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Abstract— Nonlinear Model Predictive Control for
mechanical applications is often used to perform the
tracking of time-varying reference trajectories, and is typically
implemented using penalty functions based onL2 norms.
Controllers for mechanical systems, however, are often required
to handle large deviations from the reference trajectory. In
such cases, it has been observed that NMPC schemes based
on L2 norms can have undesirably aggressive behaviors.
Heuristics can be developed to tackle these issues, but they
require intricate and non-systematic tuning procedures. This
paper proposes an NMPC scheme based on Huber penalty
functions to handle large deviation of quadrature state from
its reference, offering an intuitive and easy-to-tune alternative.
The behavior of the proposed NMPC scheme is analysed, and
the conditions for its nominal stability are established. The
control scheme is illustrated on a simulated crane.

Keywords : nonlinear model predictive control, Huber penalty
function, large deviation from the reference, mechanical
systems.

I. I NTRODUCTION

Nonlinear model predictive control (NMPC) is an effective
way of tackling problems with constraints and nonlinear
dynamics. NMPC re-calculates at every sampling instant a
control policy that minimizes a penalty function defined over
a horizon window in the future. Thought the properties of
NMPC have been studied for the general class ofK penalty
functions [8], [4], [6], [11], [10], in practiceL2-norms are
preferred because they are straightforward to implement, can
be efficiently treated using Gauss-Newton hessian approxi-
mations, and yield controllers having an intuitive behavior.

NMPC has been extensively used in the process industry
[1], where it is often assumed that the error between the sys-
tem state and its fixed reference is relatively small. However,
NMPC is more and more used for mechanical applications.
Controllers for mechanical applications are often required
to track infeasible trajectories, handle large reference jumps,
or perform obstacle avoidance, potentially resulting in large
deviations form their reference.

In such situations, it has been observed that NMPC based
on L2-norms can become very aggressive, i.e. it yields a
significant activation of the inputs bounds and state con-
straints, and taps strongly into the system nonlinearities.
The latter often requires an expensive line search to ensure
the convergence of the underlying Newton-type scheme.
More crucially, in anL2-norms NMPC scheme, the penalty
associated to a state deviating strongly from its reference
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Fig. 1. Huber penalty functionHρ (z) for ρ = 0.3.

completely dominates the cost function, so that competing
penalties are almost disregarded. This is especially a problem
when such competing penalties must weigh in the cost
function regardless of the deviation from the reference (this
is e.g. the case for penalties associated to the alleviationof
structural fatigue [13]).

Heuristics such as smoothing and saturation of the reg-
ulation error, or a temporary reduction of theL2-norms
weighting matrices can be used to tackled such issues [7].
However these heuristics can be difficult to set up, and can
result in intricate and non-intuitive closed-loop behaviors.
As an alternative, this paper proposes a systematic way of
dealing with large tracking errors of quadrature states, i.e.
states that do not enter the system dynamics (see Section II),
using the Huber penalty function [3]Hρ : R→R+ given by
(see Fig. 1):

Hρ (z) =

{ 1
2z2, |z| ≤ ρ

ρ(|z|− 1
2ρ), |z|> ρ , z ∈ R, (1)

The Huber penalty functionHρ(z) is equivalent to aL2

norm within the region[−ρ ,ρ ], and to aL1 norm outside.
As a result, for small tracking errors the NMPC based on
the Huber penalty function is equivalent to a classicalL2-
norm NMPC, but for large errors the gradient of the cost
function based on the Huber penalty function is smaller
than for the L2-norm cost function, hence reducing the
incentive for strong control actions. The NMPC based on
the Huber penalty function can therefore be tuned to have
a soft response to large tracking errors, without sacrificing
its responsiveness for small deviation from the reference.
The zone where the NMPC behaves as a classicalL2-norm
NMPC can be directly adjusted via parameterρ , allowing a
straightforward tuning of the proposed scheme.

The paper is organized as follows. Section II details the
proposed NMPC scheme. Section III-A proposes an analysis
of the behavior of the proposed scheme for large tracking
errors of the quadrature state, Section III-B establishes its
nominal stability, Section IV presents an illustrative example.



