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Abstract: In this paper we present solution approaches for uncertain periodic optimal control problems
with invariants that arise e.g., after index reduction of high-index differential algebraic systems. There
are two difficulties to be addressed: first, we encounter a redundancy in the periodic boundary constraints
which is due to the presence of invariants. And second, we have to deal with the presence of uncertainties.
To address the first problem we discuss both a projection and a null-space based reformulation
approaches that avoid the redundancies in the constraints. Concerning the uncertainties, we discuss
an approximate robust optimal control formulation based on Lyapunov differential equations. Here,
the invariants and periodic boundary constraints have to be taken into account, too. We illustrate our
techniques by optimizing an open-loop controlled inverted pendulum which is described by index three
differential algebraic equations and is affected by unknown forces.

1. INTRODUCTION

We are interested in the periodic optimal control problem
(OCP) of the form:

minimize J(y(-),u(:),T (1)
winimize J(5().u().)
S.t.:

y(t)=fO@),ul),wi), Vte[0,T] (2
0> h(y(t),u(t)), 3)
¥(0) = y(T), “4)

where y : R — R and u : R — R"™ denote the time dependent
state and control functions, respectively. The end time 7 € Ry |
can also be considered as a decision variable. The function f
describes the dynamics of the system, while the functions #;
(withi € {1,...,n,}) represent the inequality path constraints of
the system. These functions are assumed to be sufficiently dif-
ferentiable in their arguments. In this paper periodic boundary
conditions (4) are considered.

Additionally, we assume that inside of the dynamics f(y,u,w)
an invariant ¢(y(z)) = 0 is intrinsically included. This invariant
can be a result of a transformation from a high-index differen-
tial algebraic system into a differential system or a conserved
quantity which is included into the differential dynamics, e.g.,
energy conservation. In order to maintain the invariant through
the dynamics we need to fix its value for at least one point on
the time interval [0,7], e.g., at + = T by adding the final time
constraints:

c((T)) = 0. Q)
The first difficulty in the treatment of the periodic optimal
control problem with invariants (1) - (5) is a redundancy in
the boundary conditions (4) - (5). In the present paper two
approaches for the transformation of the redundant constraints

(4) - (5) are proposed: the projection method and the null-space
approach.

The second difficulty is due to the presence of the time varying
uncertain functions w(r) € R™ in the dynamics f. The function
w is only known to be contained in a common uncertainty set
w € W defined by

W= {w /Omw(r)Tw(r)dr <P } . ©)

In order to solve the uncertain optimal control problem (1) - (5)
in the present paper an approximate robust optimal control ap-
proach based on the solution of Lyapunov differential equations
is employed.

The structure of the paper is as follows. In Section 2 we in-
troduce two approaches for treating the invariants in periodic
optimal control problems, i.e. the projection and the null-space
approaches. In Section 3 we discuss the approximate robust
optimal control algorithm based on the solution of Lyapunov
differential equations which can be be applied to optimal con-
trol problems with dynamic invariants. Section 4 gives an illus-
trative example in which the methodology is applied. For the
numerical implementation we exploit the open source software
ACADO Toolkit by Houska et al. [2011]. The paper con-
cludes in Section 5 with a summary and an outlook on how the
presented techniques and results might become relevant for the
realization and control of more complex mechanical systems in
the near future.

2. TREATING INVARIANTS IN PERIODIC OPTIMAL
CONTROL

In this section we introduce two alternative approaches for the
treatment of invariants in periodic optimal control problems.
We consider the nominal optimal control problem (1) - (3) for



c(¥(T))

Fig. 1. llustration of the decomposition into two subspaces for
ny=3andn. = 1.

the fixed uncertainty function w(r) = 0 with the boundary con-
ditions (4) - (5). For convenience we rewrite these conditions
here in the form

Nominal redundant boundary conditions:

¥(0) = ¥(T), @)

c(¥(T)) =0. (8)
The constraints (7) - (8) are partly redundant because the in-
variant ¢(y(T)) will also be zero at the begin of the time in-
terval. This creates problems for the numerical solution. Thus,
we need to impose periodicity only in the directions that are
tangential to the invariant constraint. One way to achieve this is
to define an orthogonal projection operator ¢ that projects any
state violating the invariant back to the invariant manifold, and
to impose periodicity only after having applied this operator
to the terminal state. Then, the invariant constraint can be left
away as it is anyway satisfied. The proposed decomposition into
two subspaces is illustrated in Figure 1.

Assumption I. In the following we assume that the Jacobian
matrix J = j—;(y(T)) € R has full rank.

The nonlinear projection operator can then be approximated
by the first step of a Newton-type procedure to satisfy the
constraint as follows:

Nominal projected boundary conditions:

¥(0) =9 (»(T)) =0, €)
o) =y—1"(117) e) (10)

Introducing the (non-unique) null-space matrix Z € R *(y="c)
of the derivative matrix J that satisfies:

JZ=0 and Z'Z=1
the redundant boundary conditions (7) - (8) can also be refor-
mulated as:
Nominal Null-space boundary conditions:

z" (3(0)—¥(1)) = 0, (1)

c(y(T)) = 0. (12)
The nominal redundant boundary conditions (7) - (8) imply
the nominal projected boundary conditions (9) - (10) and the
nominal null-space boundary conditions (11) - (12). The impli-
cation in the other direction is in general only valid in case the
algebraic constraints ¢ are linear in y(7T).

In the following we denote the redundant optimal control prob-
lem (1) - (5) with w(¢) = 0 as a nominal redundant OCP. The
nominal OCP with projected boundary conditions now reads as:
Nominal projected OCP (POCP)

minimize JO(),u(-),T) (13)
S.t.:
(2)—(3) with w(z) =0,
0=y(0) =y(T)+J" Re(y(T)), (14)
JITR=L. (15)

Here, in order to compute the matrix (JJ7)~! € R"*" the slack
variables R € R"<*"_defined by J J T R =1, are introduced.

Employing the alternative null-space approach for reformula-
tion of the redundant boundary conditions the nominal OCP
reads as:

Nominal Null-space OCP (NOCP)

minimize J(y(-);u(-),T) (16)
S.t.:
(2)—(3)  withw(t) =0,
z' ((0)—¥(T))=0, Jz=0, (17
c(y(T)) =0, AVAS S (18)

In this formulation the n, x (n, —n.) entries of the null-space
matrix Z become new decision variables. In the next proposi-
tion we give some relations between the solutions of nominal
POCP/NOCP and the nominal redundant OCP.

Proposition 1. If Assumption 1 holds, any solution to the prob-
lem POCP or NOCP yields a lower bound on the original
problem (1) - (5).

Proof: Every feasible point for nominal redundant OCP is also
feasible for POCP and NOCP. Thus, any optimal solution for
the problems POCP or NOCP yields a lower bound for the
nominal redundant OCP. a

The following lemma provides conditions under which the
linear independence constraint qualification (LICQ) for POCP
and NOCP are satisfied.

Lemma 1. Let us start with a point (y(¢),u(¢)) which is feasible
for the POCP or NOCP. If Assumption 1 holds, and matrix (I —

V A) has full rank, where V =1—J" (JJT)fl Jand A = ?V%))

then, the LICQ holds at the point (y, «) for the POCP or NOCP,
respectively.

Proof:

We start with discretizing the nominal projected optimal control
problem (13) - (15) using e.g., the single shooting method.
Given a piecewise control function u the discrete counterpart
for this optimal control problem reads as:

minimize
YoERM ucRNm
S.t.:

Jlyo, u] (19)

-1
yo—Eo,u)+J7 (197) e(€bo,u)) =0, 20)
where & (yo,u) = y(T) is a solution of the differential equation

¥(t) = f(3(1),u(t),0)
parametrized by y(0) = yo and the discrete control u. The LICQ
for the discrete minimization problem (19) - (20) is equivalent

to the condition that the matrix (I—VA,—~VB), with B = 2



has full row-rank. This condition is satisfied if the left block,
i.e., the matrix (I—V A) has full rank.

For the NOCP problem (16) - (18) the proof is similar. The
discrete counterpart for this optimal control problem reads as:

minimize  J[yo, u] 21
YoER™ ucRNmu
S.t.:
Z" (vo— & (yo,u)) =0, (22)

Then, the LICQ for this discrete minimization problem is
equivalent to the condition that the matrix

ZT —ZTA7 —ZTB nVX(nVJrNVlu)
( JA, JB) el
has full row-rank. This is satisfied if the left block

EOROIEE

.
has full rank. Since the matrix ? builds a basis and thus
has full rank, this is true if the matrix (]I -V A) has full rank.
The matrix V, specified as above, represents a projection on the
null-space Z orthogonal to J. The assumptions of the Lemma
include that the matrix (I—V A) has full rank. This concludes
the proof. O

Corollary 1. If Assumption 1 holds at the given point (y(¢),u(r))
and the underlying linearized differential system is asymptoti-

cally stable on the null-space Z orthogonal to J then the LICQ

is satisfied.

Proof: Due to its definition, the asymptotic stability of the
linearized differential system on the null-space Z orthogonal
to J implies that the eigenvalues of the projection of A on the
null-space Z, which is defined by VA, are less than one. Thus,
the matrix (I —V A) has full rank. Application of Lemma 1
guarantees that the LICQ is satisfied. a

3. APPROXIMATE ROBUST OPTIMAL CONTROL FOR
EQUATIONS WITH INVARIANTS

In order to address optimal control problems with uncertainties
an approximate robust optimal control strategy based on Lya-
punov differential equations is employed. In this section, we
formulate a robust counterpart for the optimal control problems
(13) - (15) and (16) - (18) taking in account the fact that the
uncertainties w are contained in the bounded uncertainty set W
defined by (6).

A similar worst-case formulation for uncertain optimization
problem was developed in Ben-Tal and Nemirovski [1998],
Ben-Tal et al. [2005]. In order to transfer these ideas to the
periodic optimal control case we assume that for given periodic
controls u(r) there is a unique solution &|[¢,u(-), w] of the infinite
periodic differential system with invariants
¥) = fO(1),u(r),0), VT € [—oo, T]
c(¥(T)) = 0.
Then, the robust counterpart for the optimal control problem (1)
- (5) can be formulated as
minimize J(y(-),u(-),T)
¥()u(),
s.t.: ma);vhi(ﬁ[t,u(),w},u(t)) <0, Vtel0,T],
S

w()

(24)

(25)

where the constraints have to be satisfied for all indices i €
[1, ...,nh] .

Due to the fact that there are no suitable numerical algorithms
available in order to solve min-max robust optimal control
problem (25), we employ some heuristics that allows us to
approximately solve this optimal control problem. There exist
several possibilities for the approximation of problem (25).
In the present paper linearization techniques are applied (see
Diehl et al. [2006], Houska and Diehl [2009]), although some
approaches propose to use higher order terms for the approxi-
mation (see Nagy and Braatz [2004, 2007]).

In order to formulate the approximated robust counterpart for
(1) - (5) we linearize both the differential dynamics and the path
constraints /2 around a reference solution y(¢) for a given control
u(t) and fixed uncertainties w(z). Then, the path constraints in
(25) can be replaced by

Ri(y(t),u(t)) = hi+ max, (Ci, H(t)w)gny (26)
w(-)€E
with the linear operator H(t) : w(t) — Sy(¢) defined by
0y(t) =A(t)oy(r) + B(t)w(t), Vi€ [—oo,T]
6y(0) = éy(T),  Joy(T) =0,
where we use the shorthands
_ 9f(»u,0) _ 9f(»u,0)
. h(y,u
C(t) = 9y

Introducing the adjoint operator H* as

(C, H(I)W)Rny = (H* (I)C7 W)]R"w
it was shown in Houska [2007] that the approximated path
constraints /; in (26) can be calculated as:

hi(y(t),u(t)) = hi + 7,/ C] P(1)Ci,

where the matrix valued function P(r) := H(t)*H(t) is a
solution of the Lyapunov differential equation

P(t) = A(t)P(t) + P(t)A(t) " +B(t)B(r) ", Vr € [0, T]
with periodic boundary conditions, P(0) = P(T).

27)

Depending on which approach for treating invariants in the
nominal periodic system is employed, i.e. the projection ap-
proach or the null-space approach, the boundary conditions for
the Lyapunov system (27) take different formulations, which
are equivalent to each other. If the projection approach was
applied in the nominal case, the boundary conditions for the
Lyapunov system (27) take the form:

Lyapunov projected boundary conditions:

P(0)—VP(T)V =0,
gi(y(T)) —71-J' (JJT>71 J.

In case the null-space approach was used for the reformulation
of the nominal redundant boundary conditions, the correspond-
ing Lyapunov periodic boundary conditions read as:
Lyapunov Null-space boundary conditions:

(28)

v=v'= (29)

ZU(P(0O)—-P(T))Z =0, Z'"PO)J" =0, (30)
JP0)J" =0, JZ=0, ZzZ'z=1 @3

In the following lemma the equivalence between these two
types of Lyapunov boundary conditions is proved.



Lemma 2. The sets (28) - (29) and (30) - (31) of the bound-
ary conditions for the Lyapunov differential equation (27) are
equivalent.

Proof:

In order to prove the equivalence we apply a basis transfor-
mation, which is specified by the matrix (Z Z)", to P(0) —
VP(T)V' = 0. We define Z € R*("~"¢) a5 the null-space
of the derivative matrix J, i.e. J Z = 0 € R%*(y=nc) and 7 €
R™>"e - an orthogonal complement to Z. Z can be chosen to be
the row-space of J,ie. Z=J".

(ZJT> (P(O)—VP(T)VT) (zJ7) =

(ZT (P(0)—P(T)) Z|Z" P( )JT) 0

JP(0)Z lJPO)JT )T

Exploiting the symmetry property in (32) the periodicity condi-
tions P(0) — VP(T)VT = 0 are equivalent to
Z" (P(0)~P(T))Z = 0,

Z'PO)J" =0, JP0O)JT =0.

(32)

(33)
O

In the following lemma we establish the necessary and suffi-
cient conditions to a) guarantee the existence of the solution
of the Lyapunov differential equation (27) with the boundary
conditions (28) - (29) or (30) - (31) and b) to provide the sta-
bility of the underlying differential system with invariants. This
lemma is an extension of the Lyapunov lemma, cf. (Bolzern and
Colaneri [1988]), applied to the specific boundary conditions.
Lemma 3. The periodic Lyapunov differential equation system
(27) - (29) and (27), (30) - (31) has a unique and positive semi-
definite solution P(¢) > 0, whose projection on the null-space
Z of J is positive definite, i.e. ZTP(t)Z =0, for all r € R, if and
only if:

a). The projection Z'XZ of the monodromy matrix X :=
Y(T,0) on the null-space Z is asymptotically stable.

b). The projection Z' Q(T)Z of the reachability Grammian ma-
trix Q(T) is positive definite, i.e. Z' Q(T)Z > 0. The reachabil-
ity Grammian matrix Q(r) € R™*™ is defined as:

t
_ / Y(t,7)B(7)B(t
0
The fundamental solution ¥ : R x R — R™*" is obtained as

Y (1,7)
ot

)Ty (t,7) " dr.

=AY (t,t) with Y(r,7)=1, (34)

foralls, T € R. Note that due to the invariants holds: J Y (zT, 1) =

0,for all z € Z.

Proof:

The function P : R — R™*™ given by
P(t) == Y(t,0) Ry Y (1,0)" 4+ 0O(r) (35)
for all # € R is the unique solution of the Lyapunov differential
equation (27) with the initial condition P(0) = Py € R™*". The
boundary conditions (28) have the form
VP(T)V=VXPX' V+VQO(T)V = P. (36)
Applying a basis transformation (Z J ") to the equation (36)

and employing the fact that V (ZJT) = Z JT, we obtain the
following relation

Ph=XP o(T), 37)

where

X+
(P, X, O(T < ) Py, X, Q(T))(Z]").
Note that JX = 0 and J Q(T) = 0 due to the invariants. The
equation in (37) is linear in Po, thus, using standard linear al-
gebra arguments (see Bolzern and Colaneri [1988]) the positive
definite solution Z" Py Z exists if and only if:

a). The matrix Z" Q(T') Z is positive definite.

b). The eigenvalues of the projected monodromy matrix Z' X Z
are all contained in the open unit disc, i.e. the projection Z" X Z
is asymptotically stable.

Moreover, if ZTRyZ is positive definite, it immediately follows
from (35) and (37), that the projected matrix Z' P(¢)Z is posi-
tive definite for all # > 0, since Q(¢) = 0 for all 7 € [0, 7] due to
its construction.

Because of the property (34) of the fundamental solution Y (7, T)
the projections of the reachability matrix Q(T) satisfy

JQ(ryz=0, JOT)J" =0,
which directly implies
JRZ =0, JRJ' =0

to be a solution of (37).
O

In summary, if the projection approach is employed in order
to treat the invariants in the boundary conditions, the robust
counterpart for the uncertain OCP (1) - (5) can be formulated
as:

Robust projected OCP

S SO0 8

s.t.:
y(t) = f(t),u),0),  Vte[0,T] (39)
P(t) = A(t)P(t)+P(1)A(t)" +B(1)B(:)",  (40)
0=>h (y(t),u(t)) Cl(t)P(t)Ci(r) " (41)
y(0)=o((T)) = (42)
P(0)—VP(T )VT = 0, (43)
V=I-J'RJ, JI'R=1L (44)

In case if the null-space approach was applied the robust
counterpart for the optimal control problem (1) - (5) takes the
form:

Robust Null-space OCP

(minimize J(y(-),u(),T) 45)
S.t.:
(39) — (41),
Z' (3(0)~y(T)=0, JZ=0,  (46)
cy(T)=0, Zz'z=I, (47)
Z" (P(0)=P(T))Z = 0, (48)
JP(0O)Z =0, JPO)J =0, (49)

where the null-space matrix Z € R*(=") replaces R in (38)
- (44) and is a new decision variable.



4. ILLUSTRATIVE EXAMPLE

The system considered for the illustrative example is an in-
verted pendulum mounted on a joint that can be moved in the
vertical direction only. See Figure 2 for a sketch of the system.
In has been observed in many experiments that the pendulum
can be stabilized in an open-loop manner by imposing an os-
cillatory motion of the joint of the appropriate frequency and
amplitude. In Houska [2011] this system was approximated
by an elastic link and stability optimization was performed. In
the example which we propose in this paper, the elastic link is
replaced by an infinitely rigid link.

4.1 System model

An orthonormal fixed reference frame {e,, e, } is defined, where
e, spans the vertical direction. The position of the mass of the
pendulum m is given by P, = xe, + ze;, and the position of the
joint is given by P; = ve,. The pendulum arm is modeled as a
rigid link that constrains the pendulum mass to evolve on the
one-dimensional manifold defined by:

C:%(xz—i—(z—v)z—lz) =0,

with [ being the length of the arm. The kinetic and potential
energy functions of the system read:

(50)

T:%m(xz—i—iz), V=mgz.

Defining the generalized coordinates ¢ = [x Z]T, and using the

Lagrange function . =T —V — 4 C, the pendulum dynamics
can be computed using the Lagrange equation % %ﬁ — Tq =F,

resulting in the index-three differential algebraic system:

. 0 X
mg+ [mg} +2 L_V} =F, C=0,

where F is the vector of generalized forces acting on the system.
For any ) € R, using C(t) = 0, C(t9) = 0, C(tp) = 0, equation
(51) can be reformulated as the index-one differential algebraic
system (together with the consistency conditions):

F HE
¢, OJ[A] [-Cg—Cv—Ciu]’

C(t) =0, C(to) = (C4¢+Cyv),_, =0,
where C, = ‘3—2, C = g—g, and C; = ‘3—5 The control function u

in the model is chosen to be the acceleration v of the joint. This
system can equivalently be rewritten as:

m 0 X X Fy
0 m z—v | =|F—-—mg R
xz—v 0 A P 42vi—i2 =2 —u(v—2)

(P4 (z—v)? —12)1110 =0, (52)

2
Clty) = (¥x+v(v—2)—2(v—2)),_ 0 =0
[Fx

where F =
terms:

(5D

=1

] The generalized forces F are the viscous

F=—-ugq.
Because A appears linearly in (52) it can be eliminated, so that
the system (52) can be reformulated as a differential system.

Table 1. Model parameters

Parameter Value
m 1 [kg]
l 1 [m]

u 2[N/m-s7!]
Xmax 0.2 [m]
K 0.01
g 9.81

m X
Z
[
€z
Joint
% ¢__> ey

o]

Fig. 2. Sketch of the pendulum

Definingy =[x z % z v v]",and c = [C C]T, the equations of
motion (52) take the form:
y=f(u,w), c(0) =0. (53)
The right-hand side function f becomes
FOnuw) = (4 2, % 2, v, u)"

withi=—(Ax+pux)/m+wandi=—(A (z—v)+uz)/m—g.
Numerical values for the physical constraints involved in the
problem are given in Table 1. The function w is assumed to
be a time-dependent uncertainty which acts on the mass in the
horizontal direction.

4.2 Optimization problem

The proposed optimization problem seeks at finding an open-
loop stable periodic orbit, a control input u# and the optimal
period time 7, € Ry, such that the pendulum stays in its
inverted position. Moreover, we want to robustify the path
constraints, defined by

—Xmax < X < Xmax, forallte [0, T]

with respect to uncertainties w. For this purpose we choose an
objective function of the Lagrange type, defined by

e [

where 7 is a robustification parameter, which is included into
the objective function. x is a regularization parameter. The
period time 7}, is a decision variable.

L(y7u7Tp7 szt

In order to construct an approximate robust optimal control
formulation for the inverted pendulum example, we have first
to introduce the matrix valued function P(¢) as a solution of
the corresponding Lyapunov differential equation and second
to add the robustness margins to the inequality path constraints.
To reduce the number of additional differential states we use
the symmetry property of the matrix P(¢) and assume that the
states v and v are not affected by uncertainties. Thus, altogether
we have 16 differential states. Summarizing, the approximate
robust and stable counterpart for the optimal control of the in-
verted pendulum, if the projection approach is employed in or-
der to reformulate the redundancy in the boundary constraints,
can be defined as:



7

Fig. 3. Left: optimal trajectory of the mass point; right: optimal
velocity of the joint; bottom: optimal control input

Y+ L /Tp (ic lu(t)||* + t P(r)) dt

min  —
yu,Tp V.Y Tp Jo
s.t. y:f(yvuvw)v
P={P+PE + fufy,
¥(0)—¢((T)) = 0,
P(O)—V(J)P(T)VT(J) =0, 54)
_ dc
~ay(T)’

YVPI — Xmax <X < Xmax — YV P11,

c(0)=0,

V) =1-J"WJH Yy, g

where f, = ‘3—5 and f,, = g—{;. In order to numerically solve

the robustified optimal control problem we use the open source
software ACADO Toolkit by Houska et al. [2011], which
implements multiple shooting with an SQP method. The control
is discretized by piecewise constant functions. In order to inte-
grate the differential system and to compute the sensitivities,
that are needed for the optimization procedure, we use a special
type of integrator, the so called LYAPINT integrator, which
was developed in Sternberg et al. [2011] and represents a new
feature within the ACADO Toolkit. The LYAPINT integra-
tor efficiently exploits a particular structure of the Lyapunov
differential equation and thus reduces the overall computation
time. One SQP iteration takes 5.3 seconds.

For the proposed inverted pendulum example it was possible
to find an open-loop stable and robust solution. The maximal
confidence level is y = 0.278. The optimal cycle duration is
T = 82.67 ms. The spectral radius of the projected monodromy
matrix is p(Z" X Z) = 0.89259 < 1. The optimized robust and
open-loop stable trajectories for the y-component of the mass,
the velocity v of the joint and the optimal control input u are
shown in Figure 3. Alternatively, we can also apply the null-
space approach in order to reformulate the redundant boundary
conditions. The numerical results are similar, but the drawback
of this approach is that the null-space matrix Z is not unique.
The locally optimal solution for the robust projected OCP (54)
turns out also to be a local solution for the robust OCP with
redundant boundary conditions. Nevertheless, in general if a
local solution for the robust projected (Null-space) OCP is not
feasible for the redundant OCP, one possibility to find a local
solution for the redundant OCP is to add some penalization
terms into the objective function and start optimization from
the given solution as an initial guess.

5. CONCLUSION

In the present paper, we have discussed a strategy to numer-
ically deal with uncertain periodic optimal control problems
with invariants as they arise in the context of high-index dif-
ferential algebraic systems. In the first part of the paper, we
have concentrated on a projection and a null-space method
which avoid the redundancies in the periodic boundary con-
ditions with respect to the invariant manifold. Lemma 1 has
shown that both methods lead to a set of numerically well-
behaved constraints in the sense that the linear independence
constraint qualification can be obtained under mild regularity
assumptions.

The second part of the paper has focused on the uncertainty
which might be present in the dynamic system. Here, the flow of
the uncertainty through the dynamic system can approximately
be computed by propagating a Lyapunov differential equation.
Note that this Lyapunov differential equation has been used to
impose both approximate robustness with respect to constraints
as well as the nominal open-loop stability of the periodic
system. Here, the conditions for the asymptotic stability of
periodic orbits have been discussed in Lemma 3 assuming that
the invariant manifold is given. Finally, we have shown how
the approach can be used to find open-loop stable orbits of an
inverted pendulum.
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