a kite system using techniques based on the solution
of Lyapunov differential equation. A wind flow is computed asa solution to a time-dependent three
dimensional Navier-Stokes equation. Open-loop stable trajectories for the power-generating kite system
are computed based on the statistical properties of the windfield, and are robustified with respect to the
system constraints. The stability and robustness of the resulting trajectories are assessed by simulating
the system using the computed time- and space-dependent turbulent wind flow.
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1. INTRODUCTION

The idea of using kites for power generation has originally been
proposed by Loyd (1980). Power-generating kite systems are
currently the object of academic and industrial research (see
Canale et al. (2006); Lansdorp and Ockels (2005); Ockels et al.
(2006); Williams et al. (2008) and the references therein for an
overview). Power can be generated by a) performing a cyclical
variation of the tether length, together with cyclical variation
of the tether tension, reeling a generator fixed to the ground, or
b) by using on-board turbine(s), transmitting the power to the
ground via the tether. In this paper, the first option is considered.

An important challenge for the control of power-generating
kites is that the system dynamics are unstable and strongly
affected by atmospheric turbulences, which are stochasticand
very unpredictable. Closed-loop control is a natural choice
to stabilize power-generating kite systems, however closed-
loop control makes the safety of the technology critical to
sensors and actuators faults. Open-loop stability of power-
generating kite systems, if it can be achieved, is thereforean
attractive alternative to closed-loop control. It is also useful in
combination with closed-loop control in order to improve the
safety of the system.

Power-generating kite systems are subject to operational con-
straints. Hence if operated in open-loop, the system trajectories
must not only achieve stability but also achieve the robustness
of the system constraints with respect to disturbances. Most
existing stability optimization techniques are either based on

the optimization of the asymptotical decay rate of the system,
the optimization of the so called pseudo-spectral abscissa, or
on the smoothed spectral abscissa or radius. Robust optimiza-
tion approaches for non-linear systems are commonly based on
linear approximations techniques Diehl et al. (2006b); Houska
and Diehl (2009); Nagy and Braatz (2004).

This paper builds on the methods developed in Houska and
Diehl (2010) using a more realistic wind field generated by
a computational fluid dynamic (CFD) simulation. The statis-
tical properties of the wind field are computed based on the
wind field obtained in the CFD simulation, which are used
to compute the open-loop stable and robust trajectories. The
stability and robustness of the resulting trajectories areassessed
in simulation.

The paper is organized as follows: In Section 2 a brief model
description for power generation with kites based on crosswind
flight is given. Moreover, an optimal control problem for find-
ing periodic trajectories that maximize the power production, is
formulated. Also, in Section 2 it is described how to compute
the time- and space-dependent turbulent wind flow using a CFD
simulation code from KU Leuven. In Section 3 we discuss the
stability and robustness properties of computed trajectories and
explain some numerical techniques which help us to stabilize
and robustify trajectories. We particularly employ techniques
based on Lyapunov differential equations. After that, in Sec-
tion 4, the optimal a-priori stable and robust kite trajectories
are simulated considering a realistic time- and space-dependent
wind profile characterized by unknown turbulences. The be-



haviour of the kite influenced by this flow field is studied. In
the last Section 5 of this paper some concluding remarks are
given.

The main contributions can be summarized as follows: In
this paper we present some new robust and open-loop stable
trajectories for a power generating kite system. Here the wind
profile for the model is given by mean velocities of the turbulent
time- and space-dimensional wind flow, which will be used
for the post-processing simulation. Two different models for
unknown wind disturbances are considered: a) uncorrelated
white noise random process; b) uncorrelated bounded random
process with turbulence intensities depending on the altitude.

The second contribution consists in testing the intrinsically
open-loop stable and robust orbits simulating them in a time-
and space-dependent turbulent wind flow.

2. MODEL DESCRIPTION, PROBLEM FORMULATION
AND WIND FLOW COMPUTATION

2.1 Model description

This section provides a brief description of the kite system
model. A more detailed overview can be found in Houska
(2007); Houska and Diehl (2007, 2010). The system is con-
sidered in a 3-dimensional Euclidean space, so that the windis
blowing in theex andey directions only. The vectorez points to
the sky andey is defined byey := ez×ex, such that{ex,ey,ez}
builds an orthonormal right-handed basis of the 3-dimensional
Euclidean space. The generator is fixed at the origin of this
coordinate system. Thus, the positionp∈ R

3 of the kite can be
described byp= rer , wherer stands for the tether length, i.e.,
the distance between the generator and the kite. The unit vec-
tor er is defined byer := (sin(θ )cos(φ),sin(θ )sin(φ),cos(θ )).
Note thatφ = 0 corresponds to theex direction. The angleθ = 0
corresponds to the zenith position, andθ = π

2 indicates that the
kite touches the ground.