II. NMPC BASED ON THE HUBER PENALTY FUNCTION

For sake of brevity, only the case of a scalar quadrature
stateq∈R is considered here. The following form of discrete
system will be studied:

xi+1 = f (xi,ui), qi+1 = qi + I(xi), (2)

where f :Rn×R
nu →R

n andI :Rn →R are smooth, nonlin-
ear functions representing the system dynamics,[x,q]∈R

n+1

is then+1-dimensional system state vector,u ∈R
nu the nu-

dimensional input vector. In the following, the indexi is
reserved for the current time instants, while the indexk is
used for the predicted times.

A classical form ofL2-norm NMPC scheme with terminal
equality constraints for system (2) reads:

P2(xi,qi,N) = min
s,u,I

1
2

N

∑
k=0

I2
k +

1
2

N

∑
k=0

sT
k Qsk +

1
2

N−1

∑
k=0

uT
k Ruk

︸ ︷︷ ︸

=Φ(s,u)

s.t. sk+1− f (sk,uk) = 0, s0− xi = 0,

Ik+1− Ik − I(sk) = 0, I0− qi = 0,

sN = 0, IN = 0,

h(sk,uk)≤ 0, k = 0, ...,N −1. (3)

whereh stands for the set of state and input constraints,Q
and R are user-defined weighting matrices,I and s are the
predicted quadrature stateq and system statex respectively.
Consider the following alternative NMPC scheme where the
quadratic penalty function∑N

k=0 I2
k in the NMPC scheme (3)

is replaced by the Huber penalty function∑N
k=0Hρ(Ik), and

the terminal constraintIN = 0 is removed:

PH(xi,qi,N) = min
s,u,I

N

∑
k=0

Hρ (Ik)+Φ(s,u),

s.t. sk+1− f (sk,uk) = 0, s0− xi = 0,

Ik+1− Ik − I(sk) = 0, I0− qi = 0,

sN = 0,

h(sk,uk)≤ 0, k = 0, ...,N −1. (4)

Using the standard, smooth reformulation of the Huber
penalty function (see [3] p. 299 for details), the resulting
NMPC scheme reads :

PH(xi,qi,N) = min
s,u,I,µ,ν

N

∑
k=0

(

ρνk +
1
2

µ2
k

)

+Φ(s,u)

s.t. sk+1− f (sk,uk) = 0, s0− xi = 0

Ik+1− Ik − I(sk) = 0, I0− qi = 0

sN = 0,

h(sk,uk)≤ 0, k = 0, ...,N −1

νk ≥ 0, k = 0, ...,N

− µk −νk ≤ Ik ≤ µk +νk,

0≤ µk ≤ ρ . (5)

In addition, the inequality constraints:

µN − µk ≤ 0, νN −νk ≤ 0, k = 0, ...,N −1 (6)

are introduced as a replacement of the terminal constraint
IN = 0. It should be observed that (5)-(6) implements a Huber
penalty onIk if and only if the constraints (6) are not (strictly)
active. Otherwise, an extra penalty is added for|IN | not being
the lowest value of the trajectory.

Constraints (6) can be understood as a relaxation of
the terminal equality constraintIN = 0, hence avoiding the
aggressive control actions required to satisfyIN = 0 for large
initial conditions |qi|. The effect of the constraints (6) on
the stability of the NMPC scheme (5) will be developed in
Section III-B.

III. A NALYSIS OF THE HUBER NMPC SCHEME

This section establishes some fundamental properties of
the NMPC scheme (5)-(6). First some notations are intro-
duced. In the following, the equality constraints in (5) are
lumped together in:

gs =









s0− x
s1− f (s0,u0)

...

sN − f (sN−1,uN−1)
sN









, gI =







I0− qi

I1− I0− I(s0)
...

IN − IN−1− I(sN−s)






,

and the inequality constraints in:

hI =

[
Ik − µk −νk

−Ik − µk −νk

]

, hS =

[
µk −ρ
−νk

]

,

hL =

[
µN − µk

νN −νk

]

. (7)

We define the vector of decision variablesw as
w = [I0 ... IN ν0 ... νN µ0 ... µN s0 ... sN u0 ... uN−1]

T ∈
R

d , with d = N(n + nu + 3) + n + 3 and w̄ as the
solution of (5)-(6). In the following, the open sets
ϑ+ =

{
w ∈ R

d |Ik > ρ , ∀k
}

, ϑ− =
{

w ∈ R
d |Ik <−ρ , ∀k

}

and ϑ = ϑ+ ∪ ϑ− will be used, as well as the notations
1N = [1 1 ...]T ∈ R

N , and0N , 0N×M , IN for a N ×N matrix
of zeros,N ×M matrix of zeros andN ×N identity matrix,
respectively. The subscripts will be sometimes dropped
when the dimensions are clear form the context. The cost
function J will be defined as:

J(w) =
N

∑
k=0

(
1
2

µ2
k +ρνk

)

+Φ(s,u).

