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Abstract—Nonlinear  Model Predictive  Control  for S L2 norm 17
mechanical applications is often used to perform the E Huber penalty}(,(2)
tracking of time-varying reference trajectories, and is typically

implemented using penalty functions based onL, norms. EQ‘“S’ p 1
Controllers for mechanical systems, however, are often ragjred = oir ! ]
to handle large deviations from the reference trajectory. h 005~ . g

such cases, it has been observed that NMPC schemes based o

on L, norms can have undesirably aggressive behaviors.

Heuristics can be developed to tackle these issues, but they . '

require intricate and non-systematic tuning procedures. Tis Fig. 1. Huber penalty functiot{,(z) for p = 0.3.

paper proposes an NMPC scheme based on Huber penalty

functions to handle large deviation of quadrature state fran

its referenqe, offering an intuitive and easy-to-tgne altenative. completely dominates the cost function, so that competing

H;e ffnhcﬁfﬁsoﬂérﬁtgﬂgﬁﬁ; Ns'lﬂaiﬁtjcgfem‘Zs'tsa;?sar%zed;ﬁgnd penalties are almost disregarded. This is especially dgmob

control scheme is illustrated on a simulated crane. When_ such competing penal_tle_s must weigh in th(_e cost

function regardless of the deviation from the references (th

Keywords : nonlinear model predictive control, Huber penalty iS €.g. the case for penalties associated to the alleviation

function, large deviation from the reference, mechanical structural fatigue [13])

systems. Heuristics such as smoothing and saturation of the reg-

ulation error, or a temporary reduction of the-norms

) o ) ~weighting matrices can be used to tackled such issues [7].
Nonlinear model predictive control (NMPC) is an effectiveryo\yever these heuristics can be difficult to set up, and can

way of tackling problems with constraints and nonlineafegyt in intricate and non-intuitive closed-loop behasio

dynamics. NMPC re-calculates at every sampling instant & 4n alternative, this paper proposes a systematic way of
control policy that minimizes a penalty function definedoveyeajing with large tracking errors of quadrature states, i.
a horizon window in the future. Thought the properties Oftates that do not enter the system dynamics (see Sectjon 1)
NMPC have been studied for the general clasXqgfenalty using the Huber penalty function [3f, : R — R, given by
functions [8], [4], [6], [11], [10], in practice_p,-norms are (see Fig. 1):
preferred because they are straightforward to implemant, c 12
be efficiently treated using Gauss-Newton hessian approxi- Hp(2) = { 2% 4<p  ZER, 1)
mations, and yield controllers having an intuitive behavio p(lzZ—3p), |Z>p
NMPC has been extensively used in the process industihe Huber penalty functior,(2) is equivalent to al,
[1], where it is often assumed that the error between the sysorm within the regiof—p, p], and to al; norm outside.
tem state and its fixed reference is relatively small. Howeveas a result, for small tracking errors the NMPC based on
NMPC is more and more used for mechanical applicationgae Huber penalty function is equivalent to a classical
Controllers for mechanical applications are often reqlirenorm NMPC, but for large errors the gradient of the cost
to track infeasible trajectories, handle large referenceps, function based on the Huber penalty function is smaller
or perform obstacle avoidance, potentially resulting ijéa than for the Lo-norm cost function, hence reducing the
deviations form their reference. incentive for strong control actions. The NMPC based on
In such situations, it has been observed that NMPC basggk Huber penalty function can therefore be tuned to have
on Lp-norms can become very aggressive, i.e. it yields a soft response to large tracking errors, without sacriicin
significant activation of the inputs bounds and state cofits responsiveness for small deviation from the reference.
straints, and taps strongly into the system nonlinearitieghe zone where the NMPC behaves as a classigalorm
The latter often requires an expensive line search to ensu@IPC can be directly adjusted via parameterallowing a
the convergence of the underlying Newton-type schemetraightforward tuning of the proposed scheme.
More crucially, in anLz-norms NMPC scheme, the penalty The paper is organized as follows. Section Il details the
associated to a state deviating strongly from its FEferen(Eﬁoposed NMPC scheme. Section IlI-A proposes an ana|ysis
_ _ o o of the behavior of the proposed scheme for large tracking
S: Sros and M. Diehl are with the Optimization in EngineeriBgn- errors of the quadrature state, Section 1lI-B establistes i
ter (OPTEC), K.U. Leuven, Kasteelpark Arenberg 10, B-300du\en- )
Heverlee, Belgiumsgr os@sat . kul euven. be nominal stability, Section IV presents an illustrative exzde.
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Il. NMPC BASED ON THEHUBER PENALTY FUNCTION are introduced as a replacement of the terminal constraint

