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Abstract— Optimal control is recognized by the Airborne
Wind Energy (AWE) community as a crucial tool for the
development of the AWE industry. More specifically, the
optimization of AWE systems for power generation is required
to achieve the performance needed for their industrial viability.
Models for AWE systems are highly nonlinear coupled systems.
As a result, the optimization of power generation based on
Newton-type techniques requires a very good initial guess.
Such initial guess, however, is generally not available. To tackle
this issue, this paper proposes a homotopy strategy based on
the relaxation of the dynamic constraints of the optimization
problem. The relaxed problem differs from the original one
only by a single parameter, which is gradually modified to
obtain the solution to the original problem.
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I. INTRODUCTION

To overcome the major difficulties posed by the exponen-

tially growing size and mass of conventional wind turbine

generators [12], [5], the Airborne Wind Energy (AWE)

paradigm proposes to get rid of the structural elements

not directly involved in power generation. An emerging

consensus recognizes crosswind flight as the most efficient

approach to perform power generation [13]. Crosswind flight

consists in extracting power from the wind field by flying

a rigid or flexible wing tethered to the ground at a high

velocity across the wind direction. Power can be generated

in two ways: (a) by performing a cyclical variation of the

tether length, together with cyclical variation of the tether

tension, a strategy labeled as pumping or (b) by using on-

board turbines, transmitting the power to the ground via the

tether. In this paper, the pumping strategy is considered.

Because it involves a much lighter structure, a major advan-

tage of power generation based on crosswind flight over con-

ventional wind turbines is that higher altitude can arguably

be reached, hence tapping into wind resources that cannot

be accessed by conventional wind turbines.

While the potential efficiency of the principle is estab-

lished in theory, a major research effort is still required

to address the many engineering difficulties posed by its

implementation, and to achieve its industrial development.

In particular, it is widely recognized in the AWE community

that the industrial viability of the technology will require the

optimization of the power generation.
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Though optimization is currently used by the AWE com-

munity to address simple design problems, a significant

research effort is still needed to develop tools that can be

reliably used for the optimization of AWE systems based on

complex, high-fidelity models. Such models yield strongly

nonlinear dynamics, resulting in strongly non-convex optimal

control problems (OCPs). Solving non-convex OCPs us-

ing derivative-based optimization techniques requires initial

guesses that are close to feasibility. However, in practice, a

good initial guess is seldom available.

To tackle that issue, this paper proposes to solve a modified

problem, where the dynamic constraints resulting from the

physical model are relaxed by the introduction of fictitious

forces and moments at critical stages of the dynamics. This

strategy allows to dramatically reduce the model nonlin-

earities and couplings. As a result, Newton-type techniques

converge reliably for the relaxed problem even with a poor,

infeasible initial guess. The discrepancy between the dy-

namic constraints of the relaxed problem and of the physical

model can be adjusted via a single parameter. Starting from

the fully relaxed problem, a homotopy procedure is then

applied, where the relaxation parameter is gradually modified

so that at the end of the homotopy the dynamic constraints

of the relaxed problem match the original ones.

This paper is organized as follows. Section II presents

a model for AWE systems for which solving the optimal

power-generation problem directly is very challenging.

Section III presents the power optimization problem, and

proposes a systematic, explicit technique to develop an

initial guess. Section IV presents the proposed relaxed

problem and the homotopy procedure. As an illustrative

example, Section V applies the proposed technique for the

construction of two power-generating trajectories. Section

VI presents conclusions and plans for future work.

Contribution of the paper: a homotopy technique for

the construction of optimal power-generating trajectories for

complex AWE systems by Newton-type optimization.

II. MODEL FOR AWE SYSTEM

This section proposes a model for AWE systems. While

the proposed model does not include all the physical effects

encountered in AWE systems, it is sufficiently complex

and nonlinear to make the computation of optimal power-

generation trajectories an involved problem, and was there-

fore chosen to test the proposed optimization strategy.

The wing is considered as a rigid body having 6 degrees of

freedom (DOF). An orthonormal right-hand reference frame



E is chosen s.t. a) the wind is blowing in the E1-direction,

b) the vector E3 is opposed to the gravitational acceleration

vector g. The origin of the coordinate system coincides with

the generator. The position of the wing center of mass in

the reference frame E is given by the coordinate vector

p = [x,y,z]T . The tether is approximated as a rigid link

of (time-varying) length r that constrains p to evolve on

the 2-dimensional manifold C = 1
2

(

pT p− r2
)

= 0. Such an

assumption requires that the tether is always under tension.