The control variables are: a) the second derivative of the tether
length ¨r; b) the first derivative of the roll angle of the kitėψ ;
c) the first derivative of the lift coefficienṫCL. Vectoru consists
of all the control variables, i.e.,u = (r̈, ψ̇ ,ĊL). The steering
of the system can be performed in the following manner: the
length r of the tether can be controlled by the winch and the
roll angleψ by varying the difference between the lengths of
the two tethers leading to the right and left wing tip of the kite.
The lift coefficientCL can be controlled by an elevator. This
point model of the kite includes the physical equations for the
lift and drag force (considering tether drag), and gravitational
forces. Here, the orientation of the kite is computed under the
assumption that the main axis is always in line with the effective
wind i.e., a possible side slip is neglected.

2.2 Problem formulation

In this section the optimal control problem for finding periodic
trajectories and maximizing the power produced, is formulated.
The average powerW at the generator can be computed as

W :=
1
T

∫ T

0
Fc ṙ dt,

whereFc > 0 is the tether tension andT is the duration of
the periodic trajectory. The dynamics of the kite system are
described by the model equationẋ(t) = f (x(t),u(t),w(z, t)),

Fig. 1. Schematic illustration of a single kite system, Houska
(2007)

Table 1. Parameters of the kite model

Dimension Description [unit] Value
Ak wing surface area [m2] 500
cD aerodynamic drag coefficient [-] 0.04
ρ air density [kg/m3] 1.23
m kite mass [kg] 850
φl lower bound forφ −0.34
φu upper bound forφ 0.34
θl lower bound forθ 0.4
θu upper bound forθ 1.45
ψl lower bound forψ −0.29
ψu upper bound forψ 0.29
CL l lower bound forCL 0.1
CLu upper bound forCL 1.5
ψ̇l lower bound forψ̇ −0.065
ψ̇u upper bound forψ̇ 0.065
ĊL l lower bound forĊL −3.5
ĊLu upper bound forĊL 3.5
ṙ l lower bound for ˙r −40
ṙu upper bound for ˙r 10
r̈ l lower bound for ¨r −25
r̈u upper bound for ¨r 25

where all the state variables that characterize the position of the
kite and its velocity are collected into the vectorx(t), i.e.,x(t)=
(r,φ ,θ , ṙ , φ̇ , θ̇ ). The optimal control problem (OCP) for finding
periodic trajectories and maximizing the power produced, can
be formulated as

min
x(·),u(·),T

J(T,x(t))

subject to:
∀t ∈ [0,T] : ẋ(t) = f (x(t),u(t),w(z, t)),

0≥ h(x(t),u(t)),
x(0) = x(t),

(1)

with the objective functionJ(T,x(t)) defined asJ(T,x(t)) =
−W. The periodicity of the kite orbit is guaranteed by the pe-
riodic constraintsx(0) = x(t). The functionh(x(t),u(t)) lumps
together the system operational constraints and actuatorslimi-
tation (cf. Table 1). Table 1 summarizes the choice of parameter
values, that describe physical properties and constraintslimita-
tions for a particular kite system. The wind disturbances are
described by the functionw(z, t), which are in our case time-
and altitude-dependent.

2.3 Computation of time- and space-dependent three dimensio-
nal turbulent wind flow

In this section we discuss the time dependent flow field which is
used first to compute, and second to simulate open-loop stable



and robust kite trajectories in a more realistic environment.
Three dimensional flow field is generated from a boundary layer
simulation. The instantaneous flow field is saved for every time
step of the simulation. For the boundary layer simulation anin-
house research code Calaf et al. (2010) is used. This code is
based on large eddy simulation and solves the filtered Navier-
Stokes equations, i.e.,

∂~v
∂ t

+~v·∇~v = −
1
ρ

∇p−∇τsgs− f ~v×ez,

∇ ·~v = 0,
(2)

wherev stands for the filtered velocity field,p the pressure,
τsgs the subgrid-scale tensor andf = 10−4 sec−1 is the Coriolis
parameter at 43 degree latitude.

The KU Leuven code uses a pseudo-spectral discretization in
the streamwise and spanwise directions and a fourth-order
energy-conservative finite difference discretization in the ver-
tical direction. As a result, horizontal boundary conditions are
periodic. The top boundary condition is a zero vertical velocity,
zero shear stress boundary. The bottom boundary condition
uses Monin-Obukhov similarity theory to calculate filteredsur-
face shear stress as a function of the velocity at the first vertical
cell. Time advancement is performed using a four-stage fourth-
order Runge-Kutta method and the code is fully dealiased using
3/2 rule.