For sake of brevity, only the case of a scalar quadratuté = 0- It should be observed that (5)-(6) implements a Huber
stateq € R is considered here. The following form of discreteP€nalty orli if and only if the constraints (6) are not (strictly)

system will be studied: active. Otherwise, an extra penalty is added|fgf not being
the lowest value of the trajectory.
X1 =F(u),  Gipa=0ai+I(x), (2) Constraints (6) can be understood as a relaxation of

wheref : R"x R™ — R" andJ: R" — R are smooth, nonlin- the terminal equality constraing = 0, hence avoiding the
ear functions representing the system dynantics] € R™1 figgressive .c_ontrol actions required to satigfy= O.for large
is then + 1-dimensional system state vector: R™ the ny- initial cqqd|t|ons|qi|. The effect of the constraints (6) on
dimensional input vector. In the following, the indéxis the S,tab'“ty of the NMPC scheme (5) will be developed in
reserved for the current time instants, while the indteis  S€ction I1-B.
used for the predicted times. [1l. ANALYSIS OF THEHUBER NMPC SCHEME

A classical form ofL,-norm NMPC scheme with terminal

) ; This section establishes some fundamental properties of
equality constraints for system (2) reads:

the NMPC scheme (5)-(6). First some notations are intro-
1NN ANt duced. In the following, the equality constraints in (5) are
P204,Gi,N) =min 2 kZolk + EKZOSK Qs+ 5 kZO URUc  jumped together in:

s,u,l

S—X lo—
i e
st. Su1—f(SeW) =0, S—x =0, s — g = 1= lo— (% ,
k1= k—=J(s) =0, lo—qi=0, sv— fsn-1,Un-1) |N—|Nflm—j(sts)
sn=0, IN=0, N
h(seU) <0, k=0,.,N—1. (3) @and the inequality constraints in:
whereh stands for the set of state and input constraifts, h = { k= Hhe = Vi } . hs= { Hic=p ] 7
andR are user-defined weighting matricdsand s are the ~he— Hic— Vi —%
predicted quadrature stateand system state respectively. h, = [ HN — Hi } ' @)
Consider the following alternative NMPC scheme where the UN — Wk

quadratic penalty functio§} 12 in the NMPC scheme (3) We define the vector of decision variables as

is replaced by the Huber penalty functi@ﬁ‘zoﬂp(lk), and w = lo...IN Vo ... VN Ho ... UN S0 ... SN Up .. UNfl]T €
the terminal constrainy = 0 is removed: RY, with d = N(n+n,+3)+n+3 and w as the
N solution of (5)-(6). In the following, the open sets
Pr(xi,0i,N) = min zo%p(lk)Jqu(s,u), 9. = {weRIl>p, vk}, 9- = {weRI|ly < —p, VK}
s,u,l & - . 1
and 3 = 3. UJ_ will be used, as well as the notations
st. S1—f(seWw) =0, s—x=0, In=[11..]" € RN, andOy, Onxm, In for a N x N matrix
lkr1—lk—9(sx) =0, lo—q =0, of zeros,N x M matrix of zeros andN x N identity matrix,
sN=0, respectively. The subscripts will be sometimes dropped

when the dimensions are clear form the context. The cost

h(scu) <0, k=0,...N—-1. (4) function J will be defined as:

Using the standard, smooth reformulation of the Huber N1,
penalty function (see [3] p. 299 for details), the resulting Jw) =% (éuk +PVk) + ®(s,u).
NMPC scheme reads : k:O. o )
N 1 The cost and constraints sensitivities with respeat tead:
Pr(xi,0i,N) = S‘m‘iﬂv ; (PVk+ 5#5) +®(s,u) Ong1 OntixN Ongixn
ke PInia ON-+1xN M
st. Sqa1—f(soW) =0, so—x=0 0J = u . Oh, = M ON- 15N (8)
ki1—lk=9(sx)=0, lo—qg=0 Qs 0 0
sy =0, Ru
h(seu) <0, k=0,..,N—1 Int1 —INst 0 0
_ —Iny1 —Int 0 —Inpmz
%20, k=0,..N Oh = | —Intz —Inga |,0Ohs INt1 0 |,
— Mk — Vk < Ik < P+ Vi, 0 0 0 0
O<m<p. )
In addition, the inequality constraints: whereM = 7|1'¥ . Subsections IlI-A and 111-B establish
N

HN— Hk <0, U =W <0, k=0,.,N=1(6) gsome fundamental properties of the NMPC controller (5)-(6)



A. Insensitivity of the solution for large deviations it can be verified that:

In this subsection, it will be established that the control 1 -1
policy delivered by the NMPC scheme (5)-(6) becomes(éTDg,)T = (1[,+1D|g,)T =| 0|, O = 0
insensitive tog; for large values ofig|. This statement is

further discussed at the end of the following Lemma. and it follows that (11) holds. Moreovegs is independent

of | andv, therefore(lg{ 6 = 0 and (12) holds.