In this paper, it is assumed that the second time derivative

of the tether length, i.e. r̈ ∈ R is a control variable.

A right-hand orthonormal reference frame e is attached to

the wing s.t. a) the basis vector e1 spans the wing longitudinal

axis, pointing in the forward direction and is aligned with

the wing chord, b) the basis vector e3 spans the vertical

axis, pointing in the upward direction. The origin of e is

attached to the center of mass of the wing. In the following,

the vectors e1,2,3 are given in E (see Fig. 2). The description

of the wing attitude is given by the rotation matrix R.

R =
[

e1 e2 e3

]

,

Because the set of coordinates {x,y,z} describes the po-

sition of the center of mass of the wing, the translational

dynamics and the rotational dynamics are separable, and the

wing rotational dynamics reduce to:

Ṙ = Rω×, Jω̇ +ω × Jω = T, 〈ei,e j〉t=0 = δi j, (1)

where ω× ∈ SO(3) is the skew matrix yielded by the an-

gular velocity vector ω , and T ∈ R
3 is the moment vector

in e. Because 〈ei, ė j〉 = 0, the orthonormality conditions

〈ei,e j〉= δi j are preserved by the dynamics (1). Yet, for long

integration times, a correction of the numerical drift of the

orthonormality of R may be needed (see e.g [9]).

The kinetic and potential energy functions associated to

the translational dynamics of the wing read:

TW = 1
2
MWẊT ṗ, VW = MWgz,

where MW is the mass of the wing. The kinetic and potential

energy functions associated to the translational dynamics of

the tether read:

TT = 1
2

∫ 1
0 σ2 ṗT ṗµrdσ = 1

6
µrṗT ṗ, VT = 1

2
µrgz,

where µ is the tether linear density. The Lagrangian associ-

ated to the translational dynamics of the system reads:

L= TW +TT −VW −VT −λC,

where λ is the Lagrange multiplier associated to the algebraic

constraint C. With V=VW+VT, using the Lagrange equation

d

dt

∂L

∂ ṗ
−

∂L

∂ p
= F,

the system translational dynamics are given by the following

index-3 DAE:

mp̈+ ṁṗ+Vp +λ p = F, C = 0, (2)

where V
T
p = ∇pV =

[

0 0
(

MW + 1
2

µr
)

g
]

, F is the

vector of generalized forces associated to {x,y,z} and m =
MW + 1

3
µr.

As an alternative to using (2), an index-reduction refor-

mulates (2) as an index-1 DAE. Using C̈(t) = 0, Ċ(t = 0) =
0,C(t = 0) = 0, the resulting index reduction of (2) yields

the following index-1 DAE and consistency conditions:
[

m · I3 p

pT 0

][

p̈

λ

]

=

[

F −Vp − ṁṗ

ṙ2 + rr̈− ṗT ṗ

]

, (3)

C(t = 0) =
1

2

(

pT p− r2
)

t=0
= 0,

Ċ(t = 0) =
(

pT ṗ− rṙ
)

t=0
= 0,

where I3 is the 3×3 identity matrix and F the force applied at

the center of mass of the wing. The force in the tether and

the mechanical power extracted from the wing are readily

given by:

FT = ‖λ p‖= λ r, Ė = FTṙ = λ rṙ. (4)

Because a Cartesian coordinate system is used, the general-

ized forces F in (3) are given by the sum of the forces acting

at the wing center of mass, given in frame e. Introducing the

relative velocity v, i.e. the velocity of the wing w.r.t. the air

mass given in the reference frame E by:

v =
[

ẋ−W1 ẏ−W2 ż−W3

]T
,

where W ∈R
3 is the local wind velocity field, the norms of

the lift and drag forces are given by [15]:

‖FL‖=
1

2
ρACL‖v‖2, ‖FD‖=

1

2
ρACD‖v‖2,

where CL and CD are the lift and drag coefficient, respec-

tively, ρ is the air density, and A the wing surface.

The lift force is orthogonal to the relative velocity v.