The height of the computation domain isH = 2500 m and
therefore it is high enough for the kite flying at the height of
approximately 500−1000 m. The domain spans a distance of
Lx = 6280 m andLy = 3140 m in horizontal directions. Number
of grid points in these directions areNx×Ny×Nz = 128×192×
151. We save the complete flow field every three seconds.

Thex-component of the wind velocity~v(~x, t) = (vx,vy,vz) at the
time pointt = 3 seconds is shown in Fig. 2.

3. STABLE AND ROBUST OPTIMAL CONTROL OF
PERIODIC SYSTEMS

This section describes a methodology to compute open-loop
stable and robust periodic trajectories for the OCP (1). Nom-
inally optimized periodic orbits are presented in Section 3.1. In
Section 3.2 an approach based on the solution of the periodic
Lyapunov differential equation, which is used in order to find
open-loop stable and robust trajectories, is briefly described.
Section 3.3 and Section 3.4 discuss robustly optimized open-
loop stable periodic orbits, considering two different models
for unknown wind disturbances, respectively: a) uncorrelated
white noise random process; b) uncorrelated bounded random
process with turbulence intensities depending on the altitude.

It was already shown in Houska and Diehl (2010) that open-
loop stable orbits exist in simulation for a large power-
generating kite system with almost 2 km tether length and a
kite with 500 m2 wing area and 850 kg weight. A wind shear
model was used and it was assumed that the wind blows in the
x-direction only.

In the present paper we consider the more realistic wind profile
computed in Section 2.3. The wind flow resulting from the CFD
simulation provides a 3-dimensional wind profile, where a local
wind velocity vector~v(~x, t) = (vx,vy,vz) is defined as a function
in space and time.

Fig. 2.vx component of the wind velocity at the time pointt = 3
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Fig. 3. Mean velocity profiles ¯vx (left) andv̄y (right) of the wind
speed in the atmospheric Ekman layer. (Note that ¯vz = 0)

3.1 Nominal periodic trajectory

In order to compute an open-loop stable and robust trajectory, a
nominal periodic solution to problem (1) must be obtained, i.e.,
the OCP (1) is solved assuming thatw(z, t) = 0. This means
that the system has no disturbances. The mean-values(v̄x, v̄y,0)
of the local wind velocity~v(~x, t) = (vx,vy,vz) are used for the
nominal optimization, and are assumed to be functions of the
altitudezonly (see Fig. 3).

The nominal periodic kite trajectory was computed using the
optimal control softwareACADO Toolkit Houska et al.
(2011). The locally optimal solution for the OCP (1) with no
wind disturbances, i.e.,w(z, t) = 0, is shown in Fig. 4 (solid
line).

Before we add some wind turbulences to the model and start
to make the nominal optimal trajectory robust against them,
the periodic solution in Fig. 4 has to be analysed regarding
stability aspects, since stability is a necessary requirement for
the robustification of the periodic solution.
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Fig. 4. Unstable kite trajectory: nominal solution (solid line)
and simulated solution in presence of small perturbations
of the wind profile (dashed line). The period isT = 19.6s.



The stability of the periodic solution of the optimal control
problem (1) can be investigated by computing the spectral
radius of the monodromy matrixX, defined as:

Definition 1.(Monodromy matrix). The monodromy matrixX
is defined asX := Y(T,0) whereY : R×R → R

nx×nx is the
fundamental solution obtained as

∂Y(t,τ)
∂ t

=
∂ f
∂x

(x(t),u(t),0)Y(t,τ) with Y(τ,τ) = 1

for all t,τ ∈ R.

2

A periodic solution of a nonlinear differential system is intrinsi-
cally stable, if the spectral radiusρ of the monodromy matrixX
is less than one. The spectral radiusρ of the monodromy matrix
X associated with the solution from Fig. 4 isρ = 1.2 > 1, and
thus, the power optimal trajectory is unstable. The instability of
the nominal solution to (1) can be illustrated via a simulation
of the dynamic system in the presence of small perturbationsof
the wind profile. It can be seen in Figure 4 (dashed line) that in
such a case the kite diverges quickly from the nominal solution
and finally crashes after less than three periods.