Lemma 1: for any given initial conditions;, the solution e S
y 9 ' The sensitivity ofhg is given by:

S, u to the Huber NMPC scheme (5)-(6) is insensitivegto

ifwed, orwed . YIn+1 Ontz Onpaxn Ongaxn O
Proof: Forwe 8, orwe J_, the constraint-v <0 is not “Iner Onpr o Ongasn M 0
active, and sigfl) = sign(qi), k. Then the set of possibly Ohs = | —Int1 Inga M Onyixn O
(but not necessarily) active constraints is: 0 0 0 0 SSE
— — — u
Vik — Hik— Vi
U — P Since 1§, ;M = 0, it can be observed thai' Ohy = 0,
hy = HUN — Hk , k=0,..,N,j=0,...N—-1 so that (13) holds on any active s&tC {0,...,N — 1}, then
‘7N — ‘7k dq. =9, and
h(s;j, u; _ _ _
_ (5. 45) _ _ _ di da ds
wherey = sign(qi). Defineha the subset of active constraints ﬁ = Iny, ﬁ =0, a =0
in hg, and the Lagrange function: ' ' ' -
T T T
L=J+As s+ A g +Eaha. Discussion: lemma 1 entails that there is lamit to
A solution w of (5)-(6) satisfies the KKT conditions: how far the deviation ofy; from its reference can impact

the control policy of the NMPC, i.e. the domination of the
0L=0, g=0, _g. - 0, rlA =0, ©) penalty associated tj over the competing penalties (lumped
for some Lagrange multiplierks, A and&x > 0, where is  together in®) is limited. In contrast, in a classicab-norm
the derivative operator with respect to the decision véemb NMPC scheme the domination of the penalty associated to
w. The sensitivity of (9) with respect tqg is then given by: i is unlimited.

dw d)\ d, d i ili
HIWY L e £+ 0g 4 0yge3As g, Boa En _0, (10) B. Nominal stability
da; da; dgi " dg; In this section, the nominal stability of the NMPC
Dngd_W +0q0 =0, (11) scheme (5)-(6) is investigated. In th(_a following, the niotat
dai I(x,qi,N), U(xi,qi,N) ands(x;, g, N) will be used for the so-

Dgld—w —0, (12) lution of (5)-(6) corresponding to the initial valugs g, and

dg; horizonN, yielding the optimal cost functiof’y (X, g, N).
Dth_vV _0, (13) The following Lemma establishes that under some con-
Adg; ’ ditions, Py (xi,q;,N) is a Lyapunov function of system (2)
whereH = Oyl is the Hessian of the Lagrange functioncontrolled by the NMPC scheme (5)-(6). First, three key
£. Defining: assumptions are introduced:
. 1) J(0) =0 andf(0,0) =0,
5" = 1N+1 Vi O o 0], 2) the inequality constraintis(s,u) <0 are not active at
it will be established in the following thag— d is a so- s=0,u=0,
lution of (10)-(13). The Lagrange function' depends lingarl  3) the Quadratic Programm (QP):
onl, g andv, hence it can be verified thai,g £ =0 and: 1
min -n'n+= (14)
Oniz O 0 0 ns 2 . . v
0 |N+1 0 0 T _ T
H=1 o 0 O Oul | st- 1 { Orsug Disugs } O { 0 } =0
0 0 Ouwfl Owl T e I
It follows thatHd = 0 and (10) holds wm% 0,§:=0 n [ 0 } == 0 Ig“ =0
d
and EA = 0. Observing thay, is independent of and solved atu =0, s=0 admits a solutionn €
0o 1 -1 0 .. R(MMut2N+M+2 =« R with = < 0.
Og = 05’\”2 , Oig = 8 é 11 ) . o ; i
sOI Assumption 3 is discussed at the end of this section. In the