Moreover, it is assumed in this model that the lift force

is orthogonal to the wing transversal axis spanned by e2,

therefore the lift force is collinear to the vector v×e2, which

is normed to ‖v‖. The drag force is defined as collinear and

opposed to the relative velocity v. The lift and drag forces,

FL and FD acting on the wing are therefore given by:

FL =
1

2
ρACL‖v‖(v× e2) , FD =−

1

2
ρACD‖v‖v. (5)

In this model, it is assumed that the lift and drag coef-

ficients CL and CD depend on the angle of attack α and

side-slip angle β only. For some range αmin ≤ α ≤ αmax and

−βmax ≤ β ≤ βmax, CL and CD are well approximated by

[15], [6]:

CL =C0
L +Cα

L α, CD =C0
D +Cα

Dα2 +C
β
Dβ 2,

It is assumed here that the reference frame of the wing is

chosen such that α = 0 corresponds to the minimum drag.

The proposed quadratic dependence of CD on β arises from

the symmetry of the system; note that [15] neglects this

contribution, while [6] proposes a linear dependence w.r.t.

|β |.



Defining ν = [ν1, ν2, ν3]
T

as the coordinate vector of the

relative velocity v projected in the wing frame e, i.e.: ν =
RT v, for small angles α and β can be approximated by [15]:

α =− tan

(

ν3

ν1

)

≈−
ν3

ν1

, β = tan

(

ν2

ν1

)

≈
ν2

ν1

.

Assuming a laminar wind flow with a logarithmic wind

shear model blowing in the uniform x-direction, W = [u,v,w]
is given by [14]:

u(z) = u0
log(z/zr)

log(z0/zr)
, v = w = 0 (6)

where W0 ∈R is the wind velocity at altitude z0 and zr is the

ground roughness. For the sake of simplicity, in this paper

only the wind along the x-axis is considered.

In this paper, the approximate tether drag model proposed

in [10] is used. The tether drag is lumped into a single

equivalent force FD
T (projected in frame e) acting at the wing

center of mass (see [10]) given by:

FD
T =−

1

8
ρDTCTr‖ [v]e − ṙer‖([v]e − ṙer) ,

where er = r−1
[

x, y, z
]T

, DT is the tether diameter, and

CT the tether drag coefficient. The sum of the forces F in (3)

acting at the wing center of mass is given by F = FA +FD
T .

The vector of aerodynamic moment TA is given by:

TA =
1

2
ρA‖v‖2





CR

CP

CY



 (7)

where

CR =−DRω1 −ARω3 +Ca
Rua

CP = CPα +CT
P αT +Ce

Pue

CY = AYω1 +CT
YβT +Cr

Yur

and αT, βT are the tail angle of attack and side-slip angle,

given by:

αT =−
ν3 +LTω2

ν1

, βT =
ν2 −LTω3

ν1

where LT is the tail effective length.

In the following, U = [r̈, u̇a, u̇e, u̇r]
T ∈ R

4

are the system control inputs, and X =
[

x, y, z, ẋ, ẏ, ż, eT
1 , eT

2 , eT
3 , ω1, ω2, ω3, r, ṙ, ua, ue, ur

]T
∈ R

23

are the system states.

A. System Constraints

We use the following control input and state bounds:

−5m/s2 ≤ r̈ ≤ 5m/s2, (8)

−10m/s ≤ ṙ ≤ 10m/s. (9)

In addition, in order to keep the system in the region

where the model assumptions are valid, the following path

constraints need to be considered:

−1 ≤CL (X,W0)≤ 1, λ (X,W0)≤ 0. (10)

Aero

Forces

FA

TA X
∫ Xω

Aero

Moments
R
ω

R

X

∫ ω ∫ R
X∫ X

Wind

Model

u

W z

r, r, r

1,2,3

X

X

∫ λrr
λ E

W
R

W

Rotational

dynamics

Translational

dynamics

Equ. (8) Equ. (6)

Equ. (1)

Equ. (3)

Equ. (5)

Equ. (7)

Fig. 1. Architecture of the system dynamics. The feedback loops introduced
by the aerodynamics are highlighted using the light-grey arrows.

Constraint λ ≤ 0 is required to keep the tether under tension,

and constraint −1 ≤CL ≤ 1 is required to keep the wing in

the linear-lift region [15]. Note that the actual bounds on the

linear-lift region depend on the wing used.