The cost and constraints sensitivities with respect tow read:

∇J =









0N+1

ρ1N+1

µ
Qs
Ru









, ∇hL =









0N+1×N 0N+1×N

0N+1×N M

M 0N+1×N

0 0
... ...









(8)

∇hI =









IN+1 −IN+1

−IN+1 −IN+1

−IN+1 −IN+1

0 0
... ...









,∇hS =









0 0
0 −IN+1

IN+1 0
0 0
... ...









,

whereM=

[
−IN

1T
N

]

. Subsections III-A and III-B establish

some fundamental properties of the NMPC controller (5)-(6).



A. Insensitivity of the solution for large deviations

In this subsection, it will be established that the control
policy delivered by the NMPC scheme (5)-(6) becomes
insensitive toqi for large values of|qi|. This statement is
further discussed at the end of the following Lemma.

Lemma 1: for any given initial conditionsxi, the solution
s̄, ū to the Huber NMPC scheme (5)-(6) is insensitive toqi

if w ∈ ϑ+ or w ∈ ϑ−.

Proof: For w̄ ∈ ϑ+ or w̄ ∈ ϑ−, the constraint−ν̄ ≤ 0 is not
active, and sign(Īk) = sign(qi), ∀k. Then the set of possibly
(but not necessarily) active constraints is:

hϑ =









γ Īk − µ̄k − ν̄k

µ̄k −ρ
µ̄N − µ̄k

ν̄N − ν̄k

h(s̄ j, ū j)









, k = 0, ...,N, j = 0, ...,N −1.

whereγ = sign(qi). DefinehA the subset of active constraints
in hϑ , and the Lagrange function:

L= J +λ T
s gs +λ T

I gI + ξ T
A hA.

A solution w̄ of (5)-(6) satisfies the KKT conditions:

∇L= 0, gs = 0, gI = 0, hA = 0, (9)

for some Lagrange multipliers̄λs, λ̄I andξ̄A ≥ 0, where∇ is
the derivative operator with respect to the decision variables
w. The sensitivity of (9) with respect toqi is then given by:

H
dw̄
dqi

+∇wqiL+∇gI
dλ̄I

dqi
+∇wgs

dλ̄s

dqi
+∇hA

dξ̄A

dqi
= 0, (10)

∇gT
I

dw̄
dqi

+∇qigI = 0, (11)

∇gT
s

dw̄
dqi

= 0, (12)

∇hT
A

dw̄
dqi

= 0, (13)

whereH = ∇wwL is the Hessian of the Lagrange function
L. Defining:

δ T =
[

1T
N+1 γ1T

N+1 0 ... 0
]
,

it will be established in the following thatdw̄
dqi

= δ is a so-
lution of (10)-(13). The Lagrange function depends linearly
on I, qi andν, hence it can be verified that∇wqiL= 0 and:

H =







02N+2 0 0 0
0 IN+1 0 0
0 0 ∇ssL ∇suL

0 0 ∇usL ∇uuL






.

It follows that Hδ = 0 and (10) holds withdλ̄I
dqi

= 0, dλ̄s
dqi

= 0

and dξ̄A
dqi

= 0. Observing thatgI is independent ofν and

∇gI =







∇IgI

02N+2

∇sgI

0N+1






, ∇IgI =







1 −1 0 ...

0 1 −1 ...

0 0 1 ...

...






,

it can be verified that:

(
δ T ∇gI

)T
=
(
1T

N+1∇IgI
)T

=





1
0
...



 , ∇qigI =





−1
0
...





and it follows that (11) holds. Moreover,gs is independent
of I andν, therefore∇gT

s δ = 0 and (12) holds.
The sensitivity ofhϑ is given by:

∇hϑ =









γIN+1 0N+1 0N+1×N 0N+1×N 0
−IN+1 0N+1 0N+1×N M 0
−IN+1 I N+1 M 0N+1×N 0

0 0 0 0 ∇sh
... ... ... ... ∇uh









Since 1T
N+1M = 0, it can be observed thatδ T ∇hϑ = 0,

so that (13) holds on any active setA ⊆ {0, ...,N −1}, then
dw̄
dqi

= δ , and

dĪ
dqi

= 1N+1,
dū
dqi

= 0,
ds̄
dqi

= 0

�

Discussion: lemma 1 entails that there is alimit to
how far the deviation ofqi from its reference can impact
the control policy of the NMPC, i.e. the domination of the
penalty associated toqi over the competing penalties (lumped
together inΦ) is limited. In contrast, in a classicalL2-norm
NMPC scheme the domination of the penalty associated to
qi is unlimited.