3.2 Stable and robust optimal control based on periodic
Lyapunov differential equation

In order to achieve stability of the periodic solution a feedback
controller can be introduced (see e.g. Canale et al. (2007);
Ilzhoefer et al. (2007), where a non-linear model predictive
controller was used). In this paper, however, we are lookingfor
open-loop stable trajectories which have several practical ad-
vantages, e.g. flying an open-loop stable trajectory the kite does
not rely on sensors and actuators faults. Additionally, open-loop
stable and robust orbits are also useful in combination with
feedback control as tracking an inherently open-loop stable
orbit is typically easier than tracking an unstable trajectory.

In order to guarantee first the open-loop stability of the sys-
tem, and second its robustness w.r.t. the path constraints,an
approach based on the Taylor expansion is employed, see Diehl
et al. (2006a); Houska (2007); Houska et al. (2009); Nagy and
Braatz (2004, 2007). In this paper we consider the first order
approximations. Required sensitivities can be computed using
the solution of the periodic Lyapunov differential equation

Ṗ(t) = A(t)P(t)+P(t)A(t)⊤+B(t)B(t)⊤,
P(0) = P(T).

(3)

We refer to Houska (2007); Houska et al. (2009) for a detailed
description of this method. Once the solutionP(t) of the pe-
riodic Lyapunov differential equation (3) is available, the first
order approximation of the path constraintsh(x(t),u(t)) can be
calculated as

h̃i(x(t),u(t)) = hi + γ

√

∂hi

∂x

⊤

P(t)
∂hi

∂x
,

where γ ≥ 0 is a confidence-level parameter. Using the fol-
lowing lemma, we can guarantee the existence and uniqueness
of the periodic solution for the Lyapunov differential equation,
provided that the system is asymptotically stable:

Lemma 1.(Lyapunov Lemma, cf. Bolzern and Colaneri (1988)).
The periodic Lyapunov differential equation admits a unique
T-periodic and positive definite solutionP(t) ≻ 0 if and only
if the monodromy matrixX :=Y(T,0) is asymptotically stable
(all eigenvalues are contained in the open unit disc) and the

reachability Grammian matrixQ(T) is positive definite. The
reachability Grammian matrixQ(T) ∈ R

nx×nx is defined as

Q(T) :=
∫ T

0
Y(T,τ)B(τ)B(τ)⊤Y(T,τ)⊤dτ.

2

The robust counterpart of the OCP (1) using the periodic
Lyapunov differential equation to compute sensitivities can be
formulated as

min
x(·),u(·),P(·),T,γ

−γ (4)

s.t.

ẋ(t) = f (x(t),u(t),0), ∀t ∈ [0,T], (5)

Ṗ(t) = A(t)P(t)+P(t)A(t)⊤+B(t)Σ B(t)⊤, (6)

x(0) = x(t), P(0) = P(T) , (7)

0 ≥ hi(x(t),u(t))+ γ
√

Ci(t)P(t)Ci(t)⊤ , (8)

J(T,x(t))≥ 0.8 Jnominal(T,x(t)), (9)

A(t) :=
∂ f (x,u,0)

∂x
, B(t) :=

∂ f (x,u,0)
∂w

, (10)

C(t) :=
∂h(x,u)

∂x
, (11)

where the matrixΣ in (6) is the variance-covariance ma-
trix of the disturbances of the wind fieldw(z, t), i.e., Σ =
E{w(z, t)w(z, t)T}−E{w(z, t)}2.

In the OCP (4) - (11), the confidence levelγ is maximized
while the resulting loss of generated powerJ = J(T,x(t)) =
− 1

T

∫ T
0 Fc ṙ dt is required to be less than 20% of nominal power

generation (constraint (9)). The state of the Lyapunov equation
is required to satisfyP(0) = P(T) ≻ 0 such that open-loop
stability of the solution can be guaranteed due to Lemma 1. The
inequality in (8) implies the robustness of the solution w.r.t. the
path constraints.

3.3 Stable and robust periodic trajectory assuming white noise
disturbances

In this section an open-loop stable and robust trajectory is
computed assuming that the disturbances are the random white
noise process. This implies that the variance-covariance matrix
Σ is the identity matrix.

For the above kite model it was possible to find an open-loop
stable and robust solution of the OCP (4) - (11) withΣ = I .
The maximal possible confidence level isγ = 2.13. The optimal
cycle duration isT = 20.7 seconds. The spectral radius of
the associated monodromy matrix isρ(X) = 0.86< 1. Thus,
the orbit is stable. The optimized robust and open-loop stable
trajectory is shown in Fig. 5.

3.4 Stable and robust periodic trajectory assuming altitude
dependent turbulence intensities

In this section an open-loop stable and robust trajectory is
computed assuming that the turbulence intensities are altitude
dependent and, thus, time varying throughout the kite trajectory.