B. System architecture

A visualization of the architecture of the system dynamics

is given in Fig. 1. Airborne applications are typically a chain

of four nonlinear integrators, with several feedback loops

occurring at different stages of the chain. The feedback loops

result from the aerodynamic forces and moments, which are

strongly nonlinear functions of the state of the system. The

dynamics resulting from the interaction of the integrators

with the aerodynamic feedback loops are highly coupled,

and strongly nonlinear.

III. POWER OPTIMIZATION

A. Power optimization problem

The optimization of power generation can be formulated

as the following periodic optimization problem:

PE : min
X,U,E,λ ,T

E(T )

T
(11)

s.t. (1), (3), (4)

F = FA, T = TA (12)

λ ≤ 0, 0 ≤CL ≤ 1 (13)

X(T ) = X(0), (14)

C (X(0)) = 0, Ċ (X(0)) = 0, (15)

〈ei,e j〉t=0 = δi j, i = 1,2,3, j ≥ i, (16)

Because the periodicity constraints (14) together with the

consistency conditions (15)-(16) are redundant, some con-

straints must be removed from the periodic optimization

problem (11)-(16). In this paper, the periodicity constraints

on the states r and ṙ were removed from (14), and only the

leading terms 1T
i ei(0) = 1T

i ei(T ), i = 1,2,3 were considered

for the periodicity of R, with [1i] j = δi j, j = 1,2,3.

B. Initial guess

For a practitioner, the a priori knowledge of the optimal

trajectory of a specific AWE system is likely to be limited to

its topology (e.g. circular or eight) and an educated guess of



some variables such as the wing velocity, the cable length,

the turn radius, and the operational altitude. We therefore

suggest in this paper to develop an initial guess for problem

(11)-(16) based on such limited information only.

Because it is strongly nonlinear and because the dynam-

ics are unstable, problem (11)-(16) is best treated using

simultaneous optimization techniques [1]. In a simultaneous

optimization framework, the problem is discretized on a time

grid tk, k = 0, ...,NT , and the states at each time tk introduced

as decision variables in the resulting Nonlinear Program.

From an arbitrary guess of the wing position over time

p0(t), with p0(0) = p0(T ) and C(p0(t)) = 0, ∀t ∈ [0,T ] the

states are initialized at the time instants tk such that:

1) the wing longitudinal axis e1 is aligned with the wing

absolute velocity ṗ0. The angle of attack α is yielded

by the component of the wing relative velocity due to

the wind only, and is therefore small if the absolute

velocity is chosen reasonably high.

2) the wing vertical axis e3 is aligned with the tether, such

that the lift mainly acts in the direction of the tether

axis

3) the wing angular velocity ω is initialized by taking the

numerical derivative of the pose of the wing R between

the successive times tk
4) the tether length is fixed, the wing control surfaces are

neutral

These requirements can be formally stated as follows:

e1(tk) =
(

‖ ṗ0‖
−1 ṗ0

)

t=tk
, k = 0, ...,NT − 1 (17)

e3(tk) =
(

r−1
0 p0

)

t=tk
, e2(tk) = e3(tk)× e1(tk),

ω(tk) =
N

T
log

(

R(tk)
T R(tmod(k+1,N))

)

×−1 ,

r(tk) = r0, ṙ(tk) = 0, u1(tk) = 0, u2(tk) = 0, u3(tk) = 0,

where A×−1 ∈ R
3 is the vector yielded by the skew matrix

A ∈ SO(3).
Solving problem (11)-(16) with the initial guess (17) has

been attempted using a) collocation-based discretization of

problem PE [2] and the NLP solver Ipopt [16], and b)

using the software ACADO [11] based on Multiple-Shooting

[3] and Sequential Quadratic Programming (SQP) [4]. Both

attempts have lead to the failure of the NLP solvers at a point

where feasibility cannot be improved. The failure occured

regardless of the number of shooting nodes or collocation

points tested. Though alternative strategies can be considered

to explicitly compute an initial guess for problem (11)-(16),

none have been found that allow for a reliable convergence of

Newton-type methods for problem (11)-(16). To tackle that

issue, the following section presents an alternative based on

a relaxed optimization problem, that allows for a refinement

of the initial guess (17) through a homotopy procedure.

IV. RELAXED PROBLEM

A. Opening the feedback loops

As pointed out in Section II-B, the nonlinearities of the

model dynamics are mainly due to the feedback loops intro-

duced by the aerodynamic forces and torques. In contrast, a

e1

e2

e3

e
E1

E2

E3

E

Wind

Fig. 2. Schematic of the reference frames E and e.

X
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ω R∫ ω ∫ R
X∫ X

r, r, r

X
X

Rotational

dynamics

Translational

dynamics

T

F ∫ λrr
λ E

Fig. 3. Dynamic model without aerodynamic feedback loops.

system where these feedback loops are open (see Fig. 3) is

decoupled and mildly nonlinear. This observation is exploited

here for developing a relaxed dynamic model where the

feedback loops can be fully open and then progressively

closed. This feature is then exploited to run a homotopy

strategy on the initial guess (17). Consider the following

representation of the dynamics of N subsystem through the

functions gi, i.e.:

fi(ẋi,xi,ui,zi) = 0, zi = gi(x), i = 1, ...,N (18)

where xT =
[

xT
1 ... xT

N

]

and gi are typically sparse

functions of x. We suggest here to open the feedback loops

by relaxing the algebraic constraint in (18).

1) Profile closing :

fi(ẋi,xi,ui,zi) = 0, zi − gi(x) = Pi(t,αi) (19)

‖P(tk,αi)‖p ≤ γ−1 − 1, k = 1, ...,NT

where p is any appropriate norm, Pi(t,αi) is a function of

time parametrized by αi ∈ R
n, and γ ∈]0,1]. Using (19),

a rich parametrization of Pi(t,αi) is required to remove

the couplings zi = gi(x). In a collocation framework [2],

feasibility can be achieved for all values of γ by reusing for

Pi(t,αk) the polynomials and the time grid used for setting up

the collocation scheme, and the norm constraints enforced on

the collocation nodes only. The resulting NLP is then a large-

scale problem, which is typically best treated using interior-

point techniques [17]. In a multiple-shooting framework

[3] where the discretization of the OCP is based on a

much smaller set of decision variables than in a collocation

framework, a high-order parametrization of Pi(t,αi) may not

be desired. An alternative strategy is proposed next.

2) Gain closing : an alternative approach to (IV-A.1)

consists in progressively introducing the feedback-loops in

the system dynamics through adjustable gains, i.e. using:

fi(ẋi,xi,ui,zi) = 0, zi = γgi(x)+ (1− γ)Pi(t,αi) (20)
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where γ ∈ [0,1]. Since for γ = 0 the equalities zi = Pi(t,αi)
hold, a high-order parametrization of is not needed to remove

the couplings zi = gi(x), and the variables zi are controlled

via the corresponding αi.

B. Relaxed problem

In this paper, the relaxation strategy IV-A.2 is implemented

(see Fig. 4). The relaxed problem aims at refining the

initial guess (17) to obtain a feasible trajectory close to the

prototype trajectory p0(t) used to build (17). Defining the set

of decision variables W = [X U λ FF TF γ], the proposed

relaxed problem reads:

P(pH) :min
W

∫ T

0

(

‖Xk − X̄k‖
2
Q + ‖Uk − Ūk‖

2
R

)

dt

s.t. (1), (3), (13)− (16)
[

F

T

]

− γ

[

FA

TA

]

− (1− γ)

[

FF

TF

]

= 0 (21)

γ − pH = 0 (22)

The following homotopy procedure was applied to problem

P for some NH ∈ N sufficiently large:

Algorithm 1: (Homotopy)

Initialization: states (17), pH := 0, TOL0 > TOLEND > 0

While pH ≤ 1 do:

1. solve P(pH) to tolerance TOL0

2. pH := pH − 1
NH

end while.

Solve PE to TOLEND.

The homotopy parameter pH is embedded [7] in problem P

by introducing the decision variable γ and the constraint (22).

As a result, for a given value of pH the parametric Quadratic

Program (QP) obtained at a solution of problem P(pH)
provides a linear predictor for the next homotopy step, hence

improving the convergence of the Newton scheme. Once

P(0) has been solved to a reasonable degree of accuracy

TOL0, for NH chosen sufficiently large, a single full Newton

step can be sufficient to update the solution. However, if the

homotopy step size is not adjusted to ensure that the accuracy

of the solution remains sufficient throughout the homotopy,

TABLE I

MODEL PARAMETERS

Parameter Value Unit

mA, A 5 ·103 , 100 (kg), (m2)
diag(I)

[

4.4 ·103 2.1 ·103 6.2 ·103
]

(kg ·m2)
α t

0, LT −10, 5 (deg), (m)
Cα

L 3.82 -

C0
D, Cα

D , C
β
D 10−2, 0.25, 0.1 -

Cu
R, C1

R, C3
R 0.1, −4, 1 -

Cu
P, CT

P , Cα
P 0.1, 7.5, 1 -

Cu
Y, C1

Y, CT
Y 0.1, 0.1, 7.5 -

zr,z0,ρ 10−2, 100, 1.23 (m),(m),(kg ·m−3)

300
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0
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300

x [m] y [m]

z
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]

Fig. 5. 3D trajectory resulting from initial guess (23). The arrows are the
wing velocity.

more than one (not necessarily full) Newton steps may be

needed. In the proposed implementation, the dynamics in

problem P and PE where discretized using multiple-shooting

[3], and the resulting NLP tackled via the SQP method

implemented in the software ACADO [11]. The primal active

set QP solver qpOASES [8] was used to solve the underlying

Quadratic Problems.

V. ILLUSTRATIVE EXAMPLE

Two common types of trajectories for AWE systems are

considered. The first is a circular trajectory, a topology that

is often preferred in practice for its simplicity, but for which

a swivel mechanism is required to avoid the winding of the

tether. The second trajectory is a lying eight, for which the

problem of tether winding is avoided, but which requires

strong angular accelerations ω̇ to be performed.

A. Circular trajectory

The relaxed optimization problem P was initialized using:

δk = 2kπ/N, ψk = ψmax sin(δk)+ψ0, θk = θmax cos(δk),

p(ψk,θk,r) = r





cos(ψk)cos(θk)
sin(θk)

cos(θk)sin(ψk)



 (23)

for k = 0, ...,N − 1, where r, ψmax, ψ0 and θmax must be

chosen by the user. The state and input guess was computed

using (17). The 3D trajectories are reported in Fig. 5.
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B. Lying eight trajectory

The relaxed optimization problem P was initialized using:

δk = 2kπ/N, ψk = ψmax sin(2δk)+ψ0, (24)

θk = θmax (cos(2δk)− 1) , δk ∈ [0,π [ ,

θk =−θmax (cos(2δk)− 1) , δk ∈ [π ,2π [ ,

for k = 0, ...,N −1. The state and input guess was computed

using (17). The 3D trajectories are reported in Fig. 6.

The average power generated throughout orbits are re-

ported for both trajectories in Fig. 7. The arguably modest

optimal power results from the dynamics of the wing, which

were not optimized for AWE, and from the choice of having

only one orbit per pumping cycle, instead of several. This

results underlines the necessity to optimize the wing for

power generation, and for investigating the ideal number of

orbit per pumping cycle. This investigation is the object of

current work.

VI. CONCLUSION & FUTURE WORK

This paper has proposed a reliable homotopy strategy to

compute optimal power-generating trajectories for Airborne

Wind Energy (AWE) systems. Because the dynamics of

models for AWE systems are highly nonlinear, and because

only poor initial guesses are usually available, attempting to

solve the power-generation problem directly typically leads

to the failure of the NLP solver, which stops prematurely at

a point where feasibility cannot be improved.

The nonlinearities of AWE systems come chiefly from

the feedback loops introduced by the aerodynamic forces

and moments. This paper proposes to relax the dynamic

constraints associated to the model of the AWE system

by opening the aerodynamic feedback loops. The relaxed

problem can be reliably solved, and a solution to the original

problem designed by running a homotopy that gradually

closes the feedback loops.

The strategy was successfully tested on a classical, com-

plex model for AWE systems for two different type of tra-

jectories. Future work will test the technique on high-fidelity

models, where tether dynamics and complex aerodynamic

effects are taken into account. Heuristics to compute an

adaptive step size for the homotopy parameter pH will be

considered in order to minimize the amount of computations

required in the homotopy loop.
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