B. Nominal stability

In this section, the nominal stability of the NMPC
scheme (5)-(6) is investigated. In the following, the notation
Ī(xi,qi,N), ū(xi,qi,N) and ¯s(xi,qi,N) will be used for the so-
lution of (5)-(6) corresponding to the initial valuesxi, qi, and
horizonN, yielding the optimal cost functionPH (xi,qi,N).

The following Lemma establishes that under some con-
ditions, PH (xi,qi,N) is a Lyapunov function of system (2)
controlled by the NMPC scheme (5)-(6). First, three key
assumptions are introduced:

1) I(0) = 0 and f (0,0) = 0,
2) the inequality constraintsh(s,u) ≤ 0 are not active at

s = 0,u = 0,
3) the Quadratic Programm (QP):

min
η,Ξ

1
2

ηT η +Ξ (14)

s.t. ηT
[

0 0
∇I,s,ugI ∇I,s,ugs

]

= 0, ηT
[

M

0

]

≤ 0

ηT
[

1N+1

0

]

≤ Ξ, ηT





−IN+1

IN+1

0



≤ 0,

solved at u = 0, s = 0 admits a solutionη ∈
R
(n+nu+2)N+n+2, Ξ ∈ R with Ξ < 0.

Assumption 3 is discussed at the end of this section. In the
following, the partitionηT =

[
ηT

S ηT
I ηT

s ηT
u

]
will be used,



with ηS ∈ R
N+1, ηI ∈R

N+1, ηs ∈ R
n(N+1) andηu ∈R

nuN .

Lemma 2: Let Ω be the set of feasible initial conditions
(x0,q0) for problem (5)-(6), then under assumptions 1-3, the
optimal cost functionPH is a Lyapunov function for the
nominal closed-loop system:

xi+1 = f (xi, ū0), qi+1 = qi + I(xi)

in the setΩ, where ¯u0 is the first element of the sequence
ū(xi,qi,N).

Proof: first an upper bound forPH (xi+1,qi+1,N) −
PH (xi,qi,N) is computed. In the absence of perturbation
and model error, the initial values at timei+1 match the
predicted trajectories, i.e.:

xi+1 = s̄1(xi,qi,N), qi+1 = Ī1(xi,qi,N).

Then consider the shifted trajectories (where the arguments
(xi,qi,N) are omitted):

sS =







s̄1

...

s̄N

0n×1






, IS =







Ī1
...

ĪN

ĪN






, uS =







ū1

...

ūN−1

0nu×1






,

(15)

µS =







µ̄1

...

µ̄N

µ̄N






, νS =







ν̄1

...

ν̄N

ν̄N






,

which are feasible for problem (5)-(6) with initial values
xi+1, qi+1. They yield the cost functionJi ≥PH (xi+1,qi+1,N)
given by:

Ji =PH (xi,qi,N)−Φ(xi, ū0)

−

(
1
2

µ̄2
0 +ρν̄0

)

+

(
1
2

µ̄2
N +ρν̄N

)

.

It follows that:

PH (xi+1,qi+1,N)−PH (xi,qi,N) ≤ ∆,

with

∆ =−Φ(xi, ū0)−
1
2

(
µ̄2

0 − µ̄2
N

)
−ρ (ν̄0− ν̄N) .

Because of the inequality constraints (6),µ̄0 ≥ µ̄N , ν̄0 ≥ ν̄N

hold, and sinceΦ ≥ 0, it follows that∆ ≤ 0.