The averages in time of the vertical turbulence intensitiesσx(z),
σy(z) andσz(z) are shown in Fig. 6. The turbulence intensities
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Fig. 5. Open-loop stable and robust kite trajectory in theφ - θ
plane, considering disturbances modelled by a white noise
random process
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Fig. 6. Three components of the vertical turbulence intensities:
σx, σy andσz

are computed as the root mean square of the velocity fluctuation
(ṽx, ṽy, ṽz) in the specified direction (averaged over the time and
the horizontal plane), i.e., for the fixed altitudez the turbulent
intensitiesσx(z) are given as

σx(z) =
〈

ṽxṽx
〉1/2

, (12)

where the velocity fluctuation ˜vx(~x, t) is calculated as

ṽx(~x, t) = vx(~x, t)− v̄x(z) (13)

for every point~x = (x,y,z) in space and for every timet. The
vertical turbulent intensitiesσy(z) andσz(z) can be evaluated in
the same way.

In order to improve the robustness of the solution from Sec-
tion 3.3, the turbulence intensities from Fig. 6 are taken into
account throughout the optimization procedure. The variance-
covariance matrixΣ in this case is defined asΣ = Σ(z) =
diag

{

σ2
x (z),σ2

y (z),σ2
z (z)

}

. The corresponding open-loop sta-
ble and robust trajectory as a solution of the OCP (4) - (11) is
shown in Fig. 7.

The maximal possible confidence level isγ = 8.5. The optimal
cycle duration isT = 24.8 seconds. The spectral radius of the
associated monodromy matrix isρ(X) = 0.8< 1.
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Fig. 7. Open-loop stable and robust kite trajectory in theφ
- θ plane, considering realistic non-uniform turbulence
intensities
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Fig. 8. Simulation of the stable and robust kite trajectory from
Fig. 5 (white noise disturbances) within a turbulent time-
and space-dimensional wind flow

4. SIMULATION OF OPTIMAL PERIODIC KITE
TRAJECTORY IN TIME DEPENDENT TURBULENT

WIND FLOW

In this section the a-priori stable and robust kite trajectories
computed in Sections 3.3 and 3.4 are simulated considering
the realistic time- and space-dependent turbulent wind flow
computed in Section 2.3.

First, the open-loop stable and robust trajectory, obtained in
Section 3.3 for white noise disturbances, is simulated in a real
turbulent wind flow and is visualized in Fig. 8. As predicted,the
kite trajectory robustly satisfies the boundary constraints for the
duration of one period, i.e., fort = 20.7 seconds. The trajectory
becomes non-periodic because of wind turbulences. Flying the
computed trajectory in the turbulent wind flow for four periods
the kite stays airborne for at leastt = 60 seconds.

Second, the stable and robust kite trajectory, computed in Sec-
tion 3.4 where non-uniform turbulence intensities are assumed,
is simulated in a real turbulent wind flow. As a result, much
more stable and robust behaviour compared to the simulationin
Fig. 8 is observed. This is because the confidence levelγ = 8.5
computed for the orbit in Fig. 7 is much bigger than for the
one in Fig. 5, where white noise disturbances are considered.
Thus, assuming non-uniform turbulence intensities throughout
the OCP, more stable and robust solutions can be computed.
The corresponding trajectory is simulated in the turbulentwind
flow for almost seven periods and is visualized in Fig. 9. Flying
this trajectory the kite stays airborne for more thant = 165
seconds.
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Fig. 9. Simulation of the stable and robust kite trajectory
from Fig. 7 (altitude-dependent non-uniform turbulence
intensities) within a turbulent time- and space-dimensional
wind flow

5. CONCLUSIONS

In the present paper we have computed some new open-loop
stable and robust trajectories for a power generating kite sys-
tem. Here, we consider a realistic model for the three dimen-
sional wind profile and different models for wind disturbances:
a) uncorrelated white noise random process; b) uncorrelated
bounded random process with turbulence intensities depending
on the altitude. The resulting trajectories have been compared in
terms of stability and robustness. The conclusion is that byas-
suming non-uniform, altitude-dependent turbulence intensities
in the OCP, more stable and robust solutions can be computed.

As a post-processing test, both trajectories have been simulated
in a real time- and space-dependent three dimensional turbulent
wind flow. Flying the second trajectory, where non-uniform
turbulence intensities have been considered throughout the op-
timization, the path constraints are satisfied for much longer
time. As a consequence, the kite stays much longer airborne.
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