On:1 following, the partitionn™ = [nd n' nd nl] will be used,



with ns € RN*L, ) e RN pg e RMN+Y and ny € R™N, Using the inequality constraints (6) > [n, Vk > Vn, (16),
Ho = KN, Vo = VN, and (17):
Lemma 2: Let Q be the set of feasible initial conditions 1 B
(Xo0,0o) for problem (5)-(6), then under assumptions 1-3, th¢N + 1) <§H§+pvo> > Py (%,0i,N) =
optimal cost functionPy is a Lyapunov function for the N N
nominal closed-loop system: OET+ Y %ﬁf-ﬁ-PVk >oEI+ Y %ﬁﬁ N =
Xit1=f(X,U0),  Oiy1=0Gi+I(x) k;o k=0
in the setQ, whereu is the first element of the sequenced (su) + ;}ﬁg+p\70 =®(su)+(N+1) (};78+p\70) ,
0%, G, N). &2 2
and it follows that® (s,u)=0, hence ifA = 0 then the optimal
Proof: first an upper bound for®y(X+1,0+1,N) — trajectory isu=0,5=0, | =q;, Uk = Un, andvg = vy.
Pu (%,0i,N) is computed. In the absence of perturbatioThen the gradientlJ; and the (not necessarily active) in-
and model error, the initial values at timie- 1 match the equality constraints read:

predicted trajectories, i.e.: - = =
_ _ ON 1 yl —_IJ -V
Xir1=510%,0,N),  Gie1=11(%, G, N). 1 C(u—p)
. . o Oy = | Pt hao=| (C-1)v
Then consider the shifted trajectories (where the argusnent ! Uolny1 | A=0 — T ’
(xi,q,N) are omitted): Ooni1 Hn—Ho..N-1
_ — _ UN—Vo,.. N—-1
S I Uy
where
=g |0 ST | ST me | C{ 0 it laj<p (eforv=0 o0
Onx1 IN | Onyx1 1 if |gl>p (i.eforu=p)
(15)  Sinces=0,u=0, assumption 2 guarantees that the inequal-
Ha Vi | ity constraintsh(s,u) are not active, and constraintss, u)
o e | are therefore omitted iha—g. The sensitivity oha—g is given
Hs = i | s = | by:
. KN ) N o Oha—o =
which arefeasible for problem (5)-(6) with initial values Vines  Onis Onot Onetxn ONetxN
i+1, Gi+1. They yield th functiod) > i+1,0i11,N * * + X L
gi\*,le’nq'g;. ey yield the cost functiod = Py (1, Giv1,N) Tiner Onir (C—1)lnit Oupien M
' —Int1 Clnga On1 M On+1xN
Ji :fPH (Xi,qi,N)fCD(Xi,LTo) 0 0 0 0 0
1, _ 1, _
—(sHG+pPvo )+ | SHN+PWN ).
(2“0 p 0> <2“N p N> Assumption 3 guarantees that that the direction:
It follows that: SwT :[ ynT cnd @-cnd nl nl L
Pr 06, Gi 1, N) = P (3, 6, N) < 4, yields ow' g, = 0, dw'gs = 0, and the inequalities
with ndM <0, andnIny1 —ndIngs < 0. SinceC(C—1) =0,
_. 1 _ - it can be verified that
A= —¢(Xi7U0)—§(ﬁg—Hﬁ) —P(Vo—VWn).
W' ha—o < 0.

Because of the inequality constraints (f),> L, Vo > UN
hold, and sinceb > 0, it follows thatA < 0. As a result, directiordw is feasible. Moreover,

T =T
Next it is established thah = 0 = x = 0,q = O. oW [ ={Cp+ (1= C)po} s Insa-
Clearly: Using p, o > 0 and since assumption 3 guarantees that
ndIn+1 < =<0, it follows thatéw' 0 < 0, unles<, o =0
thereforeu=0,s=0, | =q; =0 is the only possible optimal
holds. Then the trajectony=0,s=0, | =i, Uk = Ho, V= trajectory forA = 0. As a result, functiorPy (x,qj,N) has
Vo is feasible, hence the optimal cost functi®p (x,qi,N)  the following properties of:
is upper bounded by:

A=0 = x =0, Up= [N, Vo= WN (16)

N 1 j)H (Xi+1,Qi+1,N)*:PH (Xj,CIi,N) SA(Xi,Qi,LTO),
P (6,0,N) < ®(0,0)+ 5 S[iG+pvo with
k=0
A(Xiaqi7LT0)§07 and A(XlathTO):O = X|:07Q|=0

=(N+1) (%E&erﬁo). (17) -
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Fig. 3. lllustration of assumption 3 (see Section IlI-B).€Tdecision

| variable = obtained for various prediction horizomé by solving QP (14).

Fig. 2. Schematic of the crane.

TABLE | --- L2
MODEL & CONTROL PARAMETERS __HUber
pd
[
Parameter]| Value | Unit S

m 1 (kg) .

M 1 (kg)

L l (m) 0 5 15

g 9.81 (ms2?) Time [s]

N 20 | ()

P 5.102 | (m) Fig. 4. Control input~ for the L,-norm NMPC (3) (dashed line), and for

the NMPC (5)-(6) based on the Huber penalty function (sdl@)l The
L>-norm NMPC results in strong activations of the input bounds

Discussion of Lemma 2 :

. assumption 3 essentially demands that for a trajectorjhe Huber penalty function parameter was chosen as
u=0,s=0,q=qo, there is a feasible perturbationp = 0.25[cm|. Trajectories were simulated, using the initial
du, 3s,5q that reduces the cost function. It should becondition [x,@,%, | = [10,0,0,0]. It can be seen that the
observed that QP (14) needs to be solved off-line onlgontrol inputF undergoes significant saturation. Moreover,
once foru=0 ands= 0, usingn = 0 as initial guess. because of the strong penalty associated to the large aeviat
A solution with = < 0 is a certificate that assumption 30f x from its reference, thé; NMPC disregards the penalty
is fulfilled. on @ such thatp undergoes strong oscillations (dashed line

« it should be observed that the inequality constraint Fig. 5). Because the impact of the penalty associated
(6) play a key role in the stability result establishedhe control policy of the Huber NMPC is limited (see Sec.
in Lemma 2, since they are needed to ensure that H)-A), such oscillation does not occur when using the Huber
Ph (i, qi,N) is non-increasing, and that B)=0,q;=0 NMPC (solid line in Fig. 5). The adjunction of a constraint
is the only point wheré’y (x,qi,N) is non-decreasing. on @ has little benefit for the reduction of the oscillations of

the anglep (see Fig. 7).

Assumption 3 was verified for various prediction horizons
This section proposes to compare the NMPC scheme (3} It can be seen in Fig. 3 th&= 0 for very short horizons
(6) and thelo-norm NMPC scheme (3) on a simulated craneind decreases linearly for longer horizons. Lemma 2 is

(see Fig. 2). The state vector i ¢, %, ¢| wherex s the cart jllustrated in Fig. 6. It can be seen that functi®p(x, i, N)
position andgp the angle of the crane from the vertical axis.is monotonically decreasing.

IV. | LLUSTRATIVE EXAMPLE

The continuous dynamics are given by: The simulations were performed using ACADO toolkit
% [9], [5], and implemented in code generation. The computa-
qb tional times obtained for both thie,-norm NMPC scheme

fe(@, %, @,F) = F —m(Lsin(¢) ¢?—gcos @) sin(@)) 7 and the Huber NMPC scheme are reported in Fig. 8. It can
M-—mcog(¢)? be observed that the implementation of the Huber norm in-

— glmM)sin(g)cogp)(Lmsin(g)¢? —F) creases significantly the computational burden of the NMPC

L i 21M
. . . . (msin®) .+ : ._scheme, it does not jeopardize the real-time feasibilitthef
and discretized using multiple-shooting [2] at a Samp“n%roposed example

time Ts = 0.1[g]. The quadrature statg is the positionx,
which does not appear in the dynamizs The model and V. CONCLUSION & FUTURE WORK

control parameters are summarized in Tabl_e I This paper has proposed a NMPC scheme based on the
Th_e _flxed r_eference was chosen @s(p,x, (p} =0. A . Huber penalty function to address the shortcoming of more
prediction horizorN = 50 samples was used, correspondingassicall ,-norm based NMPC scheme when dealing with
to a time horizon off, = NTs = 5[g. The function® was large deviations from the reference. The study was limited
chosen as: S 1 to the handling of a single quadrature state. The proposed
= 5(107 F°+10° Qaz)a scheme behaves as a standard NMPC scheme when the
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lllustration of Lemma 2. FunctiofPy (x,q,N) is a Lyapunov

function for the trajectories displayed in Fig. 5 (plaineg)
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on the Huber penalty function (solid line), the addition of@nstraint on
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system is close to its reference, but yields significanthg le
aggressive control action when far from its reference. The
tuning is intuitive, and based on a single parameter. Some
properties of the proposed scheme were established as well
as its nominal stability. The proposed scheme was illustrat
using a simulated overhanging crane.

Future work will explore the case of multiple quadrature
states, and the more general case of non-quadrature states.
An extension of the nominal stability result to the case of
terminal sets, and the case of no terminal constraint will be
considered expanding on the work presented in [8].

The smooth reformulation of the Huber penalty in (5)
introduces a significant extra computational burden in the
NMPC scheme. This computational burden can arguably
be alleviated by using a first-order approach to solve the
underlying QP problems [12], where the Lipschitz contipuit
of the Hessian of the NMPC problem is not required, and
the Huber penalty function (1) can be used directly
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