Next it is established that∆ = 0 ⇒ xi = 0, qi = 0.
Clearly:

∆ = 0 ⇒ xi = 0, µ̄0 = µ̄N , ν̄0 = ν̄N (16)

holds. Then the trajectoryu = 0, s = 0, I = qi, µk = µ̄0, νk =
ν̄0 is feasible, hence the optimal cost functionPH (xi,qi,N)
is upper bounded by:

PH (xi,qi,N) ≤ Φ(0,0)+
N

∑
k=0

1
2

µ̄2
0 +ρν̄0

= (N +1)

(
1
2

µ̄2
0 +ρν̄0

)

. (17)

Using the inequality constraints (6),̄µk ≥ µ̄N , ν̄k ≥ ν̄N , (16),
µ̄0 = µ̄N , ν̄0 = ν̄N , and (17):

(N +1)

(
1
2

µ̄2
0 +ρν̄0

)

≥ PH (xi,qi,N) =

Φ(s̄, ū)+
N

∑
k=0

1
2

µ̄2
k +ρν̄k ≥ Φ(s̄, ū)+

N

∑
k=0

1
2

µ̄2
N +ρν̄N =

Φ(s̄, ū)+
N

∑
k=0

1
2

µ̄2
0 +ρν̄0 = Φ(s̄, ū)+ (N +1)

(
1
2

µ̄2
0 +ρν̄0

)

,

and it follows thatΦ(s̄, ū)=0, hence if∆= 0 then the optimal
trajectory is ¯u = 0, s̄ = 0, Ī = qi, µ̄k = µ̄N , and ν̄k = ν̄N .
Then the gradient∇Ji and the (not necessarily active) in-
equality constraints read:

∇Ji =







0N+1

ρ1N+1

µ̄01N+1

02N+1






, h∆=0 =









γ Ī− µ̄ − ν̄
C (µ̄ −ρ)
(C−1) ν̄

µ̄N − µ̄0,...,N−1

ν̄N − ν̄0,...,N−1









,

where

C =

{
0 if |qi| ≤ ρ (i.e. for ν = 0)
1 if |qi|> ρ (i.e. for µ = ρ) , γ = sign(qi)

Since ¯s = 0, ū = 0, assumption 2 guarantees that the inequal-
ity constraintsh(s,u) are not active, and constraintsh(s,u)
are therefore omitted inh∆=0. The sensitivity ofh∆=0 is given
by:

∇h∆=0 =








γIN+1 0N+1 0N+1 0N+1×N 0N+1×N

−IN+1 0N+1 (C−1) IN+1 0N+1×N M

−IN+1 CI N+1 0N+1 M 0N+1×N

0 0 0 0 0
... ... ... ... ...









.

Assumption 3 guarantees that that the direction:

δwT =
[

γηT
I CηT

S (1−C)ηT
S ηT

s ηT
u

]
,

yields δwT ∇gI = 0, δwT ∇gs = 0, and the inequalities
ηT

SM ≤ 0, andηT
I IN+1−ηT

S IN+1 ≤ 0. SinceC(C−1) = 0,
it can be verified that

δwT h∆=0 ≤ 0.

As a result, directionδw is feasible. Moreover,

δwT ∇Ji = {Cρ +(1−C)µ̄0}ηT
S 1N+1.

Using ρ , µ̄0 > 0 and since assumption 3 guarantees that
ηT

S 1N+1 ≤Ξ<0, it follows thatδwT ∇Ji < 0, unlessC, µ̄0 =0
therefore ¯u = 0, s̄ = 0, Ī = qi = 0 is the only possible optimal
trajectory for∆ = 0. As a result, functionPH (xi,qi,N) has
the following properties onΩ:

PH (xi+1,qi+1,N)−PH (xi,qi,N) ≤ ∆(xi,qi, ū0),

with

∆(xi,qi, ū0)≤ 0, and ∆(xi,qi, ū0) = 0 ⇒ xi = 0,qi = 0.

�
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Fig. 2. Schematic of the crane.

TABLE I

MODEL & CONTROL PARAMETERS

Parameter Value Unit
m 1 (kg)
M 1 (kg)
L 1 (m)
g 9.81 (ms−2)
N 20 (−)
ρ 5·10−2 (m)

Discussion of Lemma 2 :
• assumption 3 essentially demands that for a trajectory

u = 0,s = 0,q = q0, there is a feasible perturbation
δu,δ s,δq that reduces the cost function. It should be
observed that QP (14) needs to be solved off-line only
once foru = 0 ands = 0, usingη = 0 as initial guess.
A solution with Ξ < 0 is a certificate that assumption 3
is fulfilled.

• it should be observed that the inequality constraints
(6) play a key role in the stability result established
in Lemma 2, since they are needed to ensure that a)
PH (xi,qi,N) is non-increasing, and that b)xi = 0, qi = 0
is the only point wherePH (xi,qi,N) is non-decreasing.

IV. I LLUSTRATIVE EXAMPLE

This section proposes to compare the NMPC scheme (5)-
(6) and theL2-norm NMPC scheme (3) on a simulated crane
(see Fig. 2). The state vector is

[
x,φ , ẋ, φ̇

]
wherex is the cart

position andφ the angle of the crane from the vertical axis.
The continuous dynamics are given by:

fc(φ , ẋ, φ̇ ,F) =









ẋ
φ̇

F−m(Lsin(φ)φ̇2−gcos(φ)sin(φ))
M−mcos(φ)2

− g(m+M)sin(φ)+cos(φ)(Lmsin(φ)φ̇2−F)
L(msin(φ)2+M)









,

and discretized using multiple-shooting [2] at a sampling
time TS = 0.1[s]. The quadrature stateq is the positionx,
which does not appear in the dynamicsfc. The model and
control parameters are summarized in Table I.

The fixed reference was chosen as
[
x,φ , ẋ, φ̇

]
= 0. A

prediction horizonN = 50 samples was used, corresponding
to a time horizon ofTh = NTS = 5[s]. The functionΦ was
chosen as:

Φ =
1
2

(
10−2F2+10−1φ̇2)

,

5 10 15 20

−0.2

−0.15

−0.1

−0.05

0

Ξ

N

Fig. 3. Illustration of assumption 3 (see Section III-B). The decision
variableΞ obtained for various prediction horizonsN by solving QP (14).
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Fig. 4. Control inputF for the L2-norm NMPC (3) (dashed line), and for
the NMPC (5)-(6) based on the Huber penalty function (solid line). The
L2-norm NMPC results in strong activations of the input bounds.

The Huber penalty function parameterρ was chosen as
ρ = 0.25[cm]. Trajectories were simulated, using the initial
condition

[
x,φ , ẋ, φ̇

]
= [10,0,0,0]. It can be seen that the

control inputF undergoes significant saturation. Moreover,
because of the strong penalty associated to the large deviation
of x from its reference, theL2 NMPC disregards the penalty
on φ̇ such thatφ undergoes strong oscillations (dashed line
in Fig. 5). Because the impact of the penalty associatedx on
the control policy of the Huber NMPC is limited (see Sec.
III-A), such oscillation does not occur when using the Huber
NMPC (solid line in Fig. 5). The adjunction of a constraint
on φ̇ has little benefit for the reduction of the oscillations of
the angleφ (see Fig. 7).

Assumption 3 was verified for various prediction horizons
N. It can be seen in Fig. 3 thatΞ = 0 for very short horizons
and decreases linearly for longer horizons. Lemma 2 is
illustrated in Fig. 6. It can be seen that functionPH(xi,qi,N)
is monotonically decreasing.

The simulations were performed using ACADO toolkit
[9], [5], and implemented in code generation. The computa-
tional times obtained for both theL2-norm NMPC scheme
and the Huber NMPC scheme are reported in Fig. 8. It can
be observed that the implementation of the Huber norm in-
creases significantly the computational burden of the NMPC
scheme, it does not jeopardize the real-time feasibility ofthe
proposed example.

V. CONCLUSION & FUTURE WORK

This paper has proposed a NMPC scheme based on the
Huber penalty function to address the shortcoming of more
classicalL2-norm based NMPC scheme when dealing with
large deviations from the reference. The study was limited
to the handling of a single quadrature state. The proposed
scheme behaves as a standard NMPC scheme when the
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system is close to its reference, but yields significantly less
aggressive control action when far from its reference. The
tuning is intuitive, and based on a single parameter. Some
properties of the proposed scheme were established as well
as its nominal stability. The proposed scheme was illustrated
using a simulated overhanging crane.

Future work will explore the case of multiple quadrature
states, and the more general case of non-quadrature states.
An extension of the nominal stability result to the case of
terminal sets, and the case of no terminal constraint will be
considered expanding on the work presented in [8].

The smooth reformulation of the Huber penalty in (5)
introduces a significant extra computational burden in the
NMPC scheme. This computational burden can arguably
be alleviated by using a first-order approach to solve the
underlying QP problems [12], where the Lipschitz continuity
of the Hessian of the NMPC problem is not required, and
the Huber penalty function (1) can be used directly